
Design Verification and Test of Digital VLSI Designs
Prof. Dr. Santosh Biswas

Dr. Jatindra Kumar Deka
Indian Institute of Technology, Guwahati

Module - 3

Logic Optimization and Synthesis
Lecture - 6

Multilevel Implementation

Good morning and welcome to the 6 lecture on module 3, which is on Multilevel

Implementation. So, in this in the module 3rd module of the design part of the lecture

what we have seen we have seen that given any binary function binary function. So, what

you have to do, you have to try the represent it in represented in terms of some

minimized forms by minimize form means, we have to represent in the minimum

number of product terms and also each having minimum number of literal.

So, this will lead to what is situation called and implementation in terms of minimum

number of gates then, we have seen the exact amount of algorithm both heuristics and

what you say exact algorithm kind of stuff for 2 level Boolean function minimization.

So, whenever we mean by what do you mean by 2 level implementation means, there

will be AND gates series of AND gates followed by OR gates or if we the sum of

product form or if we the product of some forms then you have sum of the AND gates

followed by the OR gates and so forth.

I mean that that means, if you are having this 2 edge of representing representing the

functions like sum of product form or product of some form and generally, you are using

2 levels to represent them, first may be the set of OR gates followed by AND gates. So,

that is actually have some term followed by the product terms or the other way you

should round have you should have you can have some AND gate, that is the product

terms followed by the some OR gate is the sum of the those terms.

So, they are can be they these are sum sum of product or product of some terms. But,

they are all in 2 level implementation then, we have found out that whether although, this

2 level implementation the algorithm exist like, that is there are the queue go for tabular

method that and then you go branch and bound method or if you go for the heuristics

method.

So, they can give you fairly well minimize function, but also we have pointed on those

lectures that, if you go for 2 implementation, there is some practical problem in the

implementation view. So, what it will happens, if you have say for example, if you have

function, where is the 1 function.

(Refer Slide Time: 02:14)

 I mean in a function in f one of the product term may be say x 1 dot dot dot x 30 and

compasses there. So, if we actually involve something like a 30 input and gate. So,

whether although this is possible in a 2 level implementation it may be a some kind of

minimized form, so, but if you that the idea that, you require a 30 input and gate as

practical in terms of implementation. So, in in terms of various implementation the it is

said that any gate having more then 4 fan outs not desirable.

So, what do you require to do so, if you are in 30 level input AND gate. So, you have to

break it up into levels of 4. So, 1 for input AND gate, there be other gate with 3 more

inputs and then the another this 4 and so for. So, have to completely break it up to

multiple levels. So, what is the idea that, if you directly go for 2 level implementation.

So, sum of the inputs sum of the gates as high as are very high much, much more then 4.

So, it is found out that will say y, so it will found out that, it is go for such type of

implementation where, the number of fan ins are of gates or more then 4, there is out of

practical problem in implementation that, it will be slower and that, it will lead to high

power and so for. So, what go for that is go for something multilevel implementation. So,

in case what happens, we first take a circuit or function, we minimized it in terms of 2

level fundamentals only that is by .

If you are using heuristic branch and bonds what ever fix to you, but as you know that,

branch and bond is the highly time complex algorithm so then generally, in the the

variance are used. So, the use some algorithm and them minimized for 2 levels

implementation, then what you do may find out the some of the gates may have the large

number of inputs. So, which is not practical to be implemented then, you have do what

we have visit, if the break the 2 level, the 2 level implementation into multilevel

implementation and you have keep it in mind a such that.

None of the gate should have more then some amount of pan outs for example, 4 is the

very good that, you should not have more then 4 input fan in for any kind of this,

because that not lead to that gate becoming the slow, in terms of speed and also it make

high power consuming and so for. So, you will see, so let us take a sum of product form

this is a product form.

(Refer Slide Time: 04:22)

So, in this case, if you see, this is already minimize sum of product form, you can take it

from the , we find out that the find that, you cannot go for further minimization of this.

So, now, if want to implemented some implements the function in terms of 2 level

implementation. So, is the sum of product form sum of product form. So, in this case,

you have call this product terms here and this is your sum term, because it is odd you can

find out the number input of the OR gate 1 2 3 4 and 5.

