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Module - 6 

Binary Decision Diagram 
Lecture - 1 

Binary Decision Diagram: Introduction and Construction 

Today I will start a new topic call binary decision diagram or in short BDD. What we 

have seen till now that we have seen about a verification of a system for that we need to 

have a model of the system and we need a specification language. So, we have talking 

about CTL computational tree logic to given of specification and we have taken our 

model as a finite stack machine. Now after that we have discuss about the CTL model 

checking algorithm. Now, if we give a model of our system and if we give a 

specification then we apply our model checking algorithm to check why that the given 

specification is true in our system or not. 
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So, if you look into this particular model checking algorithm you will find that this is 

somewhat similar to a craft over slave algorithm. So, we try for the Intergraph and will 

check with a it is true will some state on node, and ultimately the model checking 

algorithm return the state set of states where the formula is true. Again when we have 

discuss this particular model checking algorithm we founded, we are having a 



polynomial terminal algorithm to, to the CTL model checking which is polynomial in the 

size of our keep get structure this is basically polynomial in the size of does graph state 

space, that we have giving into it and also it is in the polynomial in the size of our given 

formula, what a length of our given formula. So, we have seen that we are having a 

polynomial them algorithm and we are having a automatic metrology, automatic 

algorithm, we can develop this algorithm, we can improvement this things and 

automatically we can check with the given formula is true in a given model or not. 

Manual interfusion is not (( )) so we are happy with them, but we have one more 

problem with this particular model checking algorithm. This is known as your state space 

explosion problem; what is this state space explosion problem basically you just see that, 

if we are walking with a system where we are having encounter fairy about. So, or n 

control signals that means, those n control signals can be dataries over atomic 

proposition so number of define combination will be your 2 to the power n.  
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So, for n signals state space is your 2 to the powder n, because we are having 2 to the 

power differ n 2 to the powder and define combinations. Now say while we are 

designing it phosphination we have studied with n signals that we have formed that it 

cannot be design properly we need one more signals. So, will in cooperator one more 

signal in our design and eventually the total number of signal will become n plus one and 

states space will become knot and 2 to the power n plus 1. 



So, in this particular you can see that the state space is in explosions that means, it 

explosions to the number of signals that we have. So, for a smaller system it is fine but 

for a bigger system it is going to give as problem. So, that why you are now looking into 

some at a way to represent our system. So, fault depth BDD is one solid circuit with the 

help of BDD or we can taken this particular state space explosions problem. 

Now that is why, we have going to talk about BDDs. What is BDD? It is a binary 

decision diagram which is a data structure to implement or to stow any Boolean function. 

So, if say if we are having a Boolean function of t variable x y z then function x y z can 

be represented with some Boolean explosions x bar y plus y z plus z x y. So, if we are 

having such take a Boolean explosion, then this Boolean explosion can be stow or 

represented with the help of binary decision diagram. 

So, we have going to look into this particular binary decision diagram in this particular 

module. And let on we are going to see, how that finite state machine or the state 

transition graphs will be implemented or represented with the help of BDD and will see 

how the model checking algorithm can be in cooperator of BDDs. One we use BDDs for 

our model checking algorithm then we say this is your symbolic model checking. So, 

eventually we will go to symbolic model checking algorithm where the system will be 

represented with the help of BDD binary decision diagram. 
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Now what is your BDD? So I have already mention that BDD is use to represent and in 

Boolean function. So, it is basically BDD is based on recursive Shannon expansion we 

know that any Boolean expansion can be expansion as a Shannon expansion. So, this 

Shannon expansion is given it like that, f is equal to x dot f x plus x bar dot f x bar. So, 

what does it means, so x is a importable so expanding in this particular function of x and 

we are having the evaluation value of x and we have going to treat x equal to 1 plus x bar 

that means we have going to treat the variable x bar and the functional value when we 

have going to treat this value variable x equal to 0. So, with the help of this Shannon 

expansion we can represent and the Boolean function and the BDD is based on this 

particular Shannon expansion. What is BDD; it is compact data structure for Boolean 

logic. 

So eventually will find that it is compact to a optic presenting our Boolean logic or 

Boolean function. On the other have you can say that we can represent our states space 

also with the help of BDDs because states space can be represented with the help of a 

combination of some Boolean function and one more advantage of BDD is that it is a 

canonical representation. So, it is reduce order BDDs are canonical in form that means, 

we have going to get a unit representation of a Boolean function if we use ROBDD 

reduce order binary decision diagram. First will talk about binary decision diagram then 

will go to order binary decision diagram and finally, will come to reduce order binary 

decision diagram. When we talk about reduce order binary decision diagram you have 

going to get a unit representation of a Boolean function. That is why, will say that this is 

the canonical representation of a Boolean function. 

So, now I am going to give one example of this particular Shannon expansion. So, you 

just see that I am going to talk about this particular function f is equal to a c plus b c ok. 

That means f is a function of t variable a c plus b c and already I have mention that the 

Shannon expansion is your f is equal to x into f x plus x bar dot f x bar that means, this f 

x says that the value of this given function when x equal to 1. So, this is basically we 

have going to have this function f so we have going to say f a will be the functional 

function 1 we have going to treat x equal to a equal to 1. 
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So, f a will we have going to get as your c plus b c, because when we treat x a equal to 1 

then one dot c will be equal to c plus b c. Similarly, f a what is the function when we are 

thing that value of a is equal to 0 so f a bar is equal to f when a equal to 0 so when we put 

a equal to 0 then this particular trance become 0 0 plus b c so eventually you can going to 

get b c. 

