
Design Verification and Test of Digital VLSI Designs
Dr. Santosh Biswas

Dr. Jatindra Kumar Deka
Indian Institute of Technology, Guwahati

Module - 4

Temporal Logic
Lecture - 1

Introduction to Formal Methods for Design Verification

This course is about design verification and test of digital VLSI design. Basically, we are

having 3 components in this particular course. 1 is design issues of your digital system, 2

nd one is verification and 3 rd part is testing of our design. In our last part, in the 1 st part

already we have seen what are the design issues involve when we are going to design a

digital system. In 2 nd part it is the verification and 3 rd part is testing of our product.

So, in this verification part what basically we are going to do; what need to be verified

and why we go for verification. Without verification, whether we can design our circuit,

we can develop our circuit or not we are going to look all those issues.

(Refer Slide Time: 01:12)

So, in this particular part we are going to look for verification issues and one of the

components is our using logic of verification. But before going for the particular logic

basically we are going to cover about temporal logic but before going for temporal logic

we want to see what are the methods used for your verification and why it is need that. It

is basically some sort of introduction I am going to give and I will say why it is needed.

Why you should go for verification.

(Refer Slide Time: 01:41)

So, if you look into it. In our design cycle basically we have going to get those following

step; specification, design, implementation, testing, installation\marketing and

maintenance. So, in our 1st part basically we are talking about this particular design

issues; and when we go for design we need to know the specification of the system. That

means as a designer; we are going to design a device and thought at we are having some

intention that means my design should satisfy some specification.

First a fall we have to keep this particular specification just give a brief idea. What we

are going to do in specification, why found specification will come just will give an

example.

(Refer Slide Time: 03:22)

So, we are going to design a control of for our washing machine. What we can say about

washing machine. We said that our design or ours control of our washing machine

should satisfy some property. And, this property or specification can be in mention as

that drier is activated after the wash not before.

So, because 1 st we are going to wash the cloth after that will activate the drier to dry our

cloth. Secondly, we can give one specification something like that water is poured in

before the detergent and it is drained before activating the drier. So, these are basically

our requirement or we can say that these are the property that my controller should

satisfy. And, another specification can say that cold water is to be use for your soft wash

because we if we having the soft wash or sometimes we need to use hot water for our

heavy wash.

So, accordingly it appropriate term we have to activate our heaters. So, these are the

several components that we have an according to our requirement, we have to activate

those particular component. Now, this is about your specification design. And, one

design is completed then will go for the next page is our implementation. We are going

to implement our controller. After controller is implemented than we need to test it

whether we are getting a correct result or not but use here we are having this particular

test thing. And, when we are doing it this test thing you have done after implementation

that means after completion of this particular 3 phases.

So, that means we are going to test about the correctness of our product. Then, it will

come for the installation and then maintenance. First, we have to install or may be

market the product. And, once it goes to the market then what will happen we need a we

need to have the maintenance space. We have to maintain it.

(Refer Slide Time: 07:00)

So, here we have one issue; that whenever we are going to design a circuit or going to

design a system, it may not be correct in the very first . So, it says the bugs reported the

early phase of design less cost for debugging. So, when we are coming to this particular

testing phase we are testing it. And, how this will be test we know the input pattern.

What are the inputs that we have to give? Along with that we know what the desirable

are. So, basically we consider my design I can say that I am designing a device or this is

my device. I can treat these things as a black box.

Now, there are several inputs are available for this particular device. And, according to

this particular input behavior way we are going to get some output. Now, we know the

output behavior of this device according to this particular input combination. What are

the input combinations we have? So, during testing we are going to test for those

particular input bear pattern. And, you see whether we are getting a desired output or not.

So, in this particular case during testing we are looking for both testing actually 2 types

of testing. 1 is your functional testing, 2 nd one you are manufacturing default because

during fabrication, during manufacturing it some fault may come into fixer due to the

faulty manufacturing. So, in testing we are going to capture those particular issues also.

And, if devices really your faulty than we have to discuss it. But if it is having some

functional around and what will happen? We have to go back to our specification. We

have to revisit our specification, we have to look for our design issues then we are going

to redesign it or will revisit our design.

Once, we fix the bug basically it is a going back due to some bugs that has been

reported. So, due to those bugs we are going to fix it and eventually again we follow this

particular part; we may have to do several time. So, each says that since after

implementation we are testing it; and we can capture the bugs at that particular point

only after the test. So, we are going a long way to get our test. So, it says that if we can

capture the device fault your design fault in this particular early phase then what will

happen. It may reduce our cost because again another effect we are having time to

market also. In some specific time we have to release our product to the market. So, that

so you are thinking whether this particular test of think can be done prior to this coming

to the implementation or not. So, for then in our design cycle we are in covering one

more phase over here; which is we are talking about that verification.