So, this is the 5 input OR gates, now what are the problem, there is not problem, but

implement this is mathematical term or it is minimized 2 level implementation, but the

idea is that implement in this or gate with 5 input the big problem. Because, this would

any gates in the more the number of these the gate is the slow in operation and power

consumption is the higher, so what will do is that, we try break it up into 2 OR gates may

be.

So, what do can you do is into have a good implementation, you can have have you can

put other OR gate over here and this 5, you can put it over here and that is the idea. So,

now, in the 1 2 3 4 will be in faver of and so there the large fan, you put it over here, in

the OR gates. So, the same function, we will have represent that, the level 1 2 and just 3

level of the implementation. So, the you have to break it up in the into multiple levels.

(Refer Slide Time: 05:31)

So, whenever the idea is that, so whenever I mean, you have NAND gate give fan in

some more 4 may be break it up into large number of levels. So, that in the number of

fan of all the give as remains 4 or less. So, let us the why dies it happen these actually, C

MOS implementation of an OR gate. Now, this CMOS implementation of the 5 input OR

gates at 1 2 3 4 5, so this is the OR gates 5 inputs are there, this is CMOS input of the OR

gate. So, this is inverter because, a mean if you.

I i mean, if you are not going to details how the gate design, because this is some

analogue V L C A or you can find out the any stand that V L S A design book that, how

are AND gate OR gate NAND gate, how they are implemented in CMOS most level. So,

in CMOS which are seen that NMOS transistor and this is your PMOS and this is

inverter, because generally, we have a is a NOR gate followed by inverter, which is

make an OR gate. Now, what is you just see what happen, so if it is n input OR gate of

kind nothing or an input AND gates whatever.

So, in this chain you have n gates transistors sorry, n transistor in most and this will have

parallel in P MOS transistor that, this is the idea, now this is this is. ok. So, whenever

the in gate output is be 1 on the another way, now for this this transistors is used to be

charged the actually, the capacity over here, this is used to charge capacitor or you want

output of this point the 1 in the conversion will be 0.

But, that is 1, if you want when you want here to be 0 at the input value here to be is to

be 1, so in this case what you have do you have this parallel transistor will charge this

capacitor to be so, the answer will be 0.

So, that is you there is 5 parallel transistor there you may be using for charging and when

you get the answer it is to be 1 over here, then you have give the value of 0 over here.

So, in this case what happen you have to discharge this capacitor to this transistor, now

this NMOS transistor, now you see 1 2 3 4 5 more the number of fan out sorry, fan in

more the number of NMOS transistor in chain will be there.

So, if we 30 input NOR OR gate number of transistor will be 30 and the time taken for

discharge for this path will be very, very long. So, if want that output on the from the 0

to 1, the time taken will be very, very long, because you have to go out the restarting this

in most transistor. So, as in the 5 input or gates, so, number of transistor in series is 5. So,

that is why we try to limited 4. So, that the discharge path were become very long any

obvious if you for more number of transistor for requirement will be very high.

So, the lights, if you any very very high, the fan in gate is very very high at the discharge

path of the will be very very high. So, the transition required is going to be very large,

this will make the operation of the gate slower.

(Refer Slide Time: 08:05)

So, that is why you try to leave it our input fan ins to 4. That is what is the standard do,

which will taken V L S I design, so whatever I i told you return in this slide. So,

therefore, we require a multiple level implementation of this in this function. So, one

very standard way of doing it is you just I i mean, very what you have doing, this you

have just forget do not add this 5 pin here, in the or gate you just do it over here, but this

is very kind of per rule of doing is that every level has 3 level and every gate as 4 inputs.

But, in this lecture, we try to doing the much more standard way. So, that what we can

say that all the or that is the multilevel implementation is also very much minimized

fashion, so that means, what again the number of product terms or the number of cubes

will be minimum as well as the number of be also be minimum. So, that is how we do.

(Refer Slide Time: 08:52)

So, in this case, if a break it up into and the this OR gate break it up break it up to the

into 2, we will found at that I i mean, we will see, in in this case what you have to done.

So, we have just taken this into and OR gate and we have just break in up to this. So, you

will have doing it.

(Refer Slide Time: 09:05)

Now, what you have try to do much more standard way. So, if you do in standard way

find out that, the implementation will be much simpler or involving the much number of

gate. So, that is the what is the minimization is here, that the minimization will be you

have to make it as multilevel format, that that is the sum of the product form, the product

of sum, you will take implement in a multiple level. So, it will factorized and also the

factorization should be such that the implementation, we minimum now number of gates,

that is minimum number of terms, and also the number of of the term should be

minimum.