So, f of a is equal to c plus b c f of a by is your b c. so that is why this particular function 

can be represented is your f of a into b f a plus a this into f of a this so this is nothing but 

a into f of is your c plus b c and f of is your b c so a a bar dot b c. Now basically what we 

can see that, if we have going to the simply thing that we are having this three variable a 

b c. Initially we have going to look for the valuation of a, a can either take 0 or 1 just I 

am going to represent it something like that say this is the variable a. So, this maybe your 

a equal to 0 and this is your a equal to 1. 

So, in this particular case already I have the valuation of a, a either a will be equal to 0 or 

a will be equal to 1, so what we need to evolver. This is the function based on this 

variable b and c, because already we have taken the decision on a. Now this particular 

function that when a equal to 0 you see that the function will be your b c that means, I 

am going to prop about the function b c over here. So, I can say that this is your g and 

when f is equal to s and I am going to say that c plus b c is the value. So, I can say that c 

plus b c is the value and I say that this is the function h. 



Now my next (( )) is to evaluate this function g and h again will use this particular 

Shannon expansion say if you consider that variable b. Then what will happen I will take 

as a b is equal to 0 and b equal to 1 similarly, for h also we have going to talk about b is 

equal to 0 and b equal to 1 and eventually what function will remains it will on the value 

of variable c. So, in this way recursively we have going to get Shannon’s expansion and 

we have going to get a some sort of your decision tree or decision diagram and it will be 

represent with this particular form. 
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Now we have going to talk about these particular BDD so binary decision diagram but 

before going to binary decision diagram, I am going to talk about BDT binary decision 

tree. So, it is a tree so we have saying that binary decision trees are trees whose non 

terminal nodes are leveled with Boolean variables. Say if you having a function of x y z 

then non terminal nodes will be represented by those particular Boolean variables and the 

terminal nodes will be represented by the Boolean values or Boolean constant either 0 or 

1. So, one we have going to draw, draw BDT or BDD we use this particular cycles to 

represent non terminal nodes. 

And we use this particular square box to represent terminal nodes ok. So, in case of non 

terminal nodes it will be labeled with that variables of that particular (( )) say if x is a 

variable say I will labeled this particular non terminal nodes with x and if it is a terminal 



nodes either Boolean function value will be 0 or 1. So, I can say that if I present write 1 

over here it says the, this value of this particular terminal node is 1. 
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So, we have going to draw a tree in the tree we are having terminal nodes and the non 

terminal nodes. The level of non terminal nodes are the variables of the function and the 

label of our terminal nodes or Boolean constant either 0 of 1 which will be the functional 

value of a given function. Now in BDD’s of BDT each non terminal nodes are having 

two edges ok. So, if decision non terminal node x it is having two edges one is will be 

represented by your dash line and second one will be represented by the solid line; that 

this line says that, this is representing the valuation of x equal to 0 and solid line says 

that, this is the valuation of x with value x equal to 1. So, I know that we are having only 

two possible either x will be 0 or x will be 1. So, when I am going to treat the valuation 

of a particular variable x then it is having two outgoing as that, this is basically says it is 

the value of a x equal to 0 and x equal to 1will represented by this particular solid line. 

So, I have treat non terminal nodes are having two outgoing as s. 
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Now that is why you can say that, so in of BDT we can something write something like 

that so this is say variable x this is variable y this is variable z. So, when variable x equal 

to 0, we are having a valuation of x 0 then we are going to look for what will be the 

value of y. If value are x equal to 1, then we have going to say what is the value of y over 

here like that we are going to construct the complete tree it is the tree ok. Now I am 

going to give an example. 
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Just say that we have going to take a function f which involve three variables so f is a 

function of these three variable a, b, c. All of you know that the Boolean function can be 

represented very well with the help of truth table. So, I can have this particular truth table 

representation of my Boolean function f a, b, c. So, what you know it is that, it says that 

when a is equal to 0 b is equal to 0 c is equal to 0 then my functional value is 0.  

Similarly, if I say that if my a is equal to 1 b is equal to 0 and c is equal to 1 then my 

functional value is 1. So, in truth table we have going to represent all possible 

combination of these tree variables and you know that what will be a size of this 

particular truth table. It is 2 to the power n we are having 2 to the power n n trees in this 

particular truth table if n is the number of variable. So, here I am having 3 variables only 

so I am having 2 to the power 3 which is 8 n 3 so these are the 8 possible combination 

that we can have with respect to a b and c, because (( )) 0 of 1 similarly, b and c. 

Now this particular function I am representing with the help of your truth tables. Now we 

can construct the BDD for this particular function BDT binary decision tree for this 

particular function looking into this particular truth tables. So, if you look into it 

eventually we have going to get there it is having these 3 terms, so if you look into it 

then eventually what will happen 3 in terms will be there and when I am going to reduce 

it then eventually I am going to get this particular function f is equal to a c plus b c. 
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Now what we are going to do, now we are going to get the BDT for this particular 

function so this is the truth table I am having this is the function f. Now I am having 3 

variables a b and c I have to see one a is equal to 0 and a equal 1 so when a is equal to 0 

then I am going to look for this particular point because a is equal to 0 now b can b and c 

can have either 0 and 1. When a equal to 1 then I will having these particular part of the 

truth table. So, here I am representing one non terminal nodes labeled with a that means, 

I am going to take a decision on a when a is equal to 0. I will follow this particular dash 

line when a is equal to 1 then I will follow this particular solid line. 