(Refer Slide Time: 08:40)

And, in this particular what of our course we are going to loop for those particular

verification issues after always that we are going to verify. What we are going to verify

and up to some why verification is needed. And, secondly there are several way of doing

the verification but here we are going to loop for formal verification on way. So, here

what we can sudden verification is used to capture the bugs at the early phase of design;

used is that we have placed the component verification just after design. By looking into

our specification we have cover up with a design. And, after the design we know that for

a specific purpose we are going to design a device. That designs those devices which

satisfy some of the property or some of the specification. In this verification phase we

are going to check for this particular correctness of those properties.

And, we can say that this is some sort of your property verification or we can say this is a

functional verification. We are going to verify the function functional property of our

defects. Once you satisfy that whatever design we are doing; it is going to satisfy our

requirement then we will go for implementation; and after implementation we will go for

testing. So, when we are coming to this particular testing point then basically it is

remaining left with your manufacturing defect all way. So, we are trying to most after

design issues or design bugs in this particular verification phase. Now, we are talking

about here that verification. Now, how author define ways that we can do it, whether it

was there or not in the early phase.

(Refer Slide Time: 09:03)

.

So, in most of the cases we are having that particular notion of having simulation. We do

the simulation of our entered device, and check whether our design is correct or not. So,

basically simulation happen.

Again, we think that this is my device I have designed it. And, we know that these

devices are having several inputs. And, we not depending on the input pattern; we should

get result output. So, we are going check those particular design output with respect to

this input pattern. So, this is a basic simulations so we are going to have a simulation

device. And, we are going to check it and if you find it is correct then we go for

fabrication, but quite is it possible to go for simulation for all type of devices. If you look

into that issue you will find at now the system or devices began more and more complex.

And, we are having complex design part of devices because now due to the advancement

of our semi conductor technology. You can put more and more component in a silicon

way so we can go for complex design.

And, depending on our design the number of input is also increasing. So, the number of

possible input cases may be you can say it is your two the power n if we are having n

number of input signals. So, it is exponentially growing. So, for that it is not possible to

similar for all possible combination. So, people are saying that we are going for a

selecting simulation.

(Refer Slide Time: 11:04)

.

So, that is why it is talking about this non exhaustive simulation. In case of exhaustive

simulation we try to test it for all possible combination. But due to the large number of

input combination because that input pattern is more exponential in the number of inputs

signal. It is not possible to tell the entire circuit for all the possible combinations. So, for

that we go for selective simulation and we said this is non-exhaustive simulation. So, for

we said it is a number exponential already I have mention. So, in that particular case we

are going to test it for some fixed number of input combination.

(Refer Slide Time: 11:16)

So, here instead of going for your all possible combination; we will go for some selected

combination. So, just summarizing it to find the appropriate subset it is again a complex

problem. So, we are having another research problem over here. How to find out a

appropriate subset of those particular input pattern. This is come under this particular test

case generation. Since, this is another domain; we are not going to look into this is over

here, but just I am mentioning that this is a problem or we can say that ATPG automatic

phase pattern generation. With the help of those particular techniques; we can find out

what is the appropriate subset to test our design. So, since we have going for non

exhaustive simulation. So, what happens we may not cover all possible error cases? It is

quite obvious because it may happen that some of the combination may not be captured

by the phase cases that we have given.

(Refer Slide Time: 12:17)

Now, from exhaustive simulation we are coming to non exhaustive simulation. So, in

this case use a what may be the problems that we may face. You just think we are not

considering all possible input cases and we are giving subset of it. Whether that

particular subset is capture in all possible error combination. It is already I have

mentioned it is another problem, another complex problem it is difficult to find it out.

But still we are having some heuristic we does particular heuristic we try to get

reasonably good or some set of test cases.

 (Refer Slide Time: 13:19)

So, people are working with it. It is going fine but what problems are coming over here.

Why we need to go from your non exhaustive simulation to some other domain. That, in

this class I am going to cover about your formal verification. Why we need to go for

formal verification. Necessarily we have some problems in non-exhaustive simulation

and it is quite obvious. You not considering all possible cases.