So, there the minimum number that fan ins is the OR gate, same thing like your 2 level

minimization at here, that the level should be much more in number.

(Refer Slide Time: 09:44)

So, this is this a way of doing that you find out the gate have in more then 5 inputs or the

4 the 4 input the you break it up to 2 levels and you keep on doing this at adhere way of

doing at will be shortly see. So, for the same function, what is same function this one.

(Refer Slide Time: 09:58)

What we these people have done different way. So, in case this is the implementation,

same thing they have taken x 1 x 2, they have common part of they can need out x 3 plus

x 2 x 1 x 5 and x 1.

(Refer Slide Time: 10:06)

And this will be implemented in this fashion. So, in this case you see, how many number

gates are river 1 2 3 4 5 6, 6 gates are there. And in this case also, if you check is 1 2 3 4

5, 6 6 gates are there and 1 very important thing is so, this this implementation is adhere

1, which a cut this OR gate fed it here. So, in this case is 1 2 3 4 6 gates are there and in

this implementation also, in this fashion that is again you have broken up into the

multiple levels, but you have use the factorization over here.

So, in this case, you can see 1 2 3 4 5 6 gate are required or the number of fan ins of the

gates, you check it is 2 here, it is 2 here, it is 2 here, it is 2 here and this 2 here and 4 over

here.

(Refer Slide Time: 10:45)

In this case, if you check check the number of input is 3 over here, 3 over here, in this

case this is 4 over here. So, the number of fan ins is that is the fan ins of the gates is

higher in this case. So, that why if you just take the adhere manner, that wherever you

find out the gate with more then fan outs, you break it.

(Refer Slide Time: 10:59)

Whether the much more area or or the gates of more number of fan outs or terms , if you

go the, this type of factorized implementation (Refer Slide Time: 11:08). Where you

have a less number of fan ins, in this example. So, in this example both have 6 gates, but

in the more practice situation, we will find out the number of gates is also be lower in

this case. So, in this expression what do you have found that, none of the gates have

expression a fan ins more then 4 that, was the desire thing. So, everywhere you have to

keep it in mind. So, no where you should have a fan in of more then 4 gates, so if it there

then you have keep out factorize it.

(Refer Slide Time: 11:30)

Then this factorization expression also be further factorized in to this. Then it is just you

see (Refer Slide Time: 11:36). This is a beauty of this is 1 level factorization then again,

you can find out these common term over here. So, you can again factorize, this in this

term reading to the circuit here.

So, in this case, you see 1 2 3 4 5 6 gates are involved in there, but also you can see that,

number of fan ins are decrease may much over here, this is 2 2 2 2 1 2 2 2 2 1. So, in this

case 1 2 3 4 5 6 7 8 9, so 9 9 input in the this case 1 2 3 4 5 6 7 8. So, in this case you

have see a 2 plus 2 4 5 6 7 8. So, there is actually, 6 sorry, 8 fan ins the input gates where

is wherever it was actually, 1 2 3 4 5 6 7 8 9.

So, even by taking the common factor on this one and factorization so, again we will

found out the number of input fan ins become a 8. That is what is I am saying that, if you

keep on factorize the then I i mean, there are going then the adhac way of doing keep of

factorizing is as and find out that number of fan ins in the inputs are decreasing also none

of gates have more then a further number of fan ins like 4, in the this is .

In other, but more formal what you try to achieve, we are trying to achieve the minimal

representation of this function (Refer Slide Time: 12:48).This is this your function to the

try the represent it in a minimal multi level multiple level format. So, when you say

minimize represent the minimize representation will be such. So, that it cannot be re

factored in it. None of the terms here can factorized further so that means, what is

factorize in the best way. So, it will implies as between minimum number of minimum

number of minimum number of terms implying the minimum number of gates and

minimum number of fan ins. So, that is what in case of 2 level implementation of same

thing, we are trying to reduce the terms and also we are trying to reduce the numbers of

in there.

But, in this case as its multi level implements, we have to reduce the terms and also

reduce the number fan literals, but at a same time you have to do factorization, because

you are going first multilevel implementation and the factorization should be such that

no more terms can be re factored in it. That is the minimum number of that is almost,

you have bottom levels. So, that the number of we have achieve a you can achieve a

minimal representation in terms of gates, now, that is the idea.

