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In last class, we have discuss something about your model checking; so what happens 

basically, it is a verification techniques and in this verification technique call model 

checking. We are having three components basically, what is your modeling of the 

system? Number 2 specification; basically we have to give the property, we have to give 

the property in some formal languages. So can you, so that we can use some formalism 

to verify those properties in the model, and the verification method that we are going to 

talk about your model checking. So in last class I have introduced the concept of model 

checking with the help of an example; where we have seen that the designing of the 

mutual exclusion protocol. 

Now with this particular small example, what we have seen that, how to model a system? 

That means how to come up with the model of this particular system; then we have to 

seen, what are the properties that system for that mutual exclusion protocol should 

satisfy? We have note down those particular property like, safety property; liableness 



property; then what we talk about non-blocking and knows three sequencing. Now these 

are the property or these are the requirements for our system; then what happens? Those 

particular specifications have to be captured in some formal way or in some formal 

language. 

Already we have discussed about CTL, Computational Tree Logic and we have seen 

how they up to be define or express in your CTL. Then we have to seen model look into 

this particular specification; now we are going to check whether those specifications are 

true in this particular model or not. We have seen that the model that we have come up is 

not satisfying the lioness property, but we can modify it so that it can satisfy the 

liableness property also. 

Now with this small example, we have seen or I have given in the (( )), how model 

checking works? Now like that, when we are going for a bigger system, then will be 

having lot of steps; the steps has will be more and already we have seen that, basically 

the number of steps in our model will depends on the number of control signals that we 

have. It is basically exponential to the number of signals that, we have in the system 

which is equal to 2 to the power m. 

So basically, when we have going to look for a bigger system and we are having a 

complex formula or complex specification. How to check for a correctness of those 

particular for a specification in the model, for that we need some algorithm; we need 

some mechanize method and today we are going to see, what are the algorithms? That 

we have for this particular model checking methods. 
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So we are going to talk about model checking algorithm today. So in last class, I have 

also slightly introduce about this particular model checking algorithm. So basically what 

we have in this particular model checking algorithm? We are having a model M. So that 

system model M, that will be having will come up with this particular system model and 

along with a one CTL formula phi that means, this is the property or the specification 

model system. Now how model checking algorithm is going to walk? So model checking 

algorithm provides all the states of model M, which satisfy phi. So basically you just say 

that, we have going to give a model M and will give a CTL formula phi and we are going 

to collect all the states; where this particular formula phi is true in the model M. 

So basically, ultimately we are coming up with an labeling algorithm. So our basic aim is 

to find total an labeling algorithm; these labeling algorithm is going to level the states of 

this particular model with a formula; if it is true in the particular states and finally we are 

going to written those particular states, where this particular formula is true. So this is 

about the model checking algorithm that, we are going to look into it. 
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So basically, what labeling algorithms? Now we can look into the, this way CTL model 

checking algorithm, basically works by iteratively determining. That is labeling states, 

which satisfy a given CTL formula; so here we are saying that, it is work by iteratively 

determining will see or iteratively we are having iterative method, which is going to label 

the states with the help of the formula; where it is true after that, after completion of this 

labeling algorithm it will written all the states, where the given formula is true; the basic 

input output to labeling algorithm are as follows. 
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So what is the input? So we are having a CTL model M and we know that, this model is 

nothing but set of states one transition relation and the labeling function. So these are the 

input to the model and where S is the set of states, that arrow is the transition relation and 

L is the labeling functional; along with that, we are going to give a CTL formula phi. So 

what will be the output? The set of states of M which satisfy this particular phi. 

So what is the labeling algorithm? Now say we have seen that, what are the operators 

that we have temporal operators; we have in our CTL and here basically, temporal 

operator called next state future, global and until; and these particular 4 temporal 

operators will come up with the path quantifier a and e, so all together we are getting 8 

different combination.  

So we need the method for those 8 different combinations or 8 deferent CTL operator, 

but all that we have seen that out of those aid, we need only 3 which are going to form 

the adequate set of operator. So if we know the method of key operators, then we can go 

for all those particular aids; so we know that adequate set of operators, we are going to 

take one particular adequate set of operator which includes AF, EU and EX; that means 

in alpha infuse, they are exist a path with until and they are exist a part next state. 

So will just say that, since this is the adequate set of operator; we are going to look for a 

method, these three particular operators and once I get the method for these three 

operators, then other can be expose with the help of these three operator. So when we are 

getting a particular formula phi than first of all what we are going to do we are going to 

express this particular formula in terms of the connective AF, EU and EX because we are 

going to have method for these three operators, along with the logical connectives and 

truth values true because we are having truth values true one is true, which is represented 

top and another one is bottom, which is represented by faults; which is represented by 

bottom. 