Now when I am taking a decision on a either coming to these part or these part. So, 

remaining portion will depends on b and c’s. Now again when i will come to b then b can 

be either 0 and 1, similarly b can be either 0 and 1 now eventually I am getting c so c 

will be either 0 and 1 it is having only 3 variables so I have already taken the final 

decision. Now, I am going to represent those terminal nodes, which is talked about these 

particular functional values. 

Now you just able to one thing say when a is equal to 0, b is equal to 0, c is equal to 0 

then my functional value is 0. So, that is why this terminal node is 1. So, when I say that 

a equal to 1, b is equal to 0, c equal to 1 then my functional value is 1, because it says 

that when a equal to 1, b equal to 0, c equal to 1 then this is the functional value 1. So, I 

am putting this 1 in this particular polynomial node. 

So you just see that by reversing all those particular edges we can get the functional 

value of this particular Boolean function. So, that is why I can say that from truth table I 

can state your construct these particular BDT ok. So, this is the function f is equal to a c 

plus b c if you reduce this particular representation. We have going to get this one and 

this is the decision tree that we are getting over here. 

Now you just see that, you are having a truth table I am getting a BDT binary decision 

tree. What advantage we are getting by representing this particular truth table with the 

help of BDT? If you see or if you look into it at such we are not getting any advantage, 

because you see that when I am representing it with the help of truth tables then what 

happen, I am getting total 2 to the power n and 3 if I am having n number of variables. 

Now when I am drawing this particular BDT binary decision tree again you will find that 

in node or terminal node we are having 2 to the power n define terminal nodes. Because 



this is going to give the functional values for deferent combination and height of this 

particular tree will be n basically level and because you are having n variable. 

So again the way you are having the expansion grow of in truth table, because if I 

increase by one more variable said d then what will happen, we are going to get 16 

deferent entries 2 to the power 6. For there also this BDT the label of this BDT will be 

increase by 1 and I have to take decision on the and eventually we have going to get 16 

deferent terminal nodes. So, x as if you look into the binary decision tree and your truth 

table we are not getting any advantage. In both the cases we are having expansion grow 

up. 
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So that is why this is the such idea I am giving you that how I am going to use this 

particular data structure to represent my function. So, instead of binary decision tree we 

are going to look for binary decision diagram. Which is binary decision diagram, it is 

very similar to your binary decision tree, but now my representation will be a graph 

instead of a tree I think you know what is the deference between trees and graphs. So, we 

have going to get a graph now when we have going to talk about the BDT. So, this is a 

dag director a cycle graph. 
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So, because we have going to talk about the direction also in this particular case though 

explicitly we have not Mention it that means, when a is equal to 0 I will follow this 

particular path, b is equal to 0, c is equal to 0 we have going to follow and when c is 

equal to 1, we have going to follow this 1. So, this is some sort of your directed (( )). 

Now that is why you are saying that what is your BDD; this is a directed acyclic graph; 

that means, it is a directed to, but it should not have any cycle. And a similar way now 

we can talk about BDD also, so what happens in BDT we are seeing that we having 

terminal nodes and non terminal nodes in BDD also will we having terminal nodes and 

non terminal nodes.  

In case of non terminal nodes that will be label by your Boolean variables, terminal 

nodes will be label by Boolean values 1 or 0 and every non terminal nodes are having 2 

outgoing edges 1 as will be represented by your dash line and second one will be 

represented by your solid line; dash line says that, the value of this particular value is 

taken as 0 and solid line says that, the value of this particular variable is taken as 1. So, 

you just see that this is similar to your BDT only, but it is now we have going to get a 

graph instead of a three. 

Now what is the primitive of our BDD, primitive BDD binary decision diagram. So, in 

this particular case we have going to get 3 primitive binary decision diagram and with 

the help of this 3 primitive binary decision diagram we have going to construct the 



binary decision diagram of any given Boolean function. So, this is your b 0 it is a 

terminal node label by 0, it says that the Boolean value is equal to 0. So, this is b 0 is 

representing these particular BDD, which represent the Boolean constant 0. 
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Similarly, we are having one binary decision diagram BDD b 1, which represent the 

Boolean constant 1; that means, this is such a box with an one over here. So, it is a 

primitive BDD it says that, this is the Boolean constant 1 b 0 says that, this is the 

Boolean constant 0 and another BDD we are having which represent the Boolean any 

Boolean variable; so if you label by x then we have going to say this is the BDD for the 

Boolean variable x and we say this is your b x. So, what it says that x it is having 2 

outgoing edges, 1 dash, second one is your solid dash line is pointing towards the 

Boolean constant 0 and solid line is pointing towards the Boolean constant 1; that means 

when x is equal to 1, then my functional value is 1. So, this is their representation of 

BDD representation of our any Boolean variable x. So, this is order 3 primitive BDDs 

and with the help of these 3 primitive BDD, we have going to construct the BDDs of any 

given Boolean function. 
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Now just see that what I am going to talk about, now we are saying that the BDD is 

nothing but our BDD can be constructed or represented with the help of Shannon 

expansion. Again consider these particular same Boolean function f equal to a c plus b c 

and the Shannon expansion is your f is equal to f of x f x plus x dash of f of x dash; that 

means, functional value of a when x is treated is equal to 1 and your functional value of f 

when x is equal to 0. That means, I can say that already I have say that f of a equal to 0 

will be your b c, because a equal to 0 will be your b c, because a equal to 0 I am going to 

have b c so I say that, this is your b c and when f a is equal to 1 then f of a is your c plus 

b c, because a is equal to 1, 1 into c equal to c not a functional depends on c.  

