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Multilevel Implementation 

Good morning and welcome to the 6 lecture on module 3, which is on Multilevel 

Implementation. So, in this in the module 3rd module of the design part of the lecture 

what we have seen we have seen that given any binary function binary function. So, what 

you have to do, you have to try the represent it in represented in terms of some 

minimized forms by minimize form means, we have to represent in the minimum 

number of product terms and also each having minimum number of literal.  

So, this will lead to what is situation called and implementation in terms of minimum 

number of gates then, we have seen the exact amount of algorithm both heuristics and 

what you say exact algorithm kind of stuff for 2 level Boolean function minimization. 

So, whenever we mean by what do you mean by 2 level implementation means, there 

will be AND gates series of AND gates followed by OR gates or if we the sum of 

product form or if we the product of some forms then you have sum of the AND gates 

followed by the OR gates and so forth. 

I mean that that means, if you are having this 2 edge of representing representing the 

functions like sum of product form or product of some form and generally, you are using 

2 levels to represent them, first may be the set of OR gates followed by AND gates. So, 

that is actually have some term followed by the product terms or the other way you 

should round have you should have you can have some AND gate, that is the product 

terms followed by the some OR gate is the sum of the those terms.  

So, they are can be they these are sum sum of product or product of some terms. But, 

they are all in 2 level implementation then, we have found out that whether although, this 

2 level implementation the algorithm exist like, that is  there are the queue  go for tabular 

method that and then you go branch and bound method or if you go for the heuristics 

method.  



So, they can give you fairly well minimize function, but also we have pointed on those 

lectures that, if you go for 2 implementation, there is some practical problem in the 

implementation view. So, what it will happens, if you have say for example, if you have 

function, where is the 1 function. 
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 I mean in a function in f one of the product term may be say x 1 dot dot dot x 30 and 

compasses there. So, if we actually involve something like a 30 input and gate. So, 

whether although this is possible in a 2 level implementation it may be a some kind of 

minimized form, so, but if you that the idea that, you require a 30 input and gate as 

practical in terms of implementation. So, in in terms of various implementation the it is 

said that any gate having more then 4 fan outs not desirable.  

So, what do you require to do so, if you are in 30 level input AND gate. So, you have to 

break it up into levels of 4. So, 1 for input AND gate, there be other gate with 3 more 

inputs and then the another this 4 and so for. So, have to completely break it up to 

multiple levels. So, what is the idea that, if you directly go for 2 level implementation. 

So, sum of the inputs sum of the gates as high as are very high much, much more then 4. 

So, it is found out that will say y, so it will found out that, it is go for such type of 

implementation where, the number of fan ins are of gates or more then 4, there is out of 

practical problem in implementation that, it will be slower and that, it will lead to high 

power and so for. So, what go for that is go for something multilevel implementation. So, 



in case what happens, we first take a circuit or  function, we minimized it in terms of 2 

level fundamentals only that is by .  

If you are using heuristic branch and bonds what ever fix to you, but as you know that, 

branch and bond is the highly time complex algorithm so then generally, in the  the 

variance are used. So, the use some algorithm and them minimized for 2 levels 

implementation, then what you do may find out the some of the gates may have the large 

number of inputs. So, which is not practical to be implemented then, you have do what 

we have visit, if the break the 2 level, the 2 level implementation into multilevel 

implementation and you have keep it in mind a such that. 

None of the gate should have more then some amount of pan outs  for example, 4 is the 

very good  that, you should not have more then 4 input fan in for any kind of this, 

because that not lead to that gate becoming the slow, in terms of speed and also it make 

high power consuming and so for. So, you will see, so let us take a sum of product form 

this is a product form. 
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So, in this case, if you see, this is already minimize sum of product form, you can take it 

from the , we find out that the find that, you cannot go for further minimization of this. 

So, now, if want to implemented some implements the function in terms of 2 level 

implementation. So, is the sum of product form sum of product form. So, in this case, 



you have call this product terms here and this is your sum term, because it is odd you can 

find out the number input of the OR gate 1 2 3 4 and 5.  

So, this is the 5 input OR gates, now what are the problem, there is not problem, but 

implement this is mathematical term or it is minimized 2 level implementation, but the 

idea is that implement in this or gate with 5 input the big problem. Because, this would 

any gates in the more the number of  these the gate is the slow in operation and power 

consumption is the higher, so what will do is that, we try break it up into 2 OR gates may 

be.  

So, what do can you do is into have a good implementation, you can have have you can 

put other OR gate over here and this 5, you can put it over here and that is the idea. So, 

now, in the 1 2 3 4 will be in faver of and so there the large fan, you put it over here, in 

the OR gates. So, the same function, we will have represent that, the level 1 2 and just 3 

level of the implementation. So, the you have to break it up in the into multiple levels. 
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So, whenever the idea is that, so whenever I mean, you have NAND gate give fan in 

some more 4 may be break it up into large number of levels. So, that in the number of 

fan of all the give as remains 4 or less. So, let us the why dies it happen these actually, C 

MOS implementation of an OR gate. Now, this CMOS implementation of the 5 input OR 

gates at 1 2 3 4 5, so this is the OR gates 5 inputs are there, this is CMOS input of the OR 

gate. So, this is inverter because, a mean if you. 



I i mean, if you are not going to details how the gate design, because this is some 

analogue V L C A or you can find out the any stand that V L S A design book that, how 

are AND gate OR gate NAND gate, how they are implemented in CMOS most level. So, 

in CMOS which are seen that NMOS transistor and this is your PMOS and this is 

inverter, because generally, we have a is a NOR gate followed by inverter, which is 

make an OR gate. Now, what is you just see what happen, so if it is n input OR gate of 

kind nothing or an input AND gates whatever.  

So, in this chain you have n gates transistors sorry, n transistor in most and this will have 

parallel in P MOS transistor that, this is the idea, now this is this is.  ok. So, whenever 

the in gate output is be 1 on the another way, now for this this transistors is used to be 

charged the actually, the capacity over here, this is used to charge capacitor or you want 

output of this point the 1 in the conversion will be 0.  

But, that is 1, if you want when you want here to be 0 at the input value here to be is to 

be 1, so in this case what you have do you have this parallel transistor will charge this 

capacitor to be so, the answer will be 0.  

So, that is you there is 5 parallel transistor there you may be using for charging and when 

you get the answer it is to be 1 over here, then you have give the value of 0 over here. 

So, in this case what happen you have to discharge this capacitor to this transistor, now 

this NMOS transistor, now you see 1 2 3 4 5 more the number of fan out sorry, fan in 

more the number of NMOS transistor in chain will be there.  

So, if we 30 input NOR OR gate number of transistor will be 30 and the time taken for 

discharge for this path will be very, very long. So, if want that output on the  from the 0 

to 1, the time taken will be very, very long, because you have to go out the restarting this 

in most transistor. So, as in the 5 input or gates, so, number of transistor in series is 5. So, 

that is why we try to limited 4. So, that the discharge path were become very long any 

obvious if you for more number of transistor for requirement will be very high.  