Now, you just see now we are going to see what the problem is. That is a Pentium Bug I

think you might have heard this particular term. What is Pentium bug? And, this is a

major challenge that Intel has received in early 90’s. So, what happen? Intel has released

here processer Pentium series of their product in 1993. So, you know also it Intel is a big

house is your processer design. And, if you look into their history line or time line you

will find out they have started with Intel h 0 h 6 as the basic processor. Then they have

gone with 1 h 6, 2 h 6, 3 h 6 and up to 4 h 6 they have gone. And, you know that this is a

apart compatibility.

Apart Compatibility is what about we can do in 1 h 6 something can be done in 2 h 6 but

with so this is death timeline. So, after 4 h 6 they have release the product Pentium

series. Again, it is apart comfortable what about we can do in 4 h 6 something can be

done in you 5 h 6 or be Pentium series. Now, say it is apart comfortable whatever we are

doing in 4 h 6 something can be done in you 5 h 6 but where is from the bug is coming.

You just select a year later an estimated 2 million had been sold. It was discovered that

there was a flaw in the hardware of floating point division. You just see what is

happening basically say they have release the Pentium it is apart comfortable. What

about we can do in 4 h 6; something can be done in Pentium along with that we have

some are the additional features.

Now, Intel design team has design it properly; and they have tested it; and they have

release the product. But after 1 year an error has been reported for division only floating

point division which was there in 4 h 6 also. So, while from this particular error has

occurred. Now, you see that in your time line or during the design they have sense there

division algorithm. So, earlier they have algorithm but in Pentium series they are look

for a faster algorithm and they have use this particular SRT floating point division

algorithm.

You see basically SRT is coming from 3 scientist names Sweeney, Robertson and

Tocher. They have divides this particular division algorithm. Since, it is a faster

algorithm so Intel has decided to use this particular division algorithm in the new

Pentium processer. So, what is difference of basically what happens in this certain

division? We have to use a look comfortable to find out the some input pattern looking

into some input combination. So, they have implemented this look up above in their ram

and due to an error in this particular one end error in one entry in this particular look

table.

For some input combination it is giving error. So, this is the problem basically, this is the

Pentium bug. So, we are having a look up table; we had some entries in the look up table

but there is an error in one entry. And, whenever we are going to use that particular entry

it is giving as a wrong result. But see Intel people have tested it. How they have tested it.

They had gone for non exhaustive simulation. So, with non exhaustive simulation

already I have mentioned that all it is not possible to capture all error because we are

very much selective about our input test pattern.

So, some design flow or . So, this is the case where this particular designer or we sleep

to. So, in after this particular Pentium bug so it is a Intel is a big business house. So,

they can sustain such type of loss because what will happen since about 2 million chips

they have previous . What they did? They call back all those particular chips and replace

it by a new one and forded they have incur loss of 7500 million dollars. Since, Intel is a

big house they can cope up with this particular error.

So, from this particular error all EDA components has lined in and they found at that

non exhaustive simulation is not the solution. We were coming from exhaustive

simulation to non exhaustive simulation but that non exhaustive simulation is not the

right one to do it is not going to give an error free design. At that point people are

thinking now what to do.

(Refer Slide Time: 18:06)

So, in that case this notion of formal verification is coming into friction. Is it not like that

we are formal verification after Pentium bug it was here. We shall walk with this

particular matter how to formally capture the design, how to formally specify of

property, and how to check that the specification or the property or school in this

particular design. So, this is basically formal trying to cap side it was here resources are

working over here but industry people are slightly reluctant to use it. But after Pentium

bug all people has think about it. Now, we should look for the alternative.

So, people are going for this particular formal verification and what are the issues that

we can exist over there. Already I have said that it is the design complexities increasing

day by day because in a small silicon area now we can put more and more components.

And, indirectly it means that we can press more and more devices in same or small

silicon area. That means we can place a complex circuit or complex device in a small

silicon area.

That is why the complexity of the design is increasing. So, what we do in formal

verification. Basically, we start from our abstract model. So, we know our design, we

know our objective but in step going to the direct product or the direct design. What

happens? We try to abstract out the relevant information and we are coming up with an

abstract model. And, generally we deal with this particular abstract model. So, how to

come out with an abstract model or that we need formal matter, we use formal methods,

formal mechanism. And, after we apply some verification techniques and that is why

analysis is this is the formal verification.