(Refer Slide Time: 13:47)

So, this is this is the actually, the gate we are factorized term for this 1. So, this is

minimal representation, because no terms factorize any more. So, this is the minimal

factorize from, which is realize in the multi level implementation. So, that is the target

so, we will a given us sum of product form, in this way you have to go for a maximum

factorization form, that is what is the minimization in multi level implementation. So,

this is this was what you have discussed by what you say as the small example.

(Refer Slide Time: 14:11)

Now, we go to the for algorithm where we try to the show how can we do factorization.

So, that is a factorizing a sum of product form, it is also be done for a u s form, but

mainly in this lecture, we are concentrating on the sum of product form. So, before going

that go for some standard definition an all that, we go for the exact algorithm. So, an

alteration representation of the S O P for from of a logic function, we just closer to the

physical multilevel implementation is a factored form.

So, if it the P O S or occurs in the 2 level, if you will going for a factorised term it is

more level to multi level implementation. It is the generalization of S O P form, which is

allowing nested parenthesis for example, each of the following is a factorised form factor

it 1 literal 1 literal 3 literals and this is also 1 2 3 4 to cubes.

You can say and that 4 literals, this case it is 1 2 3 3 term and 1 2 1 2, this case 1 2 3 4, 4

terms and 4 literals, so, for you can do this. So, this 1 are the literals of the factor form

factored form as generated as drieved from S O P terms minimazation S O P term. So,

that is why when, if somebody ask you a question that, if I i do it multilevel

implementation then why you will go for 2 level implementation the idea is that, you

cannot directly jump into multilevel implementation 2 level implementation is still the

vary a date that Boolean function minimization.

So, what you do first you given S O P form you have to go for a 2 level minimization

and from the 2 level minimization, you can form, you can go for multi-level

implementation and you have to minimize that is given a Boolean function may . So, you

have to first obtain the minimize S O P form that is the minimize 2 level implemented

form and form the 2 level implementation minimize form, you can again factorize to the

maximal level. So, that it becomes a minimal multi-level implementation format, so that

is why 2 level implementation till date as a very great role in in minimization of circuit

implementation.

So, that is why factored form has derived from minimized S O P forms. So, minimization

of a forms can only be desired, if you all going to 2 level minimization algorithm, if you

go, if you are using 2 level minimization algorithm then all you can get minimization S

O P forms. So, the S O P expression this one can be factored as also this is another

example they have saying x 1 x 3 x 5 and this one. So, you can break it up as x 5 as you

can take it as common between this x 5 prime is alone, this x 5 is common everywhere.

So, you can take this then you can find x 1 plus x 2 and x 3 plus x 4, if you can factored

the you can get it. So, basically what happens this represent the factorized in this one.

So, basically a factor form is sum of product of sum of product of sum of product dot dot

dot. So, you can see this is again the sum of product form like x 1 plus x 2 is the sum of

product form.

In this case you can also, this is a sum of product form again, you can see that, this is

nothing, but a sum of product form and the whole thing is also, you have say sum of

product form. If you can think this is 1 term, this is 1 term and this is this is 1 term then

is nothing actually, sum of product form. You do not consider the inside the bracket just

consider this 1 as 1 term, this 1 as 1 term, this 1 is 1 term and this is single term and this

is the single term.

So, this dot, this dot, this this is a sum of product form, but now inside in the element

again, you can break it up into sum of product form and this you can in a nested now,

that is the factor form.

(Refer Slide Time: 17:24)

So, now factored form is can be defined in the following way a product is either a single

literal or a product of factored forms is very obeys a sum is either a single literal a sums

of factored forms a factor from a factored form is either a product or a sum. So, these in

3 rules, you can find out what is the factored form. So, very example this this is a single

literal the factored form, this again a single literal factored form this 1 is either single

literal or sum of product of this, you can see this is the sum of factored forms. So, in this

case it is a sum of sum factored form.

So, this is also a factored term and again this is actually, sum of product sum of product

sum of product. So, this also nothing, but a factor form, this is what is the a definition

that is a recursively, you can define a factored form in this way. So, that why I i told you

this is 1 product tem, this 1 tem and this is 1. So, you are this is the product of 2 terms

and this is the third terms, you can say that the this is a sum of product form. So, this is a

single literal and this is say term 1, this is term 2, this is the product in the some.