So, c plus b c so when I am saying that, this is a sub function g and second is sub 

function h. So, this particular information we have going to represent with the help of 

this particular partial BDD. So, we are having a terminal nodes a either a have value 0 or 

a have value 1, so when a is equal to 1 then I am having the sub function that we have to 

evaluate this c plus b c this is h and when a equal to 0 then sub function we are having g 

which is your b c. So, this is the partial BDD for this particular given function after that 

taking the decision on a. 

Now what we have to do next, now either we have to take decision on b or decision on c. 

Now if I am going to take decision on b, then I am going to label these 2 things will b. 

So, in this particular case now again I will apply this particular Shannon expansion for 



this particular function g or this particular function h; this way we can construct our 

BDD also 

(Refer Slide Time: 25:06) 

 

So eventually, now what will happen you just see now we have going to apply this 

particular Shannon expansion for all the variable. So, we are getting g and h here I am 

having the function g and here I am having the function h. Now will apply Shannon 

expansion on g and h, so if g if b equal to 0 then what will happen the functional value is 

0 and when b equal to 1 then g b will be your c, because if it is your b equal to 1, 1 dot c 

will be c. 

Similarly, in case of h if it is your, your b equal to 0 then it will be equal to c and when b 

equal to 1 then it will be c plus c which is equal to c. Now you just see that, now what we 

are trying now when b equal to 0 that functional value is 0 so we are writing doing this 

particular h and saying that, when b equal to 0 functional value is 0. When b equal to 1 

then functional value is c so that is why I am doing this particular c node c and pointing 

from b to c with the help of solid line. 

Similarly, in case of your function your h when b is equal to 0 the functional value is c, 

so this dash line is coming to c and when b equal to 1 then again the functional value is c 

that is why this solid line is coming to this particular node c. Now we are having this 

particular 3 function one is already getting the constant. Now you just see that this sub 

functions are depends on your c, if c is equal to 0, functional value is 0, c is equal to 1 



that functional value is 1. So, for that from c I am having this particular dash line which 

is coming to 0 and I am having this particular solid line which is pointing towards this 

particular terminal node 1. So, eventually I am getting these particular BDD. So, this is 

the BDD of this particular given function a c plus b c. 
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Now you just see what we have got now. We are taking this particular function f is equal 

to a c plus b c, so from truth table I am getting this particular diagram which is your BDT 

basically binary decision tree. And by x using this particular Shannon expansion I am 

getting this particular diagram, which is I am going to say this is your BDD binary 

decision diagram. So, both this diagrams are now representing the same Boolean 

function, because you can refers this particular graph and then eventually you can find 

out the valuation of this particular function say, if a equal to 0 b equal to 1 c equal to 1 

functional value is 1. So, when a equal to 0 b equal to 0 c equal to 1 my functional value 

is 1, so from both this diagram will consider the same. 

So, here we are having BDT and we are having BDD, but both are represent this 

function. So, here I am going to get some sort of your compact representation of this 

particular given function. Now they are equivalent both of them are representing the 

same function so whether can we exceed this particular BDD from this particular BDT, it 

may be possible. So, see what we are going to do so we can use some reduction rules and 



with the help of this particular reduction rule; we can try to reduce our BDD or we can 

try to reduce our BDT.  
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So, what is that reduction rule first reduction rule we are saying that eliminate of 

duplicate terminals. So, if we are having duplicate terminal nodes we can eliminate it. 

Say if we are having more number of terminal nodes which are going to represent the 

Boolean constant 0, then we can represent those particular terminal nodes with 1 

terminal node. if we are having several terminal nodes which are representing Boolean 

constant 1 we can represent those particular several terminals with the help of 1 

terminals (( )) represent this particular Boolean function. So, that is why the first rule we 

have saying that eliminate of this particular duplicate terminals. 

So, if we apply these things to our BDT then what will happen you just see so in case of 

these things what will happen, now all terminals node will be combine to 1 and that 

incoming edges will be redirected to this particular new terminal nodes. Now what 

happen you just see that this is the BDT that we had now we are having several terminal 

nodes some are represented by 0 or some are represented by 1. 
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Now all 0s will be combined and represented by one terminal nodes and all 1 will be 

combined together there will be represented by 1 terminal nodes 1. And whatever 

incoming as is the coming to those particular terminal nodes they will be redirected to 

this particular terminal nodes. So, after eliminating this particular duplicate terminals 

what I am getting from this BDT we are getting some sort of BDD over here. 
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So, now at least we can see that, the number of nodes are let us here, because instead of 2 

to the power n nodes terminal nodes we getting only 2 terminal nodes. So, here we had 8 



terminal nodes, because we are having 3 variables so these 8 terminal nodes will be 

represented by 2 terminal nodes. So, it is for any function if we have a function of n 

variables then in BDT, we have going to get 2 to the power n terminal nodes, but in BDD 

we can represent this 2 to the power terminal nodes by only 2 terminal nodes so there is a 

massive reduction. So, we need to have only 2 terminal nodes when we talk about BDD. 

This is one reduction that is why eliminate of duplicate terminals. So, second reduction 

rule we have going to say that eliminate of redundant nodes; that means, with both edges 

pointing to the same node. We have going to see, why to we have going to talk about the 

redundant nodes. So, eliminate of redundant nodes what we are going to say about these 

things. Now you just see that, we are having this particular partial BDDs just consider 

this one say we are taking some decision where coming to way. When a equal to 0 it is 

pointing to this particular non terminal nodes, when a equal to 1 again this pointing to 

this particular non terminal nodes. So, now you just see that, when a is equal to 0 then 0 

into that functional value depends on b. 