So, Model helps us to build more complex system. Already I have mention that whatever

is relevant, whatever is required we try to abstract it out we have a design out of it some

sort of modular design can we think about it. And, for every case we can have a small

model. We try to capture the design behaviors and we know what the properties are or

what are the specification which is satisfies we will going to loop for the satisfaction of

those particular property. So, again on the other a model is easier to understand than a

whole system because we are coming down to a smaller peice of a whole system.

(Refer Slide Time: 20:27)

 .

So, in this particular case we are going to construct a model in which we can demonstrate

a certain property holds. So, we need 2 things. 1 is system model and 2 nd one is a

specification of the property already I said that I am going to look for a model somehow

we are going to keep our design and we set it this is our model. Another one we are have

the specification or the property. We know that I am going to design a new device and

that device should satisfy some of the property. Already one example I have given that

we are going to design a controller of your washing machine and we said that it leads to

satisfy some of the property.

Secondly, if you look into the formal verification of formal matters. It is not like that we

can apply only in our designing of VLSI circuit or a hardware circuit. It can be

applicable in any design. One simple example I can give, say you are walking in a

network in computer network. And, you are designing some new computer protocols that

transfer protocol transport protocol. Now, in the most of the protocol what will happen

one you send package or message forms sources to destination. What happens generally?

That source expected it should get back the acknowledgment then only the sender

knowing the message has been delivered properly in to the destination.

So, what is my requirement over here? I can say that when sender sends a message

eventually it should get back the acknowledgement. So, this is we can say this is the

property or this is the specification of the protocol that I am going to revision. So, I am

telling you what is the specification but somehow formally we can specify or we have to

capture this particular property. Similarly, that about your system model that we have

that also formally we have to device. We have to design and eventually we are going to

check whether this property is satisfied by this particular model or not. This is the

formalism or the formal mechanism and we say this is the formal verification.

(Refer Slide Time: 22:45)

So, again now already we have the testing. And, now we are coming in the formal

verification now. What is the difference between these two things? So, what is the testing

and what is the verification. Basically, in testing we talk about what is wrong. So, this is

basically testing. So, we have that is device, we have the product, we tested it and we

said that this is the testing result. It says what are wrong in that particular case but in case

of we are verification or when we are going to do it; formally then we can just try to

address this particular issue why it is wrong.

So, just it after your design phase we will do the verification. And, in verification will

keep the feedback why something is going wrong, why it is wrong. So, when design

team gets this particular feedback then what taken do? They can revisit their design, they

can fix up the bug, they can fix up the error and they can rectified their design and come

up with new rectified design. So, with this new rectified design again we apply this

particular formal verification. And, when we are satisfied that now it is satisfying all my

properties all my requirement then we proceed further then will go to the next phase.

Basically, next phase is implementation of fabrication.

(Refer Slide Time: 23:49)

So, how we are going to do this formal verification. So, there are several approaches to

go for verification or defining the system formally and specifying our properties and

looking for a correctness of those properties in our design. Since, there are several

mechanisms available processor there but in our course in this particular course we are

going to look for the logical formalism. We will see how the logic is used for our formal

verification. We may not go for the ordered issues.

So, if you look into this particular issue; when you come for logic. We know that we are

having 3 different type of logic. One is propositional logic which is basic one. Then we

look for a fast order logic and higher order logic these are basically predicate logic. We

define predicates and we try to reason about this particular predicate. So, in propositional

logic you see that these are basically or we are dealing with the declarative statements.

And, we are going to check with a something can be derived from some other given

declarative statements or not.

So, like that we go for first order logic, these are predicate logic than we go for the high

order logic. So, in this way we can go up for higher order logic and will see. Now, what

can be done with propositional logic or when we need to go for the higher logic? And,

what are the difficulties we are going to phase if you go for the higher order logic.

Since, if you look in to this particular order that fast them showing the propositional,

then first order, then higher order. So, that means we are going for basic logic do more

and more complex logic. When we are going for a complex logic basically what we can

say, simply I can said that you are having more expressive power. Basically, what we

cannot express in your propositional logic something can be express in our first order

logic. Secondly, again if something cannot be express in first order logic that thing can

be expressed in the higher order logic.

So, the expressive power is more. Since, we are having more expressive power so logic

becomes more complex; and reasoning on this logic again become more complex. So, if

we need going for more expressive power then we have to go for complex logic. And,

that design that logically in finds will be a complex one.

(Refer Slide Time: 26:20)

So, first one is propositional logic. What we can do the simply this going to give an idea

that what can be capsize in propositional logic. And, what we can use just these are some

introductory things that I am going to tell you and after it we will go for how we are

going to do the verification.