So, in this some of product form, now inside in this blocks again is the again the term 1

term 2, this is again product form. So, this is a again a sum of product form and you keep

all on way you. So, as this first literal out the third is a product. Product is the sum you

can and the last one is a sum of product of sum of product of sum of product.

So, these are nested definition as you given in here as a nested definition of a fact

factored S O P. So, that is why you have to conceive when you looking up into the top

level. So, you have to the term and this term 2 and this is term 3 the sum of product

forms, now again if you go inside the 1 sum of product forms what this is a term in a

single literal here. If you go to again term, 2 this again a sum of product forms, these 2 a

single literals and this is a product term. So, these how you can the factored form.

(Refer Slide Time: 19:09)

So, which are not the factored form that is also very important. So, according the

definition this is not a factored form, because if this you can open it, up this can be

opened as because, this is x 1 plus x 2 whole complements.

So, this can you cannot represent something like this follow these definition, this C 1 can

be represented as a x 1 bar dot x 2 bar , you can find then this will be come a factored

form, similarly this one also is not a factor form. Because, you can see that is x 1 dot x 2

whole bar, this will be another thing, but x 1 and x 2, this one is this one plus this one.

So, also this one will your something like the. So, this mean you can open in it happen to

your de Morgan’s slow. So, can find the doubt then this become your factored form. So,

this is if you have some expression like this.

So, this is not S O P form then this will not your factored form. So, because their

complementary entirely, which is not allowed by the definition also it might be noted

that like 2 level S O P factor forms, in general are not unique as illustrated by the

following 2 equivalent factored form. So, we know that is for a single function that can

be a multiple way of implementation in 2 levels as you already seen. So, in same way

factors forms, they are not unique, because uses these 2 or find out their equivalent.

So, this one is nothing, but x 1 x 2 this one will open it a x 3 x 1 plus x 3 x 2, now you

just open it up also you will found out that, it is x 2 x 3 plus x 1 x 2 plus x 1 x 3. So, you

can find out the this equivalent. So, in other words, so just like us 2 level implementation

form. So, S O P or P O S form they are not unique for a given function. So, multiple

level implementation is also not unique. Now lets go to the next definition. So, it say that

an algebraic expression, this is f of c 1 plus this is nothing, but c cubes, this is one.

So, an algebraic expression is 1 where no cubes are contain the other that is now one of

this cubic, totally emended another there is an algebraic expression an expression, that is

not algebraic is called Boolean. So, in case of Boolean 1 may be included in the other for

example, this 1 is algebra because this one is not in this another, this one is another term.

And expression this one is known as algebraic, because this whole trem, you can say is

inside this as it true.

So, in this we know algebraic this one not algebraic, this one is algebraic, because x 1 is

not in this one and in this case sorry, it will be something like this you can say. So, this is

the case sorry, the type over here. So, this is not algebraic, because x 1 is not included

here and this one is this one is Boolean not an algebraic first one is sorry, these

expression is algebraic, because x 1 is not a part of this one in another words.

So, this this term this cube is not the inside, this that was the algebraic and the expression

this one is a non-algebraic expression this one is a non-algebraic y, because the whole c

in this implying that, this one is case of this what is written that should not be there is

type of my say sorry, for that. In this case this is this one belong to this one. So, x 1 does

not belong to this this implies that C 2. Is that is that is C 1 sorry, this was means that

means, none of the literal from C 1 is in C 2 and vice versa.

So that means, what is C 1 is this will not hold in C 2 that means, what what a mean over

here is that as x 1 is not as this literal, present in C 1 is not in C 1 C 2 or x 4 and that will

mean that C 1 will not belong to C 2 and so, for. And either C 2 will be belong sub set of

this one. But, now you can see in this is neither, this is also true, this this is also be true

over this, because, x 1 is not in this form form, in this, but x 1 is what if you see at the 2

expression like expression this one.

X 1 plus x 1 plus x 1 plus 3 and 4, this one in this case this not algebraic, this is Boolean

because, this ah literally a parts of this this one implies that, if you consider the C 2 C 1.

So, in this case this will be the case. That C 2 will be inside C 1. So, in this case you will

remain a Boolean.