So, the lights, if you any very very high, the fan in gate is very very high at the discharge 

path of the will be very very high. So, the transition required is going to be very large, 

this will make the operation of the gate slower. 
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So, that is why you try to leave it our input fan ins to 4. That is what is the standard do, 

which will taken V L S I design, so whatever I i told you return in this slide. So, 

therefore, we require a multiple level implementation of this in this function. So, one 

very standard way of doing it is you just I i mean, very what you have doing, this you 

have just forget do not add this 5 pin here, in the or gate you just do it over here, but this 

is very  kind of per rule of doing is that every level has 3 level and every gate as 4 inputs.  

But, in this lecture, we try to doing the much more standard way. So, that what we can 

say that  all the or that is the multilevel implementation is also very much minimized 

fashion, so that means, what again the number of product terms or the number of cubes 

will be minimum as well as the number of  be also be minimum. So, that is how we do. 
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So, in this case, if a break it up into and the this OR gate break it up break it up to the 

into 2, we will found at that I i mean, we will see, in in this case what you have to done. 

So, we have just taken this into and OR gate and we have just break in up to this. So, you 

will have doing it. 
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Now, what you have try to do much more standard way. So, if you do in standard way 

find out that, the implementation will be much simpler or involving the much number of 

gate. So, that is the what is the minimization is here, that the minimization will be you 



have to make it as multilevel format, that that is the sum of the product form, the product 

of sum, you will take implement in a multiple level. So, it will factorized and also the 

factorization should be such that the implementation, we minimum now number of gates, 

that is minimum number of terms, and also the number of  of the term should be 

minimum.  

So, there the minimum number that fan ins is the OR gate, same thing like your 2 level 

minimization at here, that the level should be much more in number. 
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So, this is this a  way of doing that you find out the gate have in more then 5 inputs or the 

4 the 4 input the you break it up to 2 levels and you keep on doing this at adhere way of 

doing at will be shortly see. So, for the same function, what is same function this one. 
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What we these people have done different way. So, in case this is the implementation, 

same thing they have taken x 1 x 2, they have common part of they can need out x 3 plus 

x 2 x 1 x 5 and x 1. 
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And this will be implemented in this fashion. So, in this case you see, how many number 

gates are river 1 2 3 4 5 6, 6 gates are there. And in this case also, if you check is 1 2 3 4 

5, 6 6 gates are there and 1 very important thing is so, this this implementation is adhere 

1, which a cut this OR gate fed it here. So, in this case is 1 2 3 4 6 gates are there and in 



this implementation also, in this fashion that is again you have broken up into the 

multiple levels, but you have use the factorization over here.  

So, in this case, you can see 1 2 3 4 5 6 gate are required or the number of fan ins of the 

gates, you check it is 2 here, it is 2 here, it is 2 here, it is 2 here and this 2 here and 4 over 

here.  
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In this case, if you check check the number of input is 3 over here, 3 over here, in this 

case this is 4 over here. So, the number of fan ins is that is the fan ins of the gates is 

higher in this case. So, that why if you just take the adhere manner, that wherever you 

find out the gate with more then fan outs, you break it.  
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Whether the much more area or or the gates of more number of fan outs or terms , if you 

go the, this type of factorized implementation (Refer Slide Time: 11:08). Where you 

have a less number of fan ins, in this example. So, in this example both have 6 gates, but 

in the more practice situation, we will find out the number of gates is also be lower in 

this case. So, in this expression what do you have found that, none of the gates have 

expression a fan ins more then 4 that, was the desire thing. So, everywhere you have to 

keep it in mind. So, no where you should have a fan in of more then 4 gates, so if it there 

then you have keep out factorize it.  
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Then this factorization expression also be further factorized in to this. Then it is just you 

see (Refer Slide Time: 11:36). This is a beauty of this is 1 level factorization then again, 

you can find out these common term over here. So, you can again factorize, this in this 

term reading to the circuit here. 

So, in this case, you see 1 2 3 4 5 6 gates are involved in there, but also you can see that, 

number of fan ins are decrease may much over here, this is 2 2 2 2 1 2 2 2 2 1. So, in this 

case 1 2 3 4 5 6 7 8 9, so 9 9 input in the this case 1 2 3 4 5 6 7 8. So, in this case you 

have see a 2 plus 2 4 5 6 7 8. So, there is actually, 6 sorry, 8 fan ins the input gates where 

is wherever it was actually, 1 2 3 4 5 6 7 8 9. 

So, even by taking the common factor on this one and factorization so, again we will 

found out the number of input fan ins become a 8. That is what is I am saying that, if you 

keep on factorize the then I i mean, there are going then the adhac way of doing keep of 

factorizing is as and find out that number of fan ins in the inputs are decreasing also none 

of gates have more then a further number of fan ins like 4, in the this is .  

In other, but more formal  what you try to achieve, we are trying to achieve the minimal 

representation of this function (Refer Slide Time: 12:48).This is this your function to the 

try the represent it in a minimal multi level multiple level format. So, when you say 

minimize represent the minimize representation will be such. So, that it cannot be re 

factored in it. None of the terms here can factorized further so that means, what is 

factorize in the best way. So, it will implies as between minimum number of  minimum 

number of  minimum number of terms implying the minimum number of gates and 

minimum number of fan ins. So, that is what in case of 2 level implementation of  same 

thing, we are trying to reduce the terms and also we are trying to reduce the numbers of  

in there. 

But, in this case as its multi level implements, we have to reduce the terms and also 

reduce the number fan literals, but at a same time you have to do factorization, because 

you are going first multilevel implementation and the factorization should be such that 

no more terms can be re factored in it. That is the minimum number of that is almost, 

you have bottom levels. So, that the number of we have achieve a you can achieve a 

minimal representation in terms of gates, now, that is the idea. 
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So, this is this is the actually, the gate we are factorized term for this 1. So, this is 

minimal representation, because no terms factorize any more. So, this is the minimal 

factorize from, which is realize in the multi level implementation. So, that is the target 

so, we will a given us sum of product form, in this way you have to go for a maximum 

factorization form, that is what is the minimization in multi level implementation. So, 

this is this was what you have discussed by what you say as the small example.  
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Now, we go to the for algorithm where we try to the show how can we do factorization. 

So, that is a factorizing a sum of product form, it is also be done for a u s form, but 

mainly in this lecture, we are concentrating on the sum of product form. So, before going 

that  go for some standard definition an all that, we go for the exact algorithm. So, an 

alteration representation of the S O P for from of a logic function, we just closer to the 

physical multilevel implementation is a factored form.  

So, if it the P O S or occurs in the 2 level, if you will going for a factorised term it is 

more level to multi level implementation. It is the generalization of S O P form, which is 

allowing nested parenthesis for example, each of the following is a factorised form factor 

it 1 literal 1 literal 3 literals and this is also 1 2 3 4 to cubes. 

You can say and that 4 literals, this case it is 1 2 3 3 term and 1 2 1 2, this case 1 2 3 4, 4 

terms and 4 literals, so, for you can do this. So, this 1 are the literals of the factor form 

factored form as generated as drieved from S O P terms minimazation S O P term. So, 

that is why when, if somebody ask you a question that, if I i do it multilevel 

implementation then why you will go for 2 level implementation the idea is that, you 

cannot directly jump into multilevel implementation 2 level implementation is still the 

vary a date that Boolean function minimization.  