So, in propositional logic we are going for a detective verification. What we have over

here consisting of Boolean formula comprising Boolean variables and connectives and

or etcetera. So, we are going to work with Boolean formulas. And, Boolean formulas

will be constructed with the help of Boolean variables and with connectives. All we

know that these are WFF in proportional logic which is basically welcome formulas. So,

we have to to construct welcome formula and we are going to work with this particular

O W FF.

A new noted, what about if you are going to look for a digital device or digital circuit. It

can be always with the help of Boolean formulas. So, it is a set of Boolean formulas

which is going give the behaviors of our system. So, this Boolean formula can be again

treated as our statements in our propositional logic. So, that is why I am saying the gate

level logic network can be described with the help of this Boolean formula of

propositional logic. And, in typical aim in case of your deductive verification what

basically we check with a 2 models are equivalent or not.

We call these are tautology checker, because in our design phase we are having an

abstraction. First we come up with a model then will make it more refine we will go for

another level. Now, after that we have to check whether we are giving together

equivalent translation or not. So, we can look for such type of equivalent checkers. So,

these are basically sometime we can say tautology checkers is also here or equivalence

checker.

Again, we said since propositional logic is decidable. Now, we have to see what a

mathematical theory is over it. Since, it is decidable. So, we can say that it is decidable

whether two representations are equivalent or not. Again, tautology checkers can

frequently cope up with the designs which are too large to allow simulation based

exhaustive simulation. So, we have problem with the exhaustive simulation. So, now

tautology checkers can cope up with those particular problems that we faced in a

exhaustive simulation.

So, in a am saying that what we can do so basically digital system of VLSI system can

be treated as a combination of your Boolean formulas. And, this Boolean formula can be

map to a proportional logic step. Hence we can use the formalism propositional logic to

reason about those particular formulas. So, this is one here but we know the expression

power is less. So, whatever we can do that is also restricted.

(Refer Slide Time: 29:06)

The next level we are going to talk about first order logic or first order predicate logic.

We know that this is basically what happens? We are going to use 2 quantifier basically

these are there exist and are all with this particular quantifier we caps we try to capitalize

set of statements. With a for all x something is to or there exist in x something is to 1. So,

with the help of this thing that means it is having slightly more expressive power.

Secondly, we are having 1 issue since FOL is undecidable we have said in general. So,

we are may be case of doubt.

So, when you use first order logic for you are designing about system. After doing it, we

may some doubt in some cases because it is undecidable order manual intervention is

required. And, in this case some automation for verifying FOL models is feasible always

not true automation is not that possible for all cases sometime we get automation also.

That means your manual in intervention is always required when you go for first order

logic or higher order logic.

(Refer Slide Time: 30:10).

So, next is higher order logic. Again I said that this is more expressive and so that

logically becoming more complex. So, in that particular case what advantage we are

getting. What is expressive that is we are getting. It says that it allows function to be

manipulated like other objects. So, that function can be treated as an object that thing

cannot be cap side in your first order logic but higher order logic we can cap side. That

means now it becomes more expressive. So, expressive power is more. So, that means

now we can express many more things with high order logic but since it is complex.

Now, listening with high order logic is also complex.

So, for higher order logic proofs can hardly ever be automated and typically must be

done manually with some proof support. So, this is the finding that we have. So, it is

hardly can be automated because now it is a complex automation is not possible but

partial automation may be possible. So, we can say that interactive theorem proves

require a human user to give hints to the system. Now, we are having interacting theorem

provides interactive we are going to check from one sentence to the another sentence or

one statement to the another statement, for some step it may go in an automated way.

That means we are having some formal way of doing in but after it human intention is

required that means we have to give some input. So, that my proofs directs to the right

direction. So, that is why you are saying that we have to human user must give some

hints. That means we have to give some inputs to go into the proper direction, when we

look for that design with this particular higher order logic.

So, this is basically that, you know about this things proportional logic, you know first

order logic, you know 2 nd order logic, and 2 nd order onwards we said is a higher

order logic just simply I am telling what we can capture with this particular logic. And,

in formal verification when we are going to apply those things. What we are going to use

in this particular lecture? I am going to tell about it and what will need for that. We need

some more things but that will be based on these 3 logics only. That is why I have

mentioned about these 3 logics.

So, here we need one more information, this is about time. So, you know that we are

working with our digital signals and we are going to have a controller to walk with our

digital signals. And, we know that this system is going to behave define to a at defined

point of time that means timing will come into pixel. Say you know example, you think

about that washing machine say you have start a machine initially it has to give pour the

water after that we should give you the detergent then it will go into the wash mode.