 So, that is why I am saying that, when a equal to 0 then a this in to g b dot remaining 

portion. Similarly, when a equal to 1 again we are getting that a dot g b, because already 

we know a equal to 1 and this is the remaining portion that we have to evaluate. So, this 

is basically what happen you say that, a dot a dash g b plus a g b which is equal to g b; 

that means, now you just see that what about function, that I am going to have it is 

basically redundant or irrelevant on the decision of this particular a in this particular 

path. So, in this particular path so that is why what I am saying that we have going to 

eliminate this particular redundant node. So, if we are having such type of redundant 

nodes we have both 0 and 1 edges pointing to the same sub function then we can 

eliminate these things. So, we eliminate these particular nodes and all the incoming 

edges will be directed to this particular node. 

So in this particular way we can eliminate some of redundant nodes. After eliminating 

this particular redundant nodes my size of your BDD will get reduce. That means, we 

have going to see the compact representation of our Boolean function. So, first 

redundant, first reduction rule is your elimination of duplicate terminals,, second 

deduction rule is your eliminate of your redundant nodes. 
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Now may we have one more rules which is your reduction rules 3, which is nothing but 

call you are merging of your duplicate nodes. So, if we are having some duplicate nodes 

then we can merge them to get a and we have going to get a some sort of simple or 

reduce BDD. Now you consider this particular partial BDD so what happens in this 

particular case you just see that I am coming to this particular 2 nodes. Now I have to 

take the decision on a so f a we evaluating and in this particular node I am going to take 

the decision on a. So, what will happen in this particular case if a is equal to 0 then I am 

coming to this particular node b, when a equal to 1 I am coming to this node c that 

means, this is a dash into g b. So, this is basically coming to this particular dash line is 

going to say a dash dot g b. 

And when I follow this particular solid line then I am going to get a dot h c, that sub 

function that we are having in this particular node is o h so a dot h. So, when I consider 

this particular node a, this particular node I am getting this particular function. Similarly, 

I am coming to this particular node and whatever we have evaluate over here is a state f. 

Now again we just see that, when a is equal to 0 we are coming to that same node b and 

when that means we are going to look for same function g and when a equal to 1 where 

coming to the same function f. So, in this particular case the partial evaluation of the 

given function for f 1 and f 2 both these function are same. So, we are saying that f 1 

equal to f 2 which is your add a g b plus a h c. 



So, in this particular case we can say that these are basically some sort of duplicate nodes 

that we have in our BDD. So, what we can do know, we can eliminate these merge these 

2 nodes to a single node. So, in this particular case both f 1 and f 2 will be equal to your f 

so you can say that merging these 2 nodes to 1and these are the sub function that we are 

having when it is equal to a equal to 1. We are going to evaluate the sub function h and 

when it is equal to 0 then we have going to evaluate this particular sub function 0. So, 

like that we can merge this particular duplicate nodes and eventually we have going to 

get a some sort of your reduce or compact representation of our given Boolean function.  
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So we can have these particular 3 nodes. Now you just see that, first we are getting this 

particular truth table you are looking into a function representing by truth table and we 

are drawing this particular binary decision tree from this particular truth table. So, it is 

having a exponential glow up. Now what we are going to see, we have time to reduce it. 

When we have going to reduce it according to the past rule we have going to merge 

terminal nodes. So, we try to merge those particular terminal nodes, so we are getting 2 

terminal nodes one is 0 and second one is 1 and we have going to redial a those incoming 

edges to these 2 terminal nodes. 
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So, after application of first deduction rule we are reducing the terminal nodes to only 2. 

So, you may have 2 to the power n terminal nodes in binary decision tree, but eventually 

we have going to get 2 terminal nodes in our binary decision diagram, with the help of 

first reduction rule merging a terminal nodes we have getting only 2 nodes once we are 

having this particular 8 nodes. 
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Now next you just see that after getting this particular some sort of your reduction, now 

we are going to look inspect those particular nodes. Now you just see these particular 3 



node c. When c equals to 0 the function value is 0 when c is equal to 1 the function value 

is 1. So, nature of these 3 nodes are same so these are basically some sort of duplicate 

decision that we are having. So, in this particular case we are going to merge these 3 

nodes true 1 particular node c and the incoming edges will be redirected. So, form b it is 

1 coming to c, so b equal to 1 coming to c, b is equal to 0 coming to c, b equal to 1 

coming to c. So, these are the 2 solid line so we are redirecting those particular edges. 

So, we are getting some sort of reduction over here, when we are merging the duplicate 

nodes so by this particular reduction rule merging of the duplicate nodes. 

So after that we have going to see whether we are having any redundant nodes or not so 

in this particular case you just see that if you look this particular node b. What will 

getting, when b equal to 0 I am coming to see when b equal to 1 where coming to c. That 

means, whether b equal to 0 or 1 it is immaterial we have going to evaluate this 

particular some functions. Similarly, when I look in to this particular c, again it c equal to 

0, the functional value is 0; c equal to 1, functional value is 0. So, again it is immaterial 

on the decision of these particular c so what happens now, we have going to get this 

particular diagram BDD; where we are removing this 2 redundant nodes so eventually 

we are getting this particular BDD.  
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So, we have applied your this reduction rule, remove a all your non terminal nodes, 

merging of duplicate nodes and remove of redundant nodes after removing of redundant 



nodes it may happen that some of some duplicate node may arise again one here. So, 

what we have going to do, will again apply this particular merging of duplicate nodes; 

after merging of duplicate nodes what will happen, again some redundant may arise, 

again we have going to remove those particular redundant node. So, in this way what 

happens we are going to repeat these particular 2 rules and try to eliminates more and 

more redundant nodes and merges duplicate nodes. 