So, what you do first you given S O P form you have to go for a 2 level minimization 

and from the 2 level minimization, you can form, you can go for multi-level 

implementation and you have to minimize that is given a Boolean function may . So, you 

have to first obtain the minimize S O P form that is the minimize 2 level implemented 

form and form the 2 level implementation minimize form, you can again factorize to the 

maximal level. So, that it becomes a minimal multi-level implementation format, so that 

is why 2 level implementation till date as a very great role in in minimization of circuit 

implementation.  

So, that is why factored form has derived from minimized S O P forms. So, minimization 

of a forms can only be desired, if you all going to 2 level minimization algorithm, if you 

go, if you are using 2 level minimization algorithm then all you can get minimization S 

O P forms. So, the S O P expression this one can be factored as also this is another 

example they have saying x 1 x 3 x 5 and this one. So, you can break it up as x 5 as you 

can take it as common between this x 5 prime is alone, this x 5 is common everywhere.  



So, you can take this then you can find x 1 plus x 2 and x 3 plus x 4, if you can factored 

the  you can get it. So, basically what happens this represent the factorized in this one. 

So, basically a factor form is sum of product of sum of product of sum of product dot dot 

dot. So, you can see this is again the sum of product form like x 1 plus x 2 is the sum of 

product form.  

In this case you can also, this is a sum of product form again, you can see that, this is 

nothing, but a sum of product form and the whole thing is also, you have say sum of 

product form. If you can think this is 1 term, this is 1 term and this is this is 1 term then 

is nothing actually, sum of product form. You do not consider the inside the bracket just 

consider this 1 as 1 term, this 1 as 1 term, this 1 is 1 term and this is single term and this 

is the single term.  

So, this dot, this dot, this this is a sum of product form, but now inside in the element 

again, you can break it up into sum of product form and this you can in a nested now, 

that is the factor form. 
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So, now factored form is can be defined in the following way a product is either a single 

literal or a product of factored forms is very obeys a sum is either a single literal a sums 

of factored forms a factor from a factored form is either a product or a sum. So, these in 

3 rules, you can find out what is the factored form. So, very example this this is a single 

literal the factored form, this again a single literal factored form this 1 is either single 



literal or sum of product of this, you can see this is the sum of factored forms. So, in this 

case it is a sum of sum factored form.  

So, this is also a factored term and again this is actually, sum of product sum of product 

sum of product. So, this also nothing, but a factor form, this is what is the a definition 

that is a recursively, you can define a factored form in this way. So, that why I i told you 

this is 1 product tem, this 1 tem and this is 1. So, you are this is the product of 2 terms 

and this is the third terms, you can say that the this is a sum of product form. So, this is a 

single literal and this is say term 1, this is term 2, this is the product in the some.  

So, in this some of product form, now inside in this blocks again is the again the term 1 

term 2, this is again product form. So, this is a again a sum of product form and you keep 

all on way you. So, as this first literal out the third is a product. Product is the sum you 

can and the last one is a sum of product of sum of product of sum of product.  

So, these are nested definition as you given in here as a nested definition of a fact 

factored S O P. So, that is why you have to conceive when you looking up into the top 

level. So, you have to the term and this term 2 and this is term 3 the sum of product 

forms, now again if you go inside the 1 sum of product forms what this is a term in a 

single literal here. If you go to again term, 2 this again a sum of product forms, these 2 a 

single literals and this is a product term. So, these how you can the factored form. 
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So, which are not the factored form that is also very important. So, according the 

definition this is not a factored form, because if this you can open it, up this can be 

opened as because, this is x 1 plus x 2 whole complements.  

So, this can you cannot represent something like this follow these definition, this C 1 can 

be represented as a x 1 bar dot x 2 bar , you can find then this will be come a factored 

form, similarly this one also is not a factor form. Because, you can see that is x 1 dot x 2 

whole bar, this will be another thing, but x 1 and x 2, this one is this one plus this one. 

So, also this one will your something like the. So, this mean you can open in it happen to 

your de Morgan’s slow. So, can find the doubt then this become your factored form. So, 

this is if you have some expression like this. 

So, this is not S O P form then this will not your factored form. So, because their 

complementary entirely, which is not allowed by the definition also it might be noted 

that like 2 level S O P factor forms, in general are not unique as illustrated by the 

following 2 equivalent factored form. So, we know that is for a single function that can 

be a multiple way of implementation in 2 levels as you already seen. So, in same way 

factors forms, they are not unique, because uses these 2 or find out their equivalent.  

So, this one is nothing, but x 1 x 2 this one will open it a x 3 x 1 plus x 3 x 2, now you 

just open it up also you will found out that, it is x 2 x 3 plus x 1 x 2 plus x 1 x 3. So, you 

can find out the this equivalent. So, in other words, so just like us 2 level implementation 

form. So, S O P or P O S form they are not unique for a given function. So, multiple 

level implementation is also not unique. Now lets go to the next definition. So, it say that 

an algebraic expression, this is f of c 1 plus this is nothing, but c cubes, this is one.  

So, an algebraic expression is 1 where no cubes are contain the other that is now one of 

this cubic, totally emended another there is an algebraic expression an expression, that is 

not algebraic is called Boolean. So, in case of Boolean 1 may be included in the other for 

example, this 1 is algebra because this one is not in this another, this one is another term. 

And expression this one is known as algebraic, because this whole trem, you can say is 

inside this as it true.  

So, in this we know algebraic this one not algebraic, this one is algebraic, because x 1 is 

not in this one and in this case sorry, it will be something like this you can say. So, this is 

the case sorry, the type over here. So, this is not algebraic, because x 1 is not included 



here and this one is this one is Boolean not an algebraic first one is sorry, these 

expression is algebraic, because x 1 is not a part of this one in another words.  

So, this this term this cube is not the inside, this that was the algebraic and the expression 

this one is a non-algebraic expression this one is a non-algebraic y, because the whole c 

in this implying that, this one is case of this what is written that should not be there is 

type of my say sorry, for that. In this case this is this one belong to this one. So, x 1 does 

not belong to this this implies that C 2. Is that is that is C 1 sorry, this was means that 

means, none of the literal from C 1 is in C 2 and vice versa. 

So that means, what is C 1 is this will not hold in C 2 that means, what what a mean over 

here is that as x 1 is not as this literal, present in C 1 is not in C 1 C 2 or x 4 and that will 

mean that C 1 will not belong to C 2 and so, for. And either C 2 will be belong sub set of 

this one. But, now you can see in this is neither, this is also true, this this is also be true 

over this, because, x 1 is not in this form form, in this, but x 1 is what if you see at the 2 

expression like expression this one.  

X 1 plus x 1 plus x 1 plus 3 and 4, this one in this case this not algebraic, this is Boolean 

because, this ah literally a parts of this this one implies that, if you consider the C 2  C 1. 

So, in this case this will be the case. That C 2 will be inside C 1. So, in this case you will 

remain a Boolean. 
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So, now there are another definition a factor is F is said to be algebraic, if the S O P 

expression obtained by multiplying F out directly. That we will see that does mean is 

algebraic and is Boolean, if is not algebraic, that is if you given a factor form something 

like this now, if you open it up. If you multiply this that is this thing should implement 

and this thing should not be there, that is instead of minimization you should eliminate 

that is if you have x 1 plus x 1 make it 0, it is eliminate of x 1 x 1 keep does a x 1 do not 

may keep as x 1 dot x 1.  