So, after sometimes around say you can say that time like 10 minutes or 15 minutes

depending on the wash style. What happens we have to drain out the water? So, you

after sometimes we have to drain out the water; again put trace water into this particular

washing machine. Just see in what have lead that timing is coming into pixel. So,

somehow we have to capture these particular timing issues. We need some formalism;

we need some mechanism to specify those particular timing issues. So, for that, we

cannot do with these particular or basic logics like propositional logic or predicate logic

for that we have to go for some other logic. And, this is basically temporal logic that we

are going to talk about it.

So, this is temporal logic. And, the method verification method that we are going to

discuss in this lecture based on this particular temporal logic. So, what is this temporal

logic? Already I have mentioned that I can say that it extend the notion to time actually.

So, we can capture time and we can capture the user behavior. Now, you see that what is

a system? Already I have talked that somehow I have to capture the design issues we are

come up with a model. In most of the cases we are going to get a finite model on there.

If you slightly removed that timing issues, because in case of timing issues it may be turn

up to be reactive system which will repeat the something for several times. So, in general

we can say that we are going too worked with our signals. We are having a fixed number

of system and most of the cases we are going to get final step machine. So, that steps

phase is always final. And, what will be the step phase? If we know the I am working

with n variables or n control signals the we do not know the number of different

combination we are going to get is 2 to the power n.

That means, what big may be your n, always we are going to get a final steps. And,

every structure going to talk about some configuration. That signals values either 0 or 1.

We are going to talk about digital system. So, that is why I can think about such type of

your model. So, we can said that initially my system is here say this is say that this is the

state as 0. Then, depending on my input behavior or depending on my input signal or the

system where we are it can take go in 3 different way.

So, again said is depending on some condition either I am coming to this particular step

or we are going to this particular step. If I am coming over here that means my execution

in follow this particular point. So, this is the way we can capture our design. And, here

you see that this step I am in a particular time; now here the time is different. Again, you

see that here I am going back to this particular step, say this is the execution phase and

going back to this.

Now, say this particular step basically, this is decide or this is going to give the binary

encoding of my this particular n input signal because this step I am going to define with

this particular signals on their other this signal is high or signal is low. Basically, if I am

using signal either signal may be high or low. So, this may be one particular pattern sat if

I am going to have 6 signals. So, if I am going to this is the step, where the pattern of my

signals is this one. Now, say I am going to follow this particular path and when I am

reaching this particular step. Depending on my situation I am going back to this

particular configuration.

Here again this my input signal pattern in same. That is why coming to same behavior

but when you look into timing issue. Then what will happen? When you fast encounter

this particular is step at that time that say time is said t i. After this 3 step, say if consider

that every state is have 1 unit. So, 1, 2, 3 next time when I have gone back to this

particular step that my time is t i plus 3. Now, this time is important. And, in our case

what will happen or issue is to get this particular timing notion and you can do this thing

with the help of this temporal logic.

So, that is why I going to just keep you brief idea about temporal logic. And, this is about

this module is basically talk about a temporal logic. And, we are going to have a series of

capsa. And, I am going to give the idea about this particular temporal logic.

(Refer Slide Time: 37:40)

So, what basically we are having. So, I have said that we are having 2 timing behavior

we are going to capture. We are going to use temporal logic for that we are having 2 way

of doing it. 1 we are going to talk about the branching nature of time and 2 nd one is a

leaner nature of time.

So, in case of your branching nature, then what happens? Basically, you say that we just

thing that time progressing one direction only but in case of your branching. So, this is

linear nature sorry I talked. So, in linear case the time is progress in one direction only

but in case of your branching time can branch out in several direction. Now, just come

back to this particular model. If I am going to look for from is particular step I can go

into 3 different direction. So, depending on my input pattern or depending on my system

configuration it can follow one of these 3 particular parts.

So, that means I can say that the nature of timing having a branching nature at that

particular point. So, it branch out in 3 different steps but if you concentrate on a

particular part over here; and thus say that we are interested for this particular execution

part than we may not look for other issues. So, in that particular case we say that this is

the linear time and we are going to capture it by this particular linear notion. So, this is

basically about timing issues. 1 is you are linear and your branching. And, in case of

branching when we are going to talk going to reason about this particular system. Then,

we think about the non deterministic issues of this particular branch timing. We can think

any one of this 3 possible continuous combination.