So we are going to look for the all logical connectives and that truth values true top and 

true which is top and faults which is bottom. So if any phi we are getting any CTL 

formula phi, we are getting first we are going to express this particular CTL formula with 

the help of these three operators because we know the equivalence; we are having some 

equivalence relation in CTL. Now suppose psi is a sub formula of phi, know we are 

going to look for some sub formula. 



So if psi is a sub formula of phi and states satisfying all the immediate sub formulas of 

psi have already been labeled. Now what does it means immediate sub formula means, 

all the sub formulas that we have. So basically what will happen? When we are going to 

look for a particular formula, first of all we know the components and we should know 

the truth values of those particular components. These are basically sub formulas; once 

we know the truth values of the formulas or sub formulas, than we can look for a truth 

value of the main formula. 
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For example, I can say that a formula say in our missual exclusion formula; missual 

exclusion your protocol example what happens? We have seen the liableness properties 

like that in AG t 1 implies AF C 1; so this is the property say CTL property in AG t 1 

implies AF C 1; so say that in all part globally if t 1 is true, it implies that in all part 

increases C 1will be true. Now in this particular case, you see that when we are going to 

look for this particular formula phi, than we have come up with the orders of formulas of 

this particular phi. 

So here t 1 and t 2 are your automatic proposition so they will be CTL formula. So we 

are going to check say that, these are two CTL formulas; so one I am having t 1 and c 1 

since these are your automatic proposition. So we are having that particular labeling 

function we know that, we have the labeling function and with the help of labeling 

function, we level the step; where the atomic prepositions are true. 



So we know the truth values of these two atomic propositions; we know model and in we 

know in which step these are true. Now once we know that, these two are CTL formula; 

then will find that AF C 1, AF C 1 is also a CTL formula. Next what will happen? We 

have to level all this stage with this AF C 1.Once we know the truth values of AF C 1 in 

all the states than only we can go for the next level; so that is why I am saying that, first 

we have to look for all sub formulas, once particular sub formula is labeled than we can 

do for the next one. 

So once it is a CTL formula now with the help of a algorithm you look for the states 

where this particular formula is true then by looking into the main formula phi than we 

are going to get this formula t 1 implies AF C 1. So again this CTL formula it is having 

two components AF C 1 and t 1; now again with the help of our labeling algorithm, we 

are going to labeled the step with this particular formula t 1 implies AF C 1. So this is 

also sub formula of the given formula. 

Now all the steps will be labeled this particular sub formula; once we know the label of 

this particular sub formula, than we go for the next level next sub formula; which is your 

AG implies t 1 implies AF C 1. Now we know the level of this particular formula; so you 

know the step where this particular formula is true. So once we know this thing then we 

can go for this particular our given formula phi. 

So that is why I saying that, we must know the truth values of our sub formulas that 

means, we should know the step where the particular sub formula is true and where this 

particular sub formula is true. We are going to level those particular steps with the help 

of this particular sub formula, with the help of our labeling algorithm. So this is the way 

that we are going to look into it; so when we are going look for this particular phi, we 

should know the label or we should know the truth values of all those particular sub 

formulas t 1, C 1 and AF C 1 and t 1 implies AF C 1. So once we know this thing, then 

we can go for the complete given formula. 
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Now we are going to see what will be the algorithms to check for such type of formulas. 

Now you just see that, we are in this particular model labeling algorithm what happens? 

We are going to give a formula phi and we are going to get a model M. So we are going 

to define a satisfaction function, which is on the function said and given input formula is 

phi and some model is by default or we can define that it is said can be define like that, 

set satisfy will be in the model M and the given formula phi. 

Now in this particular case, now as further semantics of this particular CTL formula, 

what happens? We know that all steps will be labeled with your truth value true and none 

of the step will be labeled with the truth value false. So that is why if phi is true, then it is 

going to written the complete step space s because true is true in everywhere. If the phi 

given formula phi is your false bottom, then it will enter the non-step; so this is basically 

now it is true. So it is going to return the non-step because the truth value false is false 

everywhere; so now it will not labeled with this particular fault. 

So if my given formula is your phi than, which is going to return on the non-step. Now if 

phi is atomic, now we are giving some atomic phi is equal to say some atomic variable P; 

than what will happen? Then it will return the steps, those particular states where that 

states is a member of this particular labeling function of this particular step because we 

know that all states will be labeled by your atomic proposition. 



So with the help of labeling function we are labeling the states so if my given formula 

phi is as an your atomic proposition if it is atomic so it is going to written all such type of 

states which are a member of this particular labeling function for that particular state S. 