And single cube to containment of those things of that is all this type of minimization 

you should do and if then then if a becomes a algebraic expression. Then it will be the an 

algebraic factored form become a Boolean factor form for example, which have the 

following is a algebraic factored form like this is x 1 x 2 x 3. So, if in if I i opened up, the 

already open. So, x 1 does not belong to x 2 or x 3. So, this will become an algebraic 

format, now if you get this 1.  

So, if you can open it up this will be 1, it will be x 1, if you just open it up this is x 1 x 3 

plus x 1 x 4 x 5 and then if you open it x 2 x 3 plus you can have into x 3 x 2 x 4 x 5 plus 

x 3. So, you can easily find out that none of the term has totally, inside other. So, that is 

what we have saying an algebra, this is saying which is no cube contains an another. So, 

in this you can very easily find out the that, I i mean in the none of the cube contain each 

other. 

so in this case this is obviously the and we have there is not term like this one. So, that 

we not think about it like for example, we will not have the, if you have something like 

this one, we have to eliminate this term. So, as there nothing is there. So, we can easily 

say that these 2 are algebraic format algebraic factored form, because none of the cube 

contains another. The following the Boolean factored form, because these are the 

obviously, if you look at this already, we have told that mean, this if you can say this is C 

1, this is say C 2 C 1 will comprise C 2.  

So, in this case this is not. Similarly, you can easily find out that, in this case also, if you 

open it a. So, you will find out that this is a now there all algebraic factored form, 

because first way you will find out the x 1 x 1 prime. So, this will actually kill you. So, 

you can easily find out, I i mean, if you just go ahead open this expression. So, you can 



easily find out that, this factored from some this will provide a definition to in this find 

out the this is the Boolean factor from an non algebraic factor form.  

So, now, is that, so in a factor form. So, deference the number of literal can be 

significant. So, what what is you can what is the idea, it is said that as discussing the 

introduction section, there can many  factor that was given S O P significance also the 

differs in the number of the literals of this equivalent forms can be significance, that is 

already given in a example, that is you can see, that in this case the input is 8 (Refer 

Slide Time: 26:29). 

You have input in the same thing, if you do into this input input fan ins is the 9, if you 

are not going for a factor form then you very, very  3 plus 6 8 9 10 11. So, that is for a 

same function that can be different factored forms and the number of the inputs can be 

different. 
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So, that is why we have also , this has a another example of the question answer  and that 

is why that, we have go for such a factored form where, the number of input fan ins are 

minimum as well as the number of terms also should be minimum. So, that then only, we 

can say it is a minimally sorry, maximumally factored form and that will equal the 

number of implementation.  



So, slowly slowly towards that so, we have slowly going towards first, you have seen 

definition of a Boolean factored form what is algebraic factored form, first you have also 

seen factored form. So, we have seen what is the Boolean from an algebra form factored 

form that why you are using, we try to find the algorithms, which can give you what is 

the best or the maximally factored form, which is the best for implementation slowly will 

go. 
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But, you have to keep in mind just like simple S O P sum of product 2 level 

implementation a product of sum 2 level implementation or minimization that can be 

there can be different 2 level implementation. Similarly, multi-level implementation also 

there can be different factored forms give into different type of implementation for the 

same function. So, therefore, we require algorithm to generate that can generated 

factored having minimal number of literals that was lead to minimal implementation that 

minimal level implementation.  

So, that is efficient in terms of area in other, we needs sachems for factored from, which 

are maximally factored for efficient multilevel circuit implementation. So, with  

algorithms starting now, which can given S O P minimize, so, S O P form, which can go 

for the maximum factored form maximally factor way maximal factored, they will the 

minimize the S O P forms and will factorize, it maximally so that the number of literals 



and terms in them are the minimum is the very less or will be will be minimum as 

possible for the implementation area in efficient.  

So, now let us take the definition what is by a maximum factored form. So, in other way 

in a is same as language what is the maximally factored of given any some of product 

minimum sum of product form, it will consider as maximum factor, if none of the terms 

can be again factored. That is in one way doing it but, this is very laymen of this 

language saying it, that is once is the. So, must factored no more terms can ne prefecture 

in it. 

So, we let us now, we see how can be define a more form, factor from his maximum the 

factor, in every sum of product for every sum of product in that factored from there are 

no 2 syntactically equivalent factor in the products for every product of sums, there are 

no 2 syntactical equivalent factor in the sums. So, now, will I i mean rather then just 

going towards the technical  does not mean illustrated by example. So, that the we will 

come back to this definition. 
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For example, these 2 are not not maximally factored, now why because to the very 

trivial, because they contains con contain trivial syntactically, equivalent factored x 1, in 

their  in their productions, in their sum respectively, now they are the sums and they are 

the products. So, you have a syntactically equivalent term over here. So, that is being 

said every sum of products, there is not to syntactical equivalent factor in the products 



for every product of sum that is no 2 syntactically, factors in the sums that is what we 

have the mean say.  

So, in this products so, you can say there are 2 syntactically, 2 equivalent factors 

similarly, in the sums of also . So, you can say that a sum or a I i mean S O P form is 

maximally factored, if you do not find any kind of syntactically, equivalent terms of 

factors in the sum of sum term. So, obviously you can be factored very simple way you 

can factor this one as x 1, you can taken as common and you will get x 2 plus x 3.  

So, this is what we have got this this one, this term this term can be factored into this 

one. So, mean first is obese and the second one easily find out, you can just open this up 

then that, you can find out this the most factored implementation. So, the first one 

product terms at you just take the common 1 and the sum term. So, if you go out go out, 

this step you will find out.  

Now this is the minimally facts maximally factored form, because you can see that there 

is this is 1 product term, you can consider one product term. There is no any common 

initially the x 1 as the common syntactic factored syntactical equivalent factored of x 1, 

but there is no fact, such a factor over here and similarly, in this case of there is non-

factor over here. So, you can tell this term, maximally as the factored now obviously, 

they are going to if you represent them. 

So, they will represented in what you can say minimum number of gates will be 

represent in the minimum number of levels as well as they will representing the 

minimum number of fan ins that is minimum number, if gates with minimum number of 

inputs, now these what is it case. 
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So now, more definition, so we say that the product of 2 cubes A and B is a cube, so that 

the 2 cubes C 1 and C 2 say a product of 2 cube say A and B. So, in C 1 and C 2 are A 

and B in this case. So, if take 2 cubes, because the standard, we are using C 1 and C 2 4 

representing cubes. So, simply if there are 2 cubes C 1 and C 2, in this represent they are 

terminate A and B is to multiply them.  

So, A a dot B that is 1 dot C to is 5, if there exist an x belong A union B A prime union x 

union B that mean, but actually, if mean you say that, it is a x 1 dot x 2 then this one is 

say x 1 prime sorry, and this 1, you will say C 2 is say something x 1 prime x 2 sum . So, 

it is a there an x, which belongs to which is a terms belongs into C 1 union C 2 literal 

belong into  that is A union B and also  belongs to. So, if you make a product of this the 

x 1 dot x 1 prime. So, it will doing into 5, otherwise it will be simple area that is the very 

obviously. 