(Refer Slide Time: 39:24)

Again we are having another issues which is called time. How we are going to capture

the time. 1 is discrete in nature and 2 nd one is continuous time. So, basically you want

to talk about or digital system, we basically walked in a discrete domain. So, time can be

captured in a discrete wise and we can use the natural number system to give our time.

So, I can said that the tic 1, 2,3,4,5 like that in this discrete way we can define our time

and we can say that this is discrete in nature. And, in case of continuous timing we are

going to walk with the real number system, where every timing in possible and you may

try to design about every timing in sense. Now, by thus I am saying that either you can

use the discrete time or you can use the continuous time. You know about the properties

of real numbers and you know about the integer or natural numbers. From here it say but

you can visualize that designing about the continuous time will be a the complex one.

Yes, indeed It is real a complex issue but designing about discrete systems slightly

easier. So, but some system we need to design with real number also. So, continuous

time remaining also.

(Refer Slide Time: 40:36)

Another issue we have going to capture of timing; another issue we have is about

qualitative designing, quantitative designing. Capture in the time a qualitative way and

quantitative way. So, in case of qualitative way we just talk about the behavior of the

time. We say that whether something is happen in now or something is going to happen

in future. Just say that I am talking about the particular issue about that NATO protocol

when send a message; eventually it should get back the acknowledgement. I am talking

about eventually it should get back the acknowledgement. That means in future sender is

a accept expecting the acknowledgement.

This is some sort of qualitative timing behavior. So, I am saying that, I send a message

now in future I should get it. But in case quantitative designing we specified the quantum

of time also. In quantitative reasoning what we say that now if we send a message now

whether after 5 minute of time senders will get back the acknowledgement. So, this is

say quantitative, we have quantified the future behaviors said that after 5 minutes of time

whether senders get the acknowledgment or not. So, these are the issues that we have to

look in to a chain temporal logic. We are going to look for those issues.

(Refer Slide Time: 42:00)

Now, we are going to look for already have mention that in this particular lecture we are

going to look for a particular mechanism, formal mechanism to specify our system. And,

we are going to look for this particular model checking process. Now, just I am going to

talk about this particular model checking. So, view to what is the required thing in our

model checking. So, we are having the basically c components 1 is your modeling, 1is

your specification and 3 rd one is your verification method. That means, we need some

formalism to give the model of the system.

So, we kept giving the model of the system then we have to somehow specified property.

And, we need a method to say whether these properties are too heavy in this system or

not. So, basically in model checking we are having these 3 components. Since, we are

going to look for the of the property or specification, it is also termed as a property

verification. We are going to prepare properties about systems. So, it is properties

verification.

(Refer Slide time: 43:24)

So, basically we are having these 3components in our model checking. Now, we just see

that what we are going to do this model checking. So, what are the basic components of

model checking? So, we are having verification tools; so this is our model checking tool.

And, we are having 2 different inputs to this particular model checking tool. 1 is your

model and 2 nd one is your specification. And, I am talking about this model as your

finite states because already I mention that generally we are going to get a finite number

of states about design. Because it depends on the number of variables that we have. If we

are having n number of variables the total possible combination is 2 to the power n and

we are going to get 2to the power n different states.

Now, when you are talk about the time. Now, present instants I am in a state but in future

I can come back to the particular state again but still excluding that particular time. We

are having the fix number of states. But it turn what happened we can say that now we

are having more number of time but again we are going to represent this whole system

with the help of this finite state model. And, this is basically going back issues is going

to say this is the another timing instants.

Now, this is the model our systems say we are going to design some controller or we are

going to design some circuit. First of fall we have to capture this design with the help of

this models, some models.We will see in what way we are going to capture. After that

secondly what will happen knowledge seeking is nothing but the property verification.

Somehow we have to specify our property or we have to give the property. So, this is the

some in Greek notation we have written something and we have said this is the

specification we have given to it.

Now, in both these component will be even as an input to my verification tools. And,

after that now this specification tool is going to check whether the given specification is

proving in this model or not. So, what is the output of this particular model of a tool

verification tool or a model checking? If this property is indeed true in this model then it

will just give you the output or it will said at that true. That means the given specification

is true in my model but if it is not true; just said that we have come out with a design.

And, we have trying to check whether this particular specification is true or not.

So, the verification tool try to check all possible combination and it finds that this

specification is not true over here. So, that my specification tools is simply it will not

simply said that it is false. Along with that it will give me some information this is

basically it will give me this particular error trace. So, in this particular error trace what

happens it give me the error trace in such a it says that if you follow this particular path

then the given property is not true. That means the design theme is getting some

feedback on this particular verification method.