Now if my given formula phi is negation of say phi 1; so it is a I am giving a formula phi 

which is negation of phi 1. So you just see that I am saying negation of phi 1 so when we 

are going to look for this particular formula. 

So phi 1 is a sub formula of this particular given formula; so we must know the label of 

phi 1 in each and every step. So in my given formula is negation of some CTL formula, 

then what it is going to returns? It is going to returns the states, where this particular phi 

1 is not true; that means first we are going to have the label of the states, where phi 1 is 

true than the remaining state will be not of phi 1so, it is going to written as minus set of 

phi 1. 

So this set is where to the phi 1 is going to give me the steps, where the given formula is 

true; so if negation of phi 1 it will be S, the total steps plus minus satisfiability of phi 1. 

So you just see that, if not of phi 1 you can said that, it is having a sub formula phi 1 so 

first we know the labeling of phi 1; then only we can go for the knot of phi 1 similarly, 

phi is your phi 1 and phi 2. This is the logical connective than what happen? It is going 

to return the step; first we know the labeling of phi 1 and phi 2. So it is going to written 

two state, two sets; so the inter section of these two states will be the states where this 

particular formula phi 1and phi 2 is true. So satisfy will be phi 1 is going to a set where 

the formula phi 1 is true so this is one state I consider the in this particular state; phi 1 is 

true and satisfy with the phi 2 is going to give me another set. It is going to say that, 

where this formula phi 2 is true. 

Now for this particular phi 1 and phi 2, that phi 1 and phi 2 must be true, in both are true 

in that particular states; so intersection will give me this particular state. So it is going to 

written this particular intersection point so similarly, phi 1 and phi 2, phi 1 or phi 2 it will 

union of these two states; again we know that, if it is your phi 1 implies phi 2, then 

written knot of phi 1 and phi 2 because this is equivalent. We know that phi 1 implies phi 

2 is your equivalent to your knot of phi 1 or not of phi 2; that is why, let us you are going 

to look for the satisfaction of the satisfiability of this things and ultimately we are going 

to get this particular state. 



Now we know this particular formula that AX phi 1 is equitant to knot of EX knot of phi 

1; so you have seen this particular equitant. So if my given formula is AX phi 1, than we 

are going to look little written going to look for this things, satisfied with a knot of EX 

knot of phi 1; that means, first we have to express this particular AX in terms of EX 

because we are going to look for the minimum set up operator, which involves EX; 

another operator which is going to have EU and third one is your AX. So this is the 

minimum set of operators that we are going to look for it; so AX will be represented with 

the help of EX, now it is EX phi 1. 

Now say I am going to say that, there are exist a part next state phi 1. Now what 

happens? For that it is going to written satisfiability with this particular EX phi 1. Now 

you just see that in other cases, we are expressing it by some other things; now for EX, 

now this is a operator, now this is a member of my minimal set of operators; this is the 

minimal set or difficult set of operators that means, I need a method for EX now. We 

look for this particular EX. Similarly, if it is your A phi 1 until phi 2, then we have 

discuss while discussing about the equivalence of CTL; that can be represent that, that A 

phi 1 until phi 2 can be expressed with the help of EU or EG. So this is the equivalent 

formula so when it is A phi 1 until phi 2, then we are going to look for the satisfiability 

of this particular formula. 

Now when E phi 1 until phi 2, than when my input formula phi is your E phi 1 until phi 

2; than we are going to return satisfiability EU phi 1, phi 2; that means we need a method 

for this particular operator EU (( )), it is in my minimal set of operators. Now when my 

given phi is your EF phi 1, than we are going to look for ET until phi 1 true until phi1 

because we know that futures can be expressed with the help of your, your until operator; 

so if it is your EF, than we need this particular each true until phi 1 similarly, if it is your 

AG EG, than what will happen? Is E phi 1 satisfiability of E true until phi 1. 

So AF so we need a satisfiability function like that AF is your satisfiability AF phi 1. So 

since it is a member of my particular minimal set of operators so I need a method for AF. 

So this is another method and we need one method for set EU; similarly, as we can be 

express with the help of this equivalence, knot of VF knot of phi 1. 

Now any kind of formula I am giving as an input to this particular function set and it is 

giving to give me the set of states, where this for given formula is phi, given formula is 



true for that since this is the minimal set of operator. So we need the method for this 

particular three operator EX, EU and F; and in this particular tree position, we are going 

to call the appropriate method. 