So, A B as an algebraic product, if A and B has disjoint variable sets, otherwise A and B 

is A Boolean product. So, obvious if A and B have no terms in common so, if you make 

a product among them so, it will be a disjoint variables. So, it will become a algebraic  

product, otherwise A and B is the it will be a Boolean product, because every sum term 

will be common and obviously the 1 term will include other.  

So, you have seen this example. So, this one is a algebraic product, because x 1 plus x 2 

be do not have any common literal and there is not common any on variable. So, if you 



have. So, that is what is I i sorry, this is an intersection. So, this is into 5 and now this 

example of a Boolean product why because, ah sorry, this is all be intersection, we also 

the talking about this term.  

So, this is all intersection I i am very sorry, because now if we in this case. So, x 1 x 2 x 

1 prime x 2 prime. So, at x xi is I i mean, say in this case x 1 is complements. So, if you 

make your products of it. So, x 1 x 1 prime cancel out and C 1 will be 5 what now if you 

have x 1 x 2 and in this case, that is x 1 x 3, now if you make product, you will found out 

that it will be the common part will be only 1, also you can have a thing like this.  

So, this is about the idea, you can in this case uses these intersection can has 5. So, this 

will be a Boolean as well as algebraic factorization, now in this case, this is x 1 x 2 and 

this one, actually this one is case it is Boolean product, because x 1 and x 2 is to 

intersection, this will the actually x 2, because there is the common factor out of A. 

And so, you are actually these are problem, this is the you have a common syntactic 

variables. So, you have a Boolean product so, this was the definition. 
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Now, we are going for the we are now actually, come from using those definition, we are 

coming to the place, now we wil try to factorize a given this thing. So, now function so, 

what do you mean by factoriation. So, say if you will go to higher I -i mean junior is 



school day, if you say that the factorize 15. So, we can say that 15 is equal to 5 into 3 or 

if you that factorize 20, you say 10 into 2 or some 5 into 4.  

So, a factorizing 20 that means, given is the say high school fundamental. So, the same 

thing is actually, made by factorization, we may also be expression to the expression f. 

So, this is one S O P form that, you mean function, which have factorize. So, another D 

is there take 4 the time mean D is division. So, you can find out that a given a name, you 

want to factorize it. So, some D is given to you that is the divisor. So, you get a quaint 

also you gets a reminder. 

So, but I mean this is very previous simples like a 15 is equals to S, consider a high 

school days, now some divisor is given to you say D is equal to 3 then question will be in 

this case will be  to 5 and reminder in this case equal to 0. But, if 1 say the divison is 4 

then then, what you say then the question will 4 is the the 12 and 13 14 15 reminder, that 

is equal to do. So, same thing is actually, also holing for this functions. So, what we have 

doing. So, in this case and division of S O P is operation is made to be S O P, this thing 

is to generated this and this is your case.  

So, if which is the function is the factorize some divisor is given. So, how the divisor is 

given is the most typical problem, you have say the how is the given a division, you can 

find the quaint and the reminder. So, what will you have doing what you have try what 

are the basic idea. So,  it will given a function, which we have factorize, now sum way 

the D has to be given. So, this is very important how the it will selected. 

So, in as we seen that the most problem, in finding out the maximally factored multiple 

level implementation finding of the D id the most difficult problem, if somebody gives 

you a good division for the time  somebody gives you a very good division then what 

you do. Now, you divide F by D and you get a question and a reminder, now you can try 

to see that can D b the factor. So, best idea it I i will give you that, you a very good D. 

So, you can not the D factor much. So, you have the factor Q and R.  

So, now, again you have to take you to factorize Q and factorize R again, you have the 

good division and you have to keep on doing it finally, we have find out that all the terms 

have factorize and you did not have to go for anymore factorization the maximally 

factored. So, now, you can understand that selection of the D is very important then all 

stages. So, in the last we seen expression.  



So, the D is an algebraic product and the operation is algebraic, otherwise in the 

products, this product D Q is algebraic then the division is algebraic like, otherwise this 

is Boolean product and the operation is called Boolean division. So, way if R is 5 then D 

is factor, otherwise D is the divisor. So, that is very well known if, so of D can vey well 

term and the the reminder will will be 0.  

So, in this case obese the D is the factor, otherwise these A divisor and the question. So, 

now an obese in D Q is algebraic product then division is also algebraic, if the product is 

Boolean product the Boolean is the division, so that is division. So, we already know that 

what is algebraic product, there is no only syntactic common terms in D and Q and there 

is common term in the between D and Q then it become a Boolean stuff.  

So, as I -i told you, first to take some good D then you do this then again, if you find that 

Q and R can make it factorize then again, you find out the D prime for D and the D 

double primes A a for R, you keep on doing it.  

So, every time we out the very, we would, we which can doing. So, if you take a very 

quality of the then then the factorization levels will be very, very slower as we will see 

much more numbers of steps will be required to factorize it. And finally, you have make 

a long time to make a good factored form and also, you will find that you may not have 

receive the most optimal factor factorized , you got an improperly, so that is why 

selection of these is very very important factor and I -i think in this lecture will not going 

to elaboration. 

How you will find out the very good, because a very well, we lot of work to find out how 

can you find out a very good D. So, because the algorithm is standing on the seat of how 

you find a good D. So, how can you find out a good D then factorization, this is also stay 

forward I -i mean for a division algorithm, which we can follow, which we will see 

selection of a D is good D is very important.  

So, now given S O P Boolean expression is to converted into a maximum factored form, 

we need the following steps, now we are just  that somebody has given you a very good 

D then how we have this factorization. Find the good divisor D exact and there there are 

some exact algorithm as well as  algorithms actually, is not algorithm, but when you are 

just giving you very formal terms, there there algorithms and, you say this will algorithm 

here there will be exact algorithm.  



There is no in then a  what for the I i mean just for delivery sense and just for I i mean, 

for talking may not going to that formal computer science, this is more less and wire less 

iPods. 

So, I mean, sometimes, we the slide abuse of location I mean, as use of language, we 

have saying that I  mean, exact algorithm and heuristics algorithms, we just have to know 

that I -i mean, for exact algorithm for this predefined steps and there no choice I -i mean, 

this may  give you optimal solution. But, in case of heuristics, we sometimes go about 

randomly searching solution it and sometime may not give the most optimum solution.  

But, beside solution of language I -i mean for the cede course I -i mean, if you can use 

this term like exact algorithms and heuristics algorithms. So, there is good anther 

example of algorithm heuristics to find out good D in this lecture, we give you a vey 

brief that how it can be done. So, 1 that is there, so you have to go for this and then if 

you said a very good D then what going to have R is going to have as few cubes as of 

there that is that, you factorize that a 15 something like this.  

So, you now let us take the prime number say 13 factorized such a way. So, that the 

reminder is less as possible, you may you can say 6 into 2. To the divisor and the plus 

reminder is 1, you have then if I -i say that, you take 5 the divisor 5, 5 as a divisor. So, it 

will be 5 into 2 and the remainder will be 3.  

So, in this case, if you take a very good divisor, so R will have as a literal as possible. 