Now, they can concentrate the design issues for those particular executions trace all this.

So, basically it will happen correct. So, our bugs are concentrate over here some sort of

focusing the bug and design theme can now look into the issues related to details but it

does not over will debt error or not present in the other section. It may present other

places also because when designer going to fix this particular bug, then next time it may

say that in some other patrols but up with this particular model seeking application by

applying it repeatedly eventually we can capture most of the error and we can fix it.

So, it is somehow giving the not only saying that it is false but along with; it gives some

indication also where the possible error is.

(Refer Slide Time: 47:10)

Now, where from we are going to get this particular state base machine I am saying that

we need a model. So, in the previous slide I said that these are the 2 inputs. 1is

specification, 2 nd one is model where from we are going to get this particular model.

So, just see that we are looking for this particular model.

So, different people are designing the system in different way either it may be hardware

or it may be software also. And, already I have mention that since I am going to talk

about one method verification method it can be applied for all design cases, it may be

hardware or software. So in case of hardware what happens we describe our system in

RTL level with the help of some HTL language. Hardware language like verilog or

VHDL so we can have those particular verilog and VHDL.

If it is software then we can have C, C plus and like that. And, some other design can be

done with the help of that which is define by your CSP, CSS. So, these are different

way we are having a presentation but from that we can capture our state based machine.

So, we need to have formalism to get eventually we should get this particular states

machine for our model checker.

(Refer Slide Time: 48: 28)

After that this is the things now we have to look for this specification how we are going

to give it. So, this is basically we are going to use temporal logic this specify our

property the symbol box diamonds are having their own notation, own meaning.

In this particular model of temporal logic, we are going to basically talk about or going

to discuss about this particular notation. What those particular notation means, and what

we can specify. So, basically now in this case what happens? You see that what you have

seen in that we are going to apply for a particular verification technique, which your

model is checking. It needs 2component. 1 is model and one is your specification. We

will go to look into how we are going to give the model and how we are going to give

the specification. So, next class we are going to discuss about the temporal logic and it is

going to see about what is syntax and semantics of temporal logic; and what we can

specify.

What is the expressive power of the temporal logic? So, next class we are going look into

this issue.

(Refer Slide time: 49:36)

So, after going through this particular lecture you just see that some simple problems that

you can think about. Simple question that first question that I am putting it like that.

What are the problems with simulation based validation method. All ready I have given

you some idea about what happens in simulation what happens in your exhaustive

simulation and non exhaustive simulation. Why cannot go for the exhaustive simulation

always. So, these are something like that you can get some more information in your

book or some net; just see that what are things why it is not visible at present. Due to the

advancement of your technology also it is not visible because in a small silicon space;

you can put more and more devices.

2 nd just problem, I have already mentioned in my lecture also. Why formal methods did

not get acceptance in industry earlier? Because, it cannot be automated secondly human

intervention is required that means we need people that particular domain from

automated theorem proofing domain because you have to guide that theorem while

doing this things. So, that is why there are slightly reactant and they tried with you

simulation base method. But Pentium bug has holds the people to go for these particular

formal matters.

3 rd questions, just I am saying that what are the advantages of using formal methods for

design verification. I am not mention probably but in the due course we are going to talk

about it but you just think or you with just try to explore information in net and like that.

1 basic thing is that we are going to use formal mechanism to specify our system or to

model our system. We use some formal mechanism to give the property, the formalism

that we are going to use our having a predefined syntax and predefined semantics.

So, ambiguity will be removed, when will pass through the design teams. So, this is a

design it is going to the next step verification team or it will go to the implementation

team. Then, it will remove the ambiguity basically formally we have defining it so all are

having predefined syntax and semantics. Why it is difficult to use HOL in verification

already I have mention you can look into it and some you are if so all verification matters

and you can find some more idea.

Try to find out major system design failure like Pentium bug. So, it is Pentium is not

only the bug that has been reported. After going into the public some more issues also

there some other devices are also there which has reported bug after it is design, after it

is going to public. You will get some information and try to compare this particular

information and make a report. And, see what are the failures that we have to the design

error. And, what problems that human beings are facing due to those particular error. So,

that problem fine we can think about like that you are going to write a report about it and

try to collect that particular information. We are having several design error fault in our

history. So, with this I am winding up my lecture today. So, next class we are going to

talk about or we are going to discuss about the temporal logic about it syntax and

semantic.

Bye, bye.