So what we have seen that, whatever phi that we are having so if you (( )) CTL formulas, 

than we are going to call the appropriate sub formula will convert it to the appropriate 

sub formula and we are going to get the set of states, were this particular given formula 

is true and since this is the minimal set of operators. So we need the method for set of 

EX, set of EU and set of AF. 
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Now we are going to discuss about these three procedures, how what will be the 

algorithms look likes for this particular EX, EU and AF operators. So it is, if we are 

having an atomic proposition p, than it is very we are going to label state s with p; if p is 

a member of L s because you just see that, we are having these things. If it is atomic, 

then we are going to written all the states where it is a member of this particular labeling 

function. So we are going to say that, if given formula is your atomic proposition; than 

we are going to label the state s with p; if it is the member p belongs to yours L s labeling 

functions of that particular state s.  

Now similarly, if we are having any logical connectives say p and q, than label s with p 

and q; if s is already labeled with p and q because we have seen this particular thing, if it 

is your p phi 1 and phi 2. Then we are going to look for the inter section of these two 



states so what will happen? If it is we are going to look for this particular p and q, than 

we are going to look for the states where both p and q are true. So if s is already labeled 

with your p and it is also labeled with q, then we can label this particular state s with p 

and q. So like that we can go for any other logical connectives. 
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Now temporal operator, we are going to look for say EX; this is one of the temporal 

operators of our minimal set of operators or the adequate set of operators. So in this case 

it is there exist a part in next state p is true; so label any state with EX p, if one of its 

successor is labeled with p. So label any state with EX p if one of its successor is labeled 

with p. So we are going to see the entire states place so in case of EX p; so p is a sub 

formula first we know the labeling of this particular p; if we know these thing, then we 

can go for this particular given formula. So label any state with EX p, if one of its 

successors is labeled with p. 
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So say that one example, so this is a model you can say this is the cupcake structure so 

these are the set of states so we are having form s0 to s 6; s 0 s 1, s 2, s 3, s 4, s 6. Now 

see that with the help of labeling function, this s 3 is labeled with p and say s 3 labeled 

with 3 that means, we are going get a set were s 2 and s 3. So in this set of states that p is 

true because these are labeled with this particular p, p may be atomic proposition or it 

may be any sub problem because when you go for EX p, we must know the level of p. So 

p may be any CTL formula. 

Now what we are saying that, label any state with EX p; if one of its successor is labeled 

with p so in this particular case if you see these things. Now if you come to s 0, than it is 

having two successor s 1 and s 2; so one of the successor is label with your p so it is a 

member of this particular states. So for EX p what will happen? We will get that s 0 will 

come into these thing. 

When we come to s 1, we will find that it is having one transaction and this particular 

state s 3 is having this marked with labeled with p; so we can say that s 1 will be labeled 

with your EX p. Now when you come to your s 2 it is having one successor s 4, which is 

not labeled with p; so s 2 will not labeled with EX p. When we come to your s 5, s 3 than 

what will happen? You just see that, it is having two successors; one is s 6 and second 

one is your s 0. So we will see both the successor none of the successor is labeled with 

your p so s 3 will not be labeled with your EX p. 



When you compare s 1, s 4 it is having one succor s 6 and it is not labeled with p so it 

will not labeled with your EX p. When we come for s 6, it is having successor s 6 itself; 

it is not labeled with p so it will not label with EX p. So basically we are getting these 

two steps s 0 and s 1; who had EX p is true. So my that satisfy will the algorithm or my 

that labeling algorithm will written this particular set of state s 0 and s 1; and it will say 

that in this two state, my EX p is true. 
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Now this is the algorithm you just see that, what is the function? It is function EX, satisfy 

with the SAT EX p that means, find out the set of states where the formula EX p is true. 

So we are going to look for the formula EX p determines the set of state satisfying EX p. 

Now here we are taking two local variable X and Y; now what is X? X first we are going 

to say that, it is calling this particular functions satisfiability with the sub formula. So it 

is going to returning the set of state, where this particular p is true; so like that if you are 

going to look into this things so this is the set X s 2 and s 3. 

Now what we are going to do? We are going to collect all those particular step s 0; so it 

is some set of s 0, which belongs to that particular set of states of my model; in such a 

way, that there should be a transition from s 0 to s 1, for some s 1 belongs to X. So in X 

what happens? We are having in all the states, where p is true. So now we are going to 

collect all such type of state s 0 where from this particular state s 0; we are having a 



transition to the member of this particular state X 1. That means, we are going to get 

some your this thing states, where in next state this particular formula p is true. 