(Refer Slide Time: 23:25)

So, now there are another definition a factor is F is said to be algebraic, if the S O P

expression obtained by multiplying F out directly. That we will see that does mean is

algebraic and is Boolean, if is not algebraic, that is if you given a factor form something

like this now, if you open it up. If you multiply this that is this thing should implement

and this thing should not be there, that is instead of minimization you should eliminate

that is if you have x 1 plus x 1 make it 0, it is eliminate of x 1 x 1 keep does a x 1 do not

may keep as x 1 dot x 1.

And single cube to containment of those things of that is all this type of minimization

you should do and if then then if a becomes a algebraic expression. Then it will be the an

algebraic factored form become a Boolean factor form for example, which have the

following is a algebraic factored form like this is x 1 x 2 x 3. So, if in if I i opened up, the

already open. So, x 1 does not belong to x 2 or x 3. So, this will become an algebraic

format, now if you get this 1.

So, if you can open it up this will be 1, it will be x 1, if you just open it up this is x 1 x 3

plus x 1 x 4 x 5 and then if you open it x 2 x 3 plus you can have into x 3 x 2 x 4 x 5 plus

x 3. So, you can easily find out that none of the term has totally, inside other. So, that is

what we have saying an algebra, this is saying which is no cube contains an another. So,

in this you can very easily find out the that, I i mean in the none of the cube contain each

other.

so in this case this is obviously the and we have there is not term like this one. So, that

we not think about it like for example, we will not have the, if you have something like

this one, we have to eliminate this term. So, as there nothing is there. So, we can easily

say that these 2 are algebraic format algebraic factored form, because none of the cube

contains another. The following the Boolean factored form, because these are the

obviously, if you look at this already, we have told that mean, this if you can say this is C

1, this is say C 2 C 1 will comprise C 2.

So, in this case this is not. Similarly, you can easily find out that, in this case also, if you

open it a. So, you will find out that this is a now there all algebraic factored form,

because first way you will find out the x 1 x 1 prime. So, this will actually kill you. So,

you can easily find out, I i mean, if you just go ahead open this expression. So, you can

easily find out that, this factored from some this will provide a definition to in this find

out the this is the Boolean factor from an non algebraic factor form.

So, now, is that, so in a factor form. So, deference the number of literal can be

significant. So, what what is you can what is the idea, it is said that as discussing the

introduction section, there can many factor that was given S O P significance also the

differs in the number of the literals of this equivalent forms can be significance, that is

already given in a example, that is you can see, that in this case the input is 8 (Refer

Slide Time: 26:29).

You have input in the same thing, if you do into this input input fan ins is the 9, if you

are not going for a factor form then you very, very 3 plus 6 8 9 10 11. So, that is for a

same function that can be different factored forms and the number of the inputs can be

different.

(Refer Slide Time: 26:46)

So, that is why we have also , this has a another example of the question answer and that

is why that, we have go for such a factored form where, the number of input fan ins are

minimum as well as the number of terms also should be minimum. So, that then only, we

can say it is a minimally sorry, maximumally factored form and that will equal the

number of implementation.

So, slowly slowly towards that so, we have slowly going towards first, you have seen

definition of a Boolean factored form what is algebraic factored form, first you have also

seen factored form. So, we have seen what is the Boolean from an algebra form factored

form that why you are using, we try to find the algorithms, which can give you what is

the best or the maximally factored form, which is the best for implementation slowly will

go.

(Refer Slide Time: 27:26)

But, you have to keep in mind just like simple S O P sum of product 2 level

implementation a product of sum 2 level implementation or minimization that can be

there can be different 2 level implementation. Similarly, multi-level implementation also

there can be different factored forms give into different type of implementation for the

same function. So, therefore, we require algorithm to generate that can generated

factored having minimal number of literals that was lead to minimal implementation that

minimal level implementation.

So, that is efficient in terms of area in other, we needs sachems for factored from, which

are maximally factored for efficient multilevel circuit implementation. So, with

algorithms starting now, which can given S O P minimize, so, S O P form, which can go

for the maximum factored form maximally factor way maximal factored, they will the

minimize the S O P forms and will factorize, it maximally so that the number of literals

and terms in them are the minimum is the very less or will be will be minimum as

possible for the implementation area in efficient.