Now, perform the division F by the generate to this may be simple as see how is the 

division can be done. 
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So, now you will see that also, we will see show you how the division can be done and at 

same time, we also show you that, if you that taking a very good divisor in a number of 

times to got to the most factors for by this will factored will be less compare, if you are 

taking a bad quality division.  

So, this is you will say a function, which you have to minimal a factor maxi maximally, 

factor and this is the divisor x 1 plus x 2 dot x 3. Now, the points determining d will be 

shown latter, that is the how you can find the good d, we see later just give you the idea 

here, then for each cube of d now you will see, how it divide d, which cube of d x 1 and 

x 2 x 3, we look cubes for f such that d has all the literals of f is all the literals of d has. 

So, what you will do actually, for d 1 is equal to d 1 let us take the first term. Then we 

see that f 1 x 1 dot x 4. So, you can represent as d 1 not x 4 right. So, this one, we are 

repressive by x 1, now x 2 also has x 2 has also x 1, this is f 2. So, this is f, this is f 1, this 

is f 2, this is f 3. So, what you have try to do for each cube in d, that you have this is d 1 

and this is d 2.  

For each cube of d 2 look for cubes of f f f j such that, f j has all the literals d i that 

means, d i actually, becomes a subset equal to f i. So, if you see in this case I -i mean you 

can factorize f i by d i. So, in this case f i, x 1 is common. So, you can write next d 1 x 4, 

f is f dot is x 2 dot x 3. So, x 1 is basically d i d 1. So, you can write d 1 d i. So, write the 



d 1 as this one, that is one is the term you are using. So, d are the d 1 is the cube of the 

divisor using using d 1 an we  x 4 because, first 1 make you x 4. 

And the second these 2 and the second term x 1 is common, so x 2 and x 3. So, now, So, 

this is the last term you see f 3 and this f 3 is x 2 dot x3 dot x 4 and this x 1 is no 

common here. So, you you just cannot do anything with it, now here the next term d 2 is 

x 2 x dot x 3. So, we get you see, x 1 x 4 in f 1, you cannot doing anything. So, if on you 

cannot do anything f 2 use a 3 x 2 x 3 and a this one is x 2 x 3.  

So, can usually represent x 1 d 2 because d 2 is this one. So, this is the case and also see 

that, x 2 dot x 3 4. So, in this case d 2 dot x 3. So, we will do be nothing, but x 1 and x 4, 

because, in this case x 1 and in the final case into a is d 3 x 3 x 4 also, this is what sorry, 

this is 4. D 2 is nothing, but x 2 dot x 3 so this x 2 dot x 3. So, this is x 4. So, this d 2 is x 

3 dot x 4. So, is small type is d 2 not x 3 and this d 2 x 3.  

So, in this case we are having x 1 and x 2. So, it may be noted that, x 4 multiplies d 4 and 

d 1 in d 2. So, actually then you take a intersection of this. So, you get x 4. So, you will 

find out that x 4, basically multiplies both the d 1 and d 2. So, we can use factored this 

one x 4 is the common factor for the whole thing. So, you can write in it this way. So, 

you will write x 4 a you just factorize to it x 4 is equal to x 1 to dot x 3 x 1 x 2 x 3 will 

reminder, so how you get x 4.  

So, what do you have basically, done you have taken the first cube of d 1 and find out the 

common terms. There is only factored the terms in n, which are, which were possible 

then I -i have taken x 2 dot x 3. Similarly I i have done the same thing for f 1 f 2 dot f 3 

then, I found out that, which is the common factor. So, in this I -i have found out that x 4 

is literal, which is common. So, if we taking out x 4, we find out this expression, so this 

one is becoming is your reminder this one x 1 x 2, this one this was is your divisor and 

this one is your quotient. 
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So, this is the simple way I -i can actually go about factorizing a term or dividing a term. 

So, if another example same lyrics and same f and now d 1 divisor is change. So, this is 

the x 1 and x 2. So, for d 1 equal to x 1, we get x 3 and x 4 right, because if we a in this 

case of you can cut this x 1, you get x 3 and this x 1, if you cut you will get x 4 over 

here. So, these 3 terms there is no x 1 x 1 v d 1 is x 2 and x 4, similarly if you consider 

the this x 2 term. So, in this case mean next will not get anything.  

So, in this case, if you cut x 2, you will get x 3, in this case, if you cut x 3 x 4, you will 

get x 1. So, we  to x 3 and 4 x 5 will be no over. So, in this case if we I -i v d 1 and v d 2 

try to find out the common term. So, we will find that x 3 and x 4 both are common. So, 

in this case you can have a factor like x 3 and x 4 is the factor, because common thing is 

both over here and and you find out the x 1 x will be there and this is the case. So, 

reminder in this case is x 5.  

So, from the ever that was the good division is determine, the division processes is there 

is state forward, you take a term from here, find out what are the common, where you 

can actually have a factored form where you can factorize then you make v d 1  take then 

that term then repeat the same term v d 2 and you keep on doing. In finally, we out what 

is the common factor about, this what were were the common factor will be that can use 

to factorize, this term and you can here, that the element.  



But, if a good divisor is not used than both R and Q was factorized over here. So, you 

can see both the example. So, I mean in this case, if you just have a look at it. So, it is x 1 

x 2 dot x 3, this one and are is going to this one. So, you can find out the neither this 

cube. So, this this was divisor this one is the Q and this one is R, neither Q or R here, 

similarly neither this was D this is Q neither R. So, neither D neither Q NOR R can be 

factorize, it gain neither in this case. So, in this case you can say that, this D and this D is 

divisor were very good divisor. 

But, if you are not going to get a very good divisor, then what may happen you may be 

other require to factorize Q and R. So, in this case these not a good divisor then Q and R 

can be factorize again, they may not be minimum Q. So, you have to do again that in 

such case Q and R are to factorize again and the process is repeated till no factorization 

can be done a typical algorithm is given below. 
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So, very simple you take a divisor so, these what is the thing, if k is not be factored, you 

return F that the minimally, of already have you done these factorization algorithm, you 

taken F you take a divisor you divide. That is what is the idea now D is the divisor F. So, 

you have to find out the good divisor, that is very, very important. So, it is based on 

heuristics algorithms. So, that we are going to just discus some of the references, you can 

find out that in the fan out in the lectures.  



So, I -i mean uploaded in the lectures. So, there is you can find out some good 

algorithms, which can find out the how a good divisor can be obtain, but any way this is 

very complex procedure. So, we are not discussing in this lecture. What just you given 

idea, how you can find out some heuristic, which can determine in a good divisor.  

So, now find out the good divisor, now what you do to do this division as exam as given 

to the examples, if your division is good find out that this reminder and the quotient, they 

cannot be again factored. But, if this is not the case then what you have to do again, you 

have to factorize R again, you have to factorize Q and infect, if you not taken a very 

good divisor also then again, you can able to factorize D and the process will keep on 

way, but for the general cases, D is m not be factorize over again.  

But, it may happen then Q and R actually, factorized but, in worst case, if you are, if you 

are not a very good person at selecting D then you can use a D, which may again re 

factored. So, can you keep on factoring D Q N F, you get a you give at the time where, 

this expression cannot be factored again and you will find the values.  