Then after looking in to it, then we are going to return this particular set of state Y; so 

basically these particular states is going to give me a set of states, where the formula EX 

p is true. So this is very simple algorithm so giving the formula and if we know what is 

the sub formula p; so we must know the labeling of this particular sub formula p. So we 

are first going to collect those particular states and say that this is my X because we are 

going now calling this particular satisfiability function with the p only or EX p. So once 

you get this thing, then now we can collect the order state where that EX p is true. So we 

are going to look for all such type of transition, where s 1 must be a member of this 

particular set X and what is the set of this set X? This is the set, where the formula p is 

true; so this is a very simple method. 

So like that in previous example here we can say that first x is your s 2 and s 3. Now 

from here, from those particular state we are going to look all the predecessor states; so it 

is going to give me s 0, when it is your s 3; then from here we are going to look all the 

prodecessor where it is going to give me s 1. So these are the two state, where this 

particular formula EX p is true and this is the Y, that we are having set Y that we have 

define as a local variable. 
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So next operator is your AF p, what is AF p? Basically in all part infuse of p must be 

true; so wherever you go we must get an states infuse, where p is true. Now how we are 

going to get an algorithm for this particular operator? You just see that, we are saying 

that if any state s is labeled with p, label it with AF p. Now say if we are going to look 

for AF p, then p is the sub formula; we must have the label (( )) so we are saying that if 

any state s is labeled with p, then label with it AF p. 

Why you can do these things? Already we have defined the semantics and in our 

semantics; what we have seen? That fusel behavior includes the present scenario also so 

basically if you look in to time line say this is my present and this is my feature direction 

and this is my fast. Now while depending our semantics, what we have seen that, the 

feature behavior of the system includes the present behavior also, that means my feature 

is from this particular present scenario. So this is as per the semantics, that we have 

define since if p is true in presence state; we can say that little bit true in the feature also, 

so if any state s is labeled with p, we are going to labeled with AF p. So this is the first 

step we are doing, then we are going to repeat it like that label any state with AF p; if all 

successor states are labeled with AF p until there is no change. 

So know what will happen? First this is our best condition is that set of state where p is 

true, we are going to label those particular states with the formula AF p; then we are 

going to repeat our procedural label any state with AF p. If all successors’ states are 

labeled with AF p until there is no change, that means we are going to collect the states 

tortabilly and if you cannot include any more states, then we can stop at that particular 

point. 

So this is showing that, until there is no change; so see why we can do these things? 

Because, we have seen one equivalence that AF p we can write AF p with the help of this 

equivalence; that p or AX AF p what it says that, if p is true in a particular state, then 

will say that AF p is true. So these particular p is captured by this particular my first 

condition; if any state s is labeled with p label it with AF p and this is possible because 

my feature includes the present behavior and what the next component we are saying 

that, either p is true in this states or we are going to say that in all part next state AF p is 

true. So that means if this is your either p is true ever here or whatever states we are 

going to get say here in all state, AF p is true. 



So in all part next state AF p is true so like that if it is that then we can include this 

particular set of states; where this given formula AF p is true. So that why, we are saying 

that label any state with AF p, if all successor states are labeled with AF p; we are 

iteratively going to labeled with so if one labeling those particular states with your AF p 

because if p is true in all those particular state, then we can very well labeled with your 

AF p. 

So in this particular case we can label this particular state with AF p so that is why we 

can say that and like that we are going to collect each and every states; that is why you 

are saying that, we can repeat this particular procedure until there is no change, no 

change of the set of states that we have collected. So this is done with respect to this 

particular equivalence; if p is true that means, this is the first step and we are repeating 

this particular second step for that particular portion. 
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Now you just see that this is the given level so we are saying that just as an example we 

are saying that these are the three states where p is true that means it is labeled with p 

and this one is not labeled with p. Now according to this particular first one, we are 

saying that if any state is labeled with p label with AF p. So since p is true in these 

particular three states so we are labeling with AF p see the fast step; then we are going to 

repeat our procedure. 



So we are going to do it until there is no chance, than what will happen? Since we know 

that AF p is true in this particular three states, we are going to look for this predecessors 

since this predecessor; we are getting on an on here we are saying that in all those 

particular three state AF p is true. So we can label this particular state will also AF p; so 

this is the way that we are going to left, if we have some more states over here, then what 

will happen? So like that we can go backward say, if I can have some more state. 