So, eventually we have coming to this particular BDD. So, you just see that, this is what 

we have talked about here that that we are looking into the BDT and you have applying 

those particular deduction rules eventually we are coming to a representation. And you 

just see that no more deduction is possible, because a, b, c these are a 3 nodes. There is 

no redundant node, because all 0s and 1 is going to deferent direction. We do not have 

any duplicate also, because this is the levels are deferens so since are levels are deferens 

the question of duplication is not arise over here. 
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Now this is from BDT, we have coming to this particular reduce BDD. Similarly, we 

have the same function we have taken and you have constructed the BDD with the help 

of your Shannon expression. So, this is your constructing this particular BDD with the 

help of Shannon expression. So, after constructing the particular BDD will see whether it 

can be reduce or not. So, first rule talks about the redundant remove well of your 



terminal nodes. So, since we have using that Shannon expression so there will not be any 

your redundant terminal nodes, because you have going to have only 2 terminal nodes. 

So, basically we have to look for a other 2 rules merging of duplicate nodes and remove 

well of redundant stats. So, when I am coming to this particular diagram BDD we have 

founded this particular node b. It is doing some short of your redundant test on, because 

b equal to 0 and 1 is going to have the same sub function. So, we can remove these 

particular redundant nodes and ultimately we have coming to this particular BDD. 

So whatever you have going to do if we are starting from your BDT or you apply 

Shannon expression to get a your BDD; eventually we can apply those particular 

reduction rules and finally, you come to a particular BDD. So, we have coming to this 

particular BDD and no more reduction is possible over here. So, by looking into this 

things what happens, now you have going to have the notion of your reduced BDD 

reduce binary decision diagram, which is say within as your RBDD reduce binary 

decision diagram. 
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When you say that a binary decision diagram will be reduced one will say that, it will be 

reduced one. If none of the reduction rule r 1 and r 2, r 3 can be apply. So, we are having 

3 rules r 1, r 2 and r 3 if none of this reduction rule can be applied anymore; that means, 

no more reduction is possible. So, if no more reductions are possible at that point we 

have going to say that this is the reduce BDD we have going to getting it. 



So, we say this is RBDD or say reduce BDD. So, this is the notion so when we have 

coming to that reduce BDD that means, no more reduction is possible and we are getting 

a representation of my given Boolean function. So, you just see that we are representing 

of our Boolean function with the help of a decision diagram which is known as your 

BDD binary decision diagram. It can be reduce to get a reduce BDD and in reality we 

have found that in most of the cases we have going to get a compact representation of 

our Boolean function. 

So, initially what happens when you talk about BDT we will find that we are having a 

exponential blow up, we are having total 2 to the power n number of terminal nodes. If 

we are having n variables, but we can apply the Shannon expression also to construct a 

BDD for a given function, in when we are using for a Shannon expression at least we can 

assumed that, we have going to get a 2 terminal nodes and we may have some none 

terminal node.  
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When we are getting the initial BDD with the help of Shannon expression then we try to 

use the reduction rule, removal of your redundant test and marginal of duplicates none 

terminals. By repeated that applied of this two rules we have going to get compact 

representation of our given Boolean function. So, when we are having a compact 

representation of our Boolean function, we have going to use this things while 

representing our Boolean function and it is going to help us to up to (( )) with the state 



space expression problem. Will see how we have going to represent our state space with 

the help of binary decision diagram. 

Now say if I am going to have any Boolean logic circuit. Just for expression I am saying 

that say I am having 2 and gates over here and 1 or gates that input variables are you are 

a, b, c, d. So, if it is the four input variable and if this is the circuit given to me, than what 

happens I can write the function for this particular function is your this is nothing but 

some of product. That means, a into b plus c into d you just see that if we are having any 

Boolean circuit and logic circuit we can always right the Boolean expression for this 

particular circuit. And once we have this particular Boolean expression than what will 

happen always we can try to construct the BDD for this particular Boolean function. 
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We just see once we have constructing the BDD, than we can use those particular BDD 

in our walk. Now you just see now we are having some BDDs just we are representing 

this particular BDDs something like that in symbolic way. This triangular we are writing 

that this is the Bf BDD of the Boolean function f. Just look into the previous example say 

I am having say a either this is b, if b equal to zero than I am having the functional value 

s 0 if b equal to 1 I am coming to see if a equal to 1 c is equal to 0 functional value is 0 

and c equal to 1 my functional value is 1. 

So, this is the BDD, that already we have seen that is a simple BDD. Now this particular 

tree than early we represent with the help of this particular triangular and we say that, 



this is the function BDD power function Bf and eventually it is having this particular 2 

terminal nodes 0 and 1. So, this is basically we have representing binary decision 

diagram Bf this is the graph that we have an eventually we having this 2 terminal nodes. 
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So, if we are having a BDD of Bf, than we can do some other operation on this particular 

BDT, BDD also. Now you just see that if I am having a function Bf say f I am having 

some function than the compliment of by f is your return by your f bar. Now if the BDD 

of this function is your Bf than I am going to get the BDD for this particular compliment 

of this function b f bar. Now if we are having the BDD of a particular function to get the 

compliment is very simple, because we know that if it is compliment basically if x is 

equal to 0, than compliment of x is 1 if x is equal to 1 that compliment of x is equal to 0. 