So, that is what I -i told you is given in this. So, you start with your you will find out the 

good candidate. So, then you actually, divide this then you get this one. So, if can again 

factorize, this Q and R and keep on doing till get  factorization. So, that is the idea. 
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Now, we will be in the whole things some examples. So, this is the F and then this be the 

D, Then if you repeated all these steps, you will find out that, this is the quotient and this 

is the reminder. So, in the examples, there are not going to show again how it comes, 

because it will be very easily find out found, you can very easily found out the the same 

procedure first, you take x 3 and find out the terms.  

Then you take x 4 and you find the D 2 then you find out what the common terms then 

you then you actually, in this case x 3 plus x 4, you will find in this case, you will fin that 

x 1 and x 2 for the common terms over here then.  

So, it will you are a expression will be x 1 dot x 2 dots in the plus 4 and these 3 terms 

like x 1 x 5 x 1 x is x term cannot included mean, these cannot be factored this divisor. 

So, this is your quotient and this is your reminder, in this case, we consider this one, that 

divisor is this. So, it is the reminder and the quotient is x 1 and x 2, we note that quotient 

can be factorize again of this, but R can be factorize.  

So, in this case you can see that, you can see this cannot be a very good divisor. So, this 

is not the very good divisor, because using this divisor what happened, this quotient, you 

have got the reminder. Of course, which are the factored that is the good point or the bad 

point is that reminder can again be factorized it can easily factorize by use this x 1 out x 

1 is can be done.  

So, finally, we have 1 2 3 4 5 6 7 8 so, we have 8 literals and we reach in 2 step, because 

first you get this term and then again you have to factorize R. So, so time step required 2 

times and number of literals is equal to how much 1 2 3 4 5 6 7 sorry, 1 2 3 4 5 6 7 8. So, 

8 literal form this. So, this what I -i have obtain. 
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Now, you see same F, but now we have change the factor. So, we have just try to show 

you that how important D is to get a maximally factored form. So, now D is this. So, 

now, if you take x 1. 

So, you can easily find out that, this one will be your quotient. But, the same term and 

reminder will be x 4, because you see x 1 is common over here, every time you have cut 

it of so, this one will be your quotient and x 7. So, this one is your quotient, this one is 

your D and this one the reminder. So, it is very obese that reminder cannot be factored D 

is a good, this is D, this cannot be factored, but you can see, you can be further factored.  

So, be further factorize Q, you can find out that, this one is the answer. So, in this case 

how much 1 2 3 4 5 6 7. So, you have seven literals time, literal is equal to 7 and time 

step is equal to 2. So, if you consider this D time step is 2 and literal is 8 S in this case 

time step is to time remain save, what you have to decrease 1 literal. So, you can say 

that, D equal to x 1 is a better divisor compare to x 1 x 3 plus x 4. So, they can give you 

further divisor what you have see then.  
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What you have see is that base on divisor, what is the idea based on the divisor the time 

taken 2 factorize, the function also changes and quality of function also changes, now we 

take a another example, we will now D equal to 2. So, if take D equal to 2 2, you will 

find out, if do that, we will find out the quotient is this and reminder is this. So, in this 

case you can find out the that, after the divisor this one is the quotient and we may not 

that Q can be factorize at this one R can also be factorize as this one.  

So, now, with this divisor factorize, you can, you have  situation. So, you can also be 

factored all can also be factor. So, in this case what will happen Q could not factor sorry, 

R could not be factored, but Q could be factor and in the first stage what the happen ah Q 

could not be factored could be factored. So, you see depending upon this choice of 

reminder, what happen what is happen in this sorry. So, depending upon the choice on 

the divisor also what is happening. So, different type of situation is arising both Q and R 

factored R can be factored Q can be factored and so for. If this x 2, so is the quotient. 

This is the divisor in this case both can be factored. So, now, the solution is this one. So, 

this is the final solution. So, in this case you have 1 2 3 4 5 6 7 8. So, you have 8 literals 

and again 2 time steps. So, 8 literals and and time step is also equal to 2. So, you can say 

that 2 is the bad not a good good factor now divisor, but 2 is the best divisor then x 3 

plus x 4, because in x 3 plus x 4, you required 2 time step and literal is 8.  



So, in this case this is the same 8 and 2 things, but here after first step, you have to 

factorize both Q and R again, but if you take x 3 plus x 4 then then time, it have almost 

same, but actually in the second step second step you you are factoring only R you are 

not factoring Q. So, you can say that, the best divisor in this case amount the 3 is this 

one. So, where we have 7 literals 2 times steps. And you need to factorize only the Q in 

the same again second one x 3 plus x 4 where the literals is 8 and time is 2, but you are 

factoring only R and the where most 1 is x 2.  Where you have I -i mean, you have taken 

time step at a 2, but you have taken factorize Q and R both and again the number of 

literal uses 8. 

(Refer Slide Time: 53:09) 

 

This one is the most bad and the worst amount the divisor. So, let us take an the example. 

So, we have showing different examples, that how D is very good how D is quality of the 

algorithms or the flow of multilevel implementation. So, this is another F and they have 

taken a factored divisor call D. So, in this case you take this D will find out that, this is 

your quotient reminder is 0.  

So, you have getting something like this, in this case we can call that here, D in nothing, 

but D is factored because this can very well means I -i mean, because it can factorize F to 

the generated R. So, this on is the case, we know that now, we can have this is actually 

quotient and further factorize into this. So, maximally factored from you can find out for 

this one will be x 3 plus x 4 and this for a, this is this part is actually, Q.  



So, can factorize this into this. So, when we take ah this one, you get a maximally 

factored form into steps having 6 literal. So, in this case 1 2 3 4 5 and 6 literals are there. 

So, that is what is mean save, this is not an another example, you can say that is the type 

of divisor, we want to find out the where is good divisor and bad divisor.  

So, you can think that, there is very good divisor, because at least you can generate R, 

which is reminder is 0, if you could reminder reminder as a 0, very good divisor, there 

very good divisor. You have found out, you can fully factorization a expression 

reminder, even in zero that means, there is no Q were.  

So, have made a lot of saving in the implementation, now you can again find out that can 

again re factored that is different story. So, if you can find out that divisor, which can 

entire a divide their function without generating, you can say with a very good divisor, 

because what because, you are not generate the reminder that means so, number of cubes 

are reduce. So, your implementation is minimize what just like prime number, you 

cannot I -i there is no divisor, which can divide the number accept number itself.  

So, I -i mean obese the if this is a cannot generate to this is equal to this is equal to D, 

that is a very foolish way, we will think about it. So, just like some prime number such 

that, which cannot be further factorize without 1 and the number itself. Similarly, there 

can be some function for you can never find out a divisor where, the reminder will be 0 

accepting the function itself, but  cannot the obese the this is the divisor over divisor 

over, which is very well known. So, if some functions are there for you can find out the 

divisor can actually, give you what do I -i say. 



(Refer Slide Time: 55:30) 

 

The minimum representation I -i mean remain remain 0, you can consider is very good 

divisor. Now, you see so, this was her 6 literals. This case now in this case, now if you 

take same F now you consider x 1 plus x 2 as a divisor. So, we will find out that, this is 

the quotient and this is the reminder.  