So once you know the label of this thing, then we can go for the label of those particular 

states also will proceed in this way in record manners and until there is no chance; that 

means we cannot collect any more state that means what happens? You just see that 

initially may this particular where is AF p is true. I can say that, it is true is your s 0, s 1, 

s 2 say these are the three state s 0, s 1, s 2. Now when we have down this particular state 

say this is my s 4 that means, the set of state where this particular formula is true 

becomes s 0, s 1, s 2 and say s 4; like that will proceed and they unless we cannot 

improve any more states in this particular state, then will stop there and we are going to 

written this particular set of states for saying that, these are the states where this 

particular formula AF p is true. 
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So this is the basic concept. Now after having this particular concept, now what we can 

do? We can look for the algorithm; so this is the simple algorithm, that we are having 

this set of AF p is going to determines the set of states, where this particular formula AF 



p is true. Now like your previous case, we are going to take help of two variable X and 

Y, and what is this X? For initially we are initializing acts to all the steps, basically this 

is the complete as we are taking you are saying that, this is the complete states place you 

are initially saying true s and what is your Y? Y is your calling this particular satisfying 

to function with this particular formula phi; phi is a any CTL formula and it is the sub 

formula of this particular given formula. So basically we know the level of this particular 

formula p that means, when we call this particular procedure satisfiability with this 

particular sub formula p, it is going to returning these particular states were the given 

formula p is true. 

Now what happen? So whenever p is true we are say that, AF p is true. So what we are 

doing? So we are saying that, now Y is assign to X; so just saying that, initially in all 

those particular state Y the given formula AF is true. So this is in one state we have 

getting some state, where this particular formula AF is true so you have just keeping this 

particular information X. Now when we are going do this particular loop, until X equal 

to Y; so initially we are having some state Y, where this particular formula p is true and 

this is the whole set states. So they may not be equal at the verification provided in all 

states are marked with p; so until X equal to Y. We are going to repeat it so what we are 

doing? We are keeping the previous information because in all state Y AF is true, this is 

according to my first condition; if any state s is labeled with p and labeled it with AF p. 

So this is my first condition; so according to first condition in all the states of this 

particular Y labeled with AF p so we are getting this initial (( )) and what we are going 

check? Now Y will be updated now; now what are the states that we can include in this 

particular state Y? You just see that, if we are having some state of scenario; if all the 

next states all labeled with your AF p, then we can very well include this particular state 

to the set of states; where AF p is true. So that is why, we are having this particular loop 

sometimes Y will be updated now; Y union, what are these things we are going to look 

for all such type of states, where we are having a transition from this particular s to all 

such type of s dash and where s dash is a member of Y.  

So this is the basic similar actually, we are going to look for such type of state s 4 and we 

are going to look for all the transition and all the next states, that we are going to their 

AF p must be true over there; so that means they are the member of this particular set Y. 

So that is why you are saying that, all such type of s dash we are going to look and those 



all s dash must be a member of Y; that means, in all those particular s dash AF p is true. 

So we are now appending this particular Y with those new states; again will repeat this 

particular loop and we are going to check whether X equal to Y or not. If in any of this 

particular scenario, if Y is not updated than X and Y remain same; so at that particular 

case we can terminal these particular procedure. You just see that, we are collecting 

going from the particular set of state, where p is true and traversing the whole graph and 

collecting all the set, if at any point of term we cannot include any more states; it is going 

to say that, now you stop here it shall because now there is no possibility of including 

any more states. 
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Because you just see that, I am value one example say we are looking for in alpha AF p 

is true; do not say that, fuse with these two are marked with true. So these are the state s 

0, s 1, s 2, s 3, s 4, s 5, s 6, s 7, s 8. Now as per our this is algorithm, for the first step we 

are going to start with your s 4 and s 5; so these are the two states. So now this is the 

basic state, now we are starting with s 4 and s five. Now we are going to look for these 

particular predecessor state, now we are coming to this s 1whenever you go in all so this 

will be labeled with your AF p; this will also labeled with AF p. So in all state I am 

coming to this particular state and we are saying that, we are getting one particular step s 

4; only one state which is labeled with AF p. So I can include this one s 4, s 5 and I can 

include now this a s 1 also. 



Similarly, when s 5 is also member over here, then what will happen? I am going to get 

one predecessor state. So I will give you (( )) transition so we are giving coming to s 2. 

So there is only one successor state, where it is labeled with your AF p; so I can include 

this particular s 2 over here. Now this particular s 5 is using another predecessor s 3. 

Now when we coming to s 3 will find that, it is having two successors; one is labeled 

with AF p, one is not labeled with AF p. So s 3 cannot be with that so we are coming to 

this particular side. Now in this particular cause what will happen? Now Y is updated 

from s 4, s 5 to s 4, s 5, s 1, s 2. 

Now will go in to the loop; now what will happen in this particular cause? Now these 

two numbers are you need that, we are going to look for the predecessor; so s 1, s 0. Now 

in s 0, we are having three successor s 1, s 2 and s3; s 1 and s 2 are labeled with your AF 

p, but s 3 is not labeled with your AF p so we cannot label s 0 with AF p. So in this 

particular case my states remaining same; so there is no sense so at that particular point 

we can stop of procedure and we have said that, these are the course that we are going to 

include because in this particular case since no more states are including over here. 