So, what we are going to do, simply we are going to inter sense this particular terminal 

nodes. So, if it is 0 than 0 will be replace by 1 and 1 will be replace by 0. So, this is the 

way that we can say that if I am having given Boolean function if we know the BDD 

representation of this particular Boolean function than compliment can be very easily 

find out. What the simply inter sense the terminal nodes, 0 will be replace by 1 and 1 will 

be replace by 0 so this is very simple. 

Secondly if we are having some Boolean function generally than what we are going do, 

we are going to performs on Boolean operation also. Say if I am having one function f 

and one function g of say same variable of define variable than what happens, I can 



perform Boolean function f plus g or I can perform Boolean function f dot g. So one is 

conjunction, second one is rejection. Now say if I am having 2 Boolean function we can 

do it. If I given any 2 Boolean function to you, always you can find out the some of this 

2 Boolean function of product of this Boolean function this junction and conjunction. 

Now if I give the BDD representation of these 2 functions in state giving a original 

function I will give the BDD representation of this 2 function. With I can you construct f 

plus g or f dot g again if you look into it this are very simple very simple you can do it. 

You just see that that, this is basically representing f plus g that first diagram. Why I 

saying that this first diagram representing f plus g, because f plus g if you say that if 

anyone is one than output is one. 
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So first I am important thing g this is your important thing f this is your Bf, if f is equal 

to 1 than what will happen f plus g will be 1. So, if f is equal to 1 I am just taking this 

decision my functional value is 1. Now similarly, if now f is equal to 0, so 0 plus g so 

this is basically depends on g, if g is equal to 1, my function value is 1, so g is equal to 0 

my functional value is 0. So, that means in this 0 terminal nodes just I am going to again 

this particular b g. So, this particular whole diagram is going to give me f plus g so just 

see that construction f plus g is also very simple.  

So, f dot g is other way round if f is equal to 0, then the value of f that g will be equal to 

0, if f is equal 1 that the function value will depend on your value of g, because f dot g f 



is equal to 1, 1 dot g. So, basically if g is equal to 0, then my value is 0, if g is equal to 1, 

my value is 1. So, that is why now what I am doing first b f is representing this particular 

Boolean function f if f is 0, so this is the result my function value is your 0, if the f is 1, 

then what happens I am going to a loop order value of g. So, I will just simply plug in 

this particular BDD of b g for function g in that one terminal nodes of this particular Bf 

and eventually it is going to give a practice particular and let what I can do again since I 

can say that these (( )). 

So, that means I can rewrite this particular s 2 this things and I can rewrite this particular 

s 2 this particular again after having these 2 BDD, we are getting an BDD if caught I can 

go for deduction of these particular b BDDs course. Now you just see that we have seen 

one particular refer structure none as your BDD binary decision diagram, we can 

represent our Boolean function with the help of your BDD binary decision diagram. And 

I mention that from result also we have found that in most of the cases, we have going to 

get a compact representation or any given Boolean function. Now so look for some 

questions very simple question I am giving it to you. First question I am saying that, do 

we get any advantage in using BDT binary decision tree? 
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So we have saying that we have going to look for a data structure, which is going to give 

as a compact representation of your Boolean function. I have mentioned about BDT 

binary decision tree. Now whether do you get any advantage of your BDT, so if you look 



into it the construction of BDT and the BDD. That it looks like h as we are not getting 

any advantage why, because it is simple mapping or simple transmission of my truth 

table to BDT. In truth table we are having the problem with your exponential bro up; if I 

am having n variables I am going to get 2 to the power n define an entrance. 

So, in BDD also we have going to get 2 to the power n terminal nodes and whether label 

will be a is equal to your n. So, as a simple example you see that if I am going to have a 

function which is having 8 variables. Then the total number of vantage in our truth table 

will be your 2 the power 8 which is your 256, when we are going to look into the BDT, 

we are going to get 256 terminal nodes. And the level of this particular BDT will be 8, 

because for each variable we are having 1 label. So, actually we are not getting any 

advantage, but for clarity just I am mentioning what is BDT and but from BDT we can 

use the reduction rule and we can get the BDT. 

Now second question you just see that, while constructing the BDD is it required to start 

from BDT? Again I think it is a very simple I am sorry, after lessoning to my lecture you 

can variable say that this is no, because BDT can be again pureed as a repeated 

application of our Shannon expanse. That means, when we can construct the BDT and 

apply the reduction rule, we are having 3 reduction rule, this is your eliminate of terminal 

nodes, duplicate terminal nodes, removal of redundant state and merging of your 

duplicate non terminal nodes. You can apply those things and you can find out those 

particular BDT or reduce BDD on the other hand we can use the Shannon expansion if it 

we have going to use this particular Shannon expansion on each variable and you can get 

the initial BDD. 

So, after application of Shannon expansion whatever BDD we are getting it may not be a 

reduced one, but of course we are having only 2 terminal nodes, one representing the 

constant 0 and second representing the constant 1. So, after getting this particular binary 

decision diagram we can apply the other 2 reduction rule, one is your removal of 

redundant test and second one is your merging of duplicates non terminals. 