So, now you have seen that x 1 plus x 2 is not a factor. But, in this case x 2 plus x 4 was 

a factor. So, what happens now in this case, this is the quotient and this is reminder. So, 

if you represent F. So, are going to get something like this.  

So, in this case, you can find out that  would can be factorized and finally, we have this 

solution. In this case, these the divisor so, maximum factored form is I -i mean 2 literal 8 

literals and time step is 2. So, it is 1 2 3 4 5 6 7 and 8 literals and time step is 2, in this 

case the number of literal is 6, 1 2 3 4 5 6. So, that is why. 
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If you find out a divisor actually, which is which can generate the reminder equal to 0, 

you consider that is the very good kind of divisor. So, no we have seen that, once you 

can find out the very good divisor and the problem is very simple. So, what to have to do 

that is this algorithm step you have already seen that is in simple in a step seen that what 

do you do you just generate the first cubes of their over here.  

Factorize the Q, which have then by D 1 D 2 D 3 and then final common factors 

common literals and then you again generate generate the quotient and the reminder 

again, you try to find out whether the quotient and the reminder factored and you keep on 

doing it to reach a state where, nothing can be factorized over again. 

So, that is what is going to tell you that, we have gone for the most factorize, but the 

most difficult problem is that, how can you given a function, how can you find out the 

good divisor. So, that is a very difficult problem and we are not going to elaborate in 

this, but we can say that, there are lot of exact algorithm lot of heuristics, which can you 

can find out, if you if you  you can find out the references given in the hand out that, you 

can read, but you can find that why can be very complex, because if see that for the 2 

level implementation, there was a some some solutions.  

The solutions spaces are is what set of the primes. That is solution space, but in this case 

you have you have staring of the subset prime, because you have to go minimal level S O 



P minimization minimize form, that is the subset of prime and from there you have to 

find out that what what I -i mean go for a multilevel factors form, that is there again. 

Now, just I -i mean I -i mean not going in elaborate, but just think of that, if if subset 

sum that is given some  prime implement, you have to find out subset of them, that is 

number prime implement, that is solution space, but in this case you can see different 

depending upon different type of factors. You can see that a different type representation 

that are coming up.  

So, you can see you just realize and think how the be the solution space, the solution 

space in case multilevel implementation is much much larger in the 2 level 

implementation two level implementation is nothing but, the power set of the prime , but 

in this case what is happening, it is it given as different type of factor.  

So, factor can be n where n number of different, you can generate a factor and for each 

of the factor, you can find out, you can have just see how different factorization 

procedure . So, you can think of the solution bases extremely extremely large compare to 

2 level implementation. So, that is why the algorithm of the heuristics to find out the 

good divisor is also a very difficult problem.  

So, whenever the solution spaces small then your algorithm are simple, where are the 

solutions spaces are very very high, the algorithms are complex, that is why finding out a 

good divisor is a very difficult problem and we are nit going to elaborate, in this lecture 

what you can think very simple heuristics can be a divisor is the single Q, you can that I -

i always take divisor single, Q then x plus y or something like this and involves literals 

that are occur then in most of the cubes of f. 
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So, just go for this, if you just give you example I -i want to find out a divisor of this one. 

So, I -i will not take divisor like x 1 plus x 2 or something like that, I -i will this either x 

1 or x 2 sum up to x 6 1 of them, now which I -i will take I -i will take the literal, which 

is common to most of that like in this case 1 2. So, x 1 is in 2 places x 3 is 1 2 3 x 1 is x 3 

is in 3 different places. X 5 is in 1 2 4 is x 5 is a 5 cubes.  

Similarly, x 6 is in 1. So, you can say that I -i will take x 5 as a because x 1 appearing 

over here a very over here up to the over here over here. So, I -i take x 5 then going to 

get as x 1 plus x 3 sorry, x 1 x 3. I –i will get x 1 x 3 plus x 1 x 4 x 2 x 3 x 2 x 4 and so, 

for. So, that is if I -i take the literal, which id the common in most of cubes then, I -i can 

able I -i can able to reduce, I -i mean factorize the expression in a most.  
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So, this is the one very simple heuristic way, you can think, but exact algorithms and 

heuristics are more complex. So, a with this, we actually closing this discussion and we 

are coming to question answer session. 
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So, we just say that given example, we show that the Boolean divisor procedure better 

solution have at prime  and that is very important now, till, now we discussion what to 

have found of we have discus that, all we have done is basically nothing. But, we are all 

talking about different type of expression divisor etcetera all are all all algebraic divisor.  



So, what are the idea that algebraic divisor, that you have 2 terms, we should not x 1 

here, on 1 that is the idea and if you allow this then, you will become a Boolean division 

and infect, Boolean be give you better solution, then algebraic division, but Boolean, but 

Boolean divisor was more complex then algebraic divisor, that is we have not gone into 

this, but just to give you the idea. 
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That, but is the case. So, if this is your some f, then three equivalent factor forms. First is 

literal then second 1 11 literals and third one has 8 literals, this is the first, this is second 

and this is the, so you can observe that, these 2 are algebraic and the third one is a 

Boolean, because you can see x 1 x 1 is common over here.  

So, I -i mean this is a very common topics and we are not going into details into this 

course, but the idea is that, you can easily you can you can verify, if you are, if you go in 

to the depth that Boolean expression I -i mean, Boolean factor from R, further minimize 

the that to algebraic form. But algebraic division and algebraic is minimization of the 

factorization is a more complex procedure.  

So, we have not gone into depth of this, that is why we just given you overview and 

infect multilevel implementation is a very complex topic. So, in this this course, we have 

tried to give you the exposure in a very minimal way just to give you an idea just that 

given a 2 level form what is the problem and how we can go and approach in a multiple 



level implementation, we have not gone any amount of depth by any means in this multi 

level implementation.  

So, there is lot of words, which is been done and a lot of word still is going on in 

multilevel implementation, that is what is practically, require for implementation, this is 

type of the eyes for multilevel implementation, we have given you and the we have also 

show you that algebraic with factorization, if you compare with Boolean Boolean gives a 

much better solution. But, again this is a very more complex though, you have not even 

discussion how to do Boolean level Boolean level factorization for the in that case. So, 

with this, we close this lecture. 
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And also we come to the end of the design module. So, in the design module, what we 

have seen, we have seen that, we start of the design specification and from design 

specification, we go for high level synthesis. For high level synthesis, we go for Boolean 

synthesis, first you for multilevel sorry, first you for 2 level implementation and if is the 

sequence circuit then you have go for state minimization and state encoding and then you 

go for minimization, if is combinational circuit, you can directly go for 2 level 

minimization.  

And after the 2 level minimization is done, we go for multiple implementations and the 

final at least for the gate level implementation goes on for what you can say fabric 

location what. 



What before you go on a fabrication, we have to se that all the transformation, we have 

done, specification to high level deigns, high level design to Boolean level design 2 level 

from 2 level to multiple level then it should be all equivalent. That is there should not be 

any changes specification in between this stuff.  

So, the next module, we are going to see formal verification take needs that will that is 

the design A is equivalent design B, design B equivalent in design C. So, you can say 

that with the final design is out, you can claim that final design is same as is equivalent 

to my specification or they needs my specification. So, in the next module of the course 

at the this course is design and tests, in the next module, we will see about verification. 

Thank you.  