So there is no possibility of getting any more state because we are going to see all the 

predecessors; that means, if someone is not member over here that means, it is not a 

member of your (( )) like that say s 8. If you said this thing so what will happen? From s 

8 we will go to s 7 and p is not true over here. So we are not going to get any part where 

in future p is true; otherwise, if p is true here than in the very first case p that include 

over here also. So there is no sense that anymore states will be included over here; so if 

there is no sense in this particular set of states, that we can stop that procedure here itself. 

So that is why you are saying that, until there is no sense. So eventually we are coming 

up with a very elegant procedure so this procedure can be now implemented; first collect 

all the set of state where p is true, then repeat this particular loops. 

Now another operator, that temporal operator or CTL operator that we need is your E p 

until q. Now how we are going to say that, E p until q they are exist a path where p 

remains true until q becomes true. Now again you see that according our semantics, that 

future includes the present behavior. So that is why the first step is coming, if any state s 

is labeled with q, labeled it with E p until q because future includes the present behavior. 

So if any states is labeled with your q we can say that, if p until q is true over here; so we 

are going to label this particular states with E p until q. 
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Now we are going to repeat this particular procedure label any state with E p until q; if it 

is labeled with p and at least one of its successor is labeled with E p until q. So p should 

remains to until q becomes true and we need at least one part; so that is why I saying that 

at least one of its successor is labeled with E p until q and p must be true at that 

particular part. So if the state is labeled with p and if we find that any of the successors is 

labeled with E p until q; then we can label this particular state with E p until q because if 

any one of the successor is labeled with E p until q, at least we will say that in future 

somewhere q is true and till that particular point p remains true. 

So that is why we can say that, past is any state s is labeled with q; we are going to 

labeled with E p until q and we are going to repeat this procedure. Why this possible? 

Because, we seen this particular equivalence; all ready we have seen this particular 

equivalent. What we are saying that, E p until q can be expresses q or p and they are exist 

a part next state E p until q. So this is you just see that, if p is q is true in as we are going 

to labeled with p until q. So this is the first part first decision, if q is true there then we 

are going to labeled with E p until q. 

So if q is true then fine, we are going to get those particular states and if it is said or we 

are going to have this particular condition. So this is the second clause or that repeat one; 

p must be true in that particular state and there exist a path in next state, it is labeled with 

p until q. So from this particular equivalent we are developing these particular methods 



and we are going to repeat it until there is no sense. So we are going to collects states one 

after another and we are going to stop in a particular point; when we cannot include any 

more states. So we are going to say that until there is no sense so this is the equivalence; 

from this particular equivalent we have got an method for E p until q. 
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So you just see that simple example; I am saying that similar example I am taking, say 

these are the three states; initially we are having say s 0, s o1, s 2, s 3. Now as for the 

first condition, wherever q is true we are going to labeled with E p until q. So by looking 

into these things what will happen? We can label this particular state s 1 with p E p until 

q. So this is the only state where q is true; so we can labeled with it p until q, then what 

will happen? 

Once we know the label we can traverses the graph and we can say that, we are going to 

for this particular states; we are going to look for the predecessor here and if this is 

labeled with p then we can labeled it with p until q because it is labeled with p and any 

one of this particular successes is labeled with E p until q; say p remains to until q 

becomes true. So since q is true we are labeling with your p until q and we have coming 

to this particular state and we have seen that p is true so we can labeled with it E p until 

q. So this is the way that we are going to traverse the graph until there is no sense. 
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Now look into the procedures so we are going a Nelligan procedure for this particular E 

p until q also; so we are going to have a function satisfiability E until p and q. So we are 

going to take now three variables W, X, Y. Now we are having sub formula p and q 

because we are going look for E p until q; so this is one sub formula; this is another sub 

formula. So in W we are going to say that, going to call this particular satisfiability 

function with p because we know we must know the level of p. So this is the said W; X 

is basically we are going to send the entire states place space X is equal to s and Y is 

your satisfiability of this particular q, sub formula q. 

So we are going to collect all the states where q is true and we are going to say that, this 

is my particular set Y. So Y is in set of state where q is true and W is your set of state 

where this particular formula p is true. Now we are going repeat this particular loop; now 

what it says that? Y if you are going to look into Y is the states where this q is true and 

we have seen that, where ever q is true we are going say that E p until q is also closure. If 

any state s is labeled with q, than we are going labeled with E p until q and this is 

because of our definition of semantics because future in step of present behavior. 