So, reputedly we have going to apply this particular rules and finally, we have going to 

get a reduce BDD; when we said that it is reduce BDD when none of the reduction rule 

can be affect further. Now third question you just see that, the definition of BDD does 

not restrict the occurrence of a variable in any number of times in a path. Show that it 



may lead to inconsistency with an example. Now you just see that I am defining the 

BDD binary decision diagram or reduce binary decision diagram and when we are 

defining it, we are saying that it is a DAG directed acyclic graphs, which is having non 

terminal nodes and terminal nodes. Non terminal nodes are having or it is labeled with 

your variables and terminal nodes are labeled with constant 0 and 1. And every non 

terminal nodes are having 2 outgoing has as one is representing 0, which is given by desk 

line and second one is representing the value 1 which is given by the solid line. Now I 

am saying that since this is the definition of BDD so it is not (( )) ask to a use the same 

variable in many different places and they can come in any order and they can come is 

any order. 

So if we use this particular basic definition and you can construct, whether it is give as 

any problem, if it is going to give as any problem then so it with an example. So, now 

what I can say, now already just said now one particular BDD say this is your x, x equal 

to 0 and x equal to 1 I am getting y. So, if y is equal to 0 say I am having this functional 

value 0 if y is equal to 1 say I am drawing something like that x. So, I can draw this 

particular BDD as per our definition of BDD, it is correct BDD. So, I am having 4 non 

terminal nodes, have a non terminal nodes, having to outgoing (( )) I am having 2 

terminal nodes and the non terminal nodes are leveled with does variable x y and z x. We 

are having it is a function of 2 variables say x and y. 

(Refer Slide Time: 56:04) 

 



So, now you just that in this particular case when x equal to 0, y is equal to 0, my 

functional value is 0 that means x bar, y bar is equal to 0. When x equal to 0, y equal to 

1, then what will happen again I am going to take decision on x. If x equal to 0, than I am 

going to get 0, and when x y when x equal to 1, then I am going to get 1. Now you just 

see that in this particular case, I am having x bar, y x bar is 0, basically I am looking for 

this particular execution part or this particular part valuation actually x equal to 0, y 

equal to 1, and x equal to 0. 

When I look into this particular valuation basically I am looking that valuation of x equal 

to 0, valuation of y is equal to 1, value x equal to 1. Now you just see that in this 

particular part now valuation of x is taken as 0 as well as 1, but you know that if we are 

going to consider any Boolean function if you look into any Boolean variable. At any 

instance of time that Boolean variable can take only one value, which is known as your 1 

value it is either 0 or 1, but it cannot take both the value 0 and 1 together. 

So, if you look into this particular part what will happens the value of x is taking 0 as 

well as 1. So, this is basically in consistence we are getting an inconsistence so we are 

having an inconsistent path in this particular representation. So, though our basic 

definition is of BDD is not restricting about the occurrence of variables, in any number 

of times, in any places, but we may face problem. So, in that particular case what 

happens we have to come up with the notion of your consistent parts and when we are 

going to look for the evaluation of this particular Boolean function, it should be 

evaluated through the consistent part only. We should not evaluated through in consistent 

part. 

So that is why, we are having this is as one in consistent part, because here x equal to 0 

and x equal to 1 which is in consistence similarly, we are going to get another 

inconsistent part x equal to 1, y equal to 0 and x equal to 0. So, here x equal to 1 and x 

equal to 0 this is also inconsistence. So, we cannot have any valuation through this 

particular path. So, this is the problem that we are having so if we look into the basic 

definition of BDD then valuation of this particular Boolean function have to be done 

over consistent path only. 
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So this is a consistent, but we do not have any problem x equal to 0, y equal to 0, we are 

going to get this particular value. Similarly, this is also another consistent, but x equal to 

1, y equal to 1. We do not have any so valuation have to be define over consistent path 

we may have inconsistency. 
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Another question we have talking about is reduce BDD of any function is unique. So we 

are talking about BDD we are going to get the after application of reduction role we are 

going to get the reduce BDD. 
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Now whether the reduce BDD representation of any function is unique. At says if you 

look into it let see so this is the function that we are working out f is equal to a c plus b c 

so a b c and I am getting this particular BDD and no more reduction is possible so it is an 

reduce BDD of the given function. Now the same function I can do in another way. Now 

what will happen? Now here what we are doing basically, we applying this particular 

Shannon expansion in different way. 

First I am applying the one particular variable b. So, this is b after taking the decision of 

b I am going to take the decision on c that means I am using the Shannon expansion on 

that variable c and finally, we have going to apply the Shannon expansion on a. So, you 

just see that now I am having b c a so this is another reduce BDD on this particular 3 

variable a b c. Now again you just see that I think it is a reduced one you cannot apply 

any more reduction in this particular thing. So, we are getting reduce BDD so same 

function I am taking f is equal to a c plus b c. I am getting 1 BDD this way and another 

BDD what I am getting a b, b is equal to 0, I am going to get 0, if b is equal to 1 in 

difference on c and 1 c is equal to 0 1. So, these are the 2 RBDD both are representing 

the same function f is equal to a c plus b c. 

So, that means what we can say that, the BDD representation or reduce BDDs are not 

unique for a given function. And formed is we have seen, but here we have seen that the 

order the Shannon expansion that we have used for constructing this BDD is in the order 



of a, b, c in the variable. And here we have applied the Shannon expansion on the 

variable in the ordered b c a. May be due to this division we are getting different 

representation. In next class we have going to talk about those particular issues about the 

ordering of this particular variable, but you just see that if you simply talk about BDD 

and if you talk about RBDD reduce binary decision diagram, then this is not unique this 

is one simple example I will give you I will stop here today. 