So that is why, this is the set of state where E p until q is true. Now we are going to 

collect the states where it is true and we are going to apply this particular state Y. Now 

what will happen? Since this is a set of state, now we are going to say that these are the 

previous condition we are going to keep; so in set of state Y p until q, E p until q is true. 



So we are just preserving this particular set of state within X; now as I tend to bring s 2 

those particular states. 

Now we are going to open this particular Y; so how we are opening it? This is your Y 

union that means; now we are going to look for those particular states, where our given 

or required condition is satisfied. So it should be sustainable like that W; what is W? 

This is the set of state where p is true. So W intersection we are going to collect all such 

type of state s such that, from s to s thus we are having a transition and this particular s 

dash is a member of Y; that means, in s dash we are going to see that, it is already E p 

until q is already true in this particular state of s dash. So if we are having a transition 

from this particular state s to the set of states, where E p until q is true. 

So any states where E p until q is true and we are having a transition from s and we can 

say that in s E p until q is true. So that is why we are appending it; so we are and second 

condition is in s, p must be true; so that is why whatever states we are collecting, along 

with that you are intersecting with the W; in W it says that the set of state where p is true 

so that step p must be true and whatever states we are getting, whatever we are 

appending with this particular point and where going back to this particular repeat step; 

one we are going to check whether X is equal to Y or not. What we have in X? These is 

the previous set of state, where your E p until q is true; now so we are going to check 

whether any new more your states has been added or not; if it is added that means, these 

are not equal than again will go in to this particular loop and we are going to collect. 

So, you just see that, this is the procedure we are having and this is nothing but the graph 

traversal algorithm. For you are going to start from some states of this particular graph 

and we are going to look for all the predecessor, if my given conditions is true or given 

situation is true in this particular predecessor. We are going to include those particular 

state also in my set of states. Then again I will going to repeat these things, so what 

about new states we are including? We are going to form those particular state, again we 

are going to look for all the predecessor. And if any new more states cannot be added to 

these particular state, then we can say that we are not going to any more state and this is 

the final set of state we are going to get; and that is why we are returning this particular 

set of state Y. So these are all set of state we are going to say. 
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So in our CTL model checking algorithm now, what we are going to have? We are 

saying that after performing the labeling for all the sub formulas phi, including phi itself 

we out put the set of state which are labeled with phi. So finally, we are going to. give 

those particular set of state while this true. So you just see that you have to, you need the 

minimum set of operators; so we are considering E X, A F and A U. So we are simply 

seen how these can be implemented then we have got very Elgin algorithms Elgin 

procedures to implement these three operators. So once we need know the algorithm for 

these three operators. Now address can be express with the help of these three. Now what 

will happen now we have to work for, look for each and every sub formula; and once 

you know the sub formula, then only we can go for a main formula. 

So that is why we can say that, what is the time require to do this particular model 

checking. If you find that we can say that. Time complexity of the algorithm will be O 

order of f and set of state and this is the complete graph V plus E; that means, set of state 

and set of transition that we have. This is basically I have say that, number of 

connectives in the formula; that means number of sub formula that we have. Basically 

you just see that, if am going to say that phi 1 and pi 2. I have to call this algorithm in 

two times; because first I have look for the phi 1, then we have to look for a phi 2. We 

know the labeling of these two, then only I go to the consumption these two things. 
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So that is why, it is the number of connectives or we can say length of the formula that 

we have over here. Because when I give this particular formula, we must know truth 

values of phi 1 and phi 2; then only we can look this one. And you see that, first you 

have collecting some particular states, from that particular state, we need to see all the 

predecessor state. In E X, this is only one label, but in case of A F and A U we have to 

iteratively we have look for this particular things. 

So from all states at least we have to look for this predecessor. And E is the number of 

transition; that means words scenerition, words scenario we have to refer the complete 

graph traversal. That is why we are saying that this is the complexity of my labeling 

algorithm. So thing this your linear to the length of the and this say that quadratic to the 

number of knots, that we have in this particular graphs. So this is simple graph traversal 

algorithm and the time complexity depends on the length of my formula because for 

every sub formula I have to call this particular procedures. And we have to look for each 

and every state of this particular inverse in add we have to look for each and every state 

of this particular graph. So this is basically we are going to have an linier time algorithm 

for this particular procedures. 

So this is the beauty of your model, CTL model checking algorithm, so it easy to 

automate. These are the basic three algorithm, we have seen and next class we are going 

to see some example will explain; and you see how we are going to or we will see the 



execution trace of this particular algorithm. In next class again we will going to discuss 

about these three operators only with the help of one examples. I will stop here today. 