So, now let us take the definition what is by a maximum factored form. So, in other way

in a is same as language what is the maximally factored of given any some of product

minimum sum of product form, it will consider as maximum factor, if none of the terms

can be again factored. That is in one way doing it but, this is very laymen of this

language saying it, that is once is the. So, must factored no more terms can ne prefecture

in it.

So, we let us now, we see how can be define a more form, factor from his maximum the

factor, in every sum of product for every sum of product in that factored from there are

no 2 syntactically equivalent factor in the products for every product of sums, there are

no 2 syntactical equivalent factor in the sums. So, now, will I i mean rather then just

going towards the technical does not mean illustrated by example. So, that the we will

come back to this definition.

(Refer Slide Time: 29:17)

For example, these 2 are not not maximally factored, now why because to the very

trivial, because they contains con contain trivial syntactically, equivalent factored x 1, in

their in their productions, in their sum respectively, now they are the sums and they are

the products. So, you have a syntactically equivalent term over here. So, that is being

said every sum of products, there is not to syntactical equivalent factor in the products

for every product of sum that is no 2 syntactically, factors in the sums that is what we

have the mean say.

So, in this products so, you can say there are 2 syntactically, 2 equivalent factors

similarly, in the sums of also . So, you can say that a sum or a I i mean S O P form is

maximally factored, if you do not find any kind of syntactically, equivalent terms of

factors in the sum of sum term. So, obviously you can be factored very simple way you

can factor this one as x 1, you can taken as common and you will get x 2 plus x 3.

So, this is what we have got this this one, this term this term can be factored into this

one. So, mean first is obese and the second one easily find out, you can just open this up

then that, you can find out this the most factored implementation. So, the first one

product terms at you just take the common 1 and the sum term. So, if you go out go out,

this step you will find out.

Now this is the minimally facts maximally factored form, because you can see that there

is this is 1 product term, you can consider one product term. There is no any common

initially the x 1 as the common syntactic factored syntactical equivalent factored of x 1,

but there is no fact, such a factor over here and similarly, in this case of there is non-

factor over here. So, you can tell this term, maximally as the factored now obviously,

they are going to if you represent them.

So, they will represented in what you can say minimum number of gates will be

represent in the minimum number of levels as well as they will representing the

minimum number of fan ins that is minimum number, if gates with minimum number of

inputs, now these what is it case.

(Refer Slide Time: 31:15)

So now, more definition, so we say that the product of 2 cubes A and B is a cube, so that

the 2 cubes C 1 and C 2 say a product of 2 cube say A and B. So, in C 1 and C 2 are A

and B in this case. So, if take 2 cubes, because the standard, we are using C 1 and C 2 4

representing cubes. So, simply if there are 2 cubes C 1 and C 2, in this represent they are

terminate A and B is to multiply them.

So, A a dot B that is 1 dot C to is 5, if there exist an x belong A union B A prime union x

union B that mean, but actually, if mean you say that, it is a x 1 dot x 2 then this one is

say x 1 prime sorry, and this 1, you will say C 2 is say something x 1 prime x 2 sum . So,

it is a there an x, which belongs to which is a terms belongs into C 1 union C 2 literal

belong into that is A union B and also belongs to. So, if you make a product of this the

x 1 dot x 1 prime. So, it will doing into 5, otherwise it will be simple area that is the very

obviously.

So, A B as an algebraic product, if A and B has disjoint variable sets, otherwise A and B

is A Boolean product. So, obvious if A and B have no terms in common so, if you make

a product among them so, it will be a disjoint variables. So, it will become a algebraic

product, otherwise A and B is the it will be a Boolean product, because every sum term

will be common and obviously the 1 term will include other.

So, you have seen this example. So, this one is a algebraic product, because x 1 plus x 2

be do not have any common literal and there is not common any on variable. So, if you

have. So, that is what is I i sorry, this is an intersection. So, this is into 5 and now this

example of a Boolean product why because, ah sorry, this is all be intersection, we also

the talking about this term.

So, this is all intersection I i am very sorry, because now if we in this case. So, x 1 x 2 x

1 prime x 2 prime. So, at x xi is I i mean, say in this case x 1 is complements. So, if you

make your products of it. So, x 1 x 1 prime cancel out and C 1 will be 5 what now if you

have x 1 x 2 and in this case, that is x 1 x 3, now if you make product, you will found out

that it will be the common part will be only 1, also you can have a thing like this.

So, this is about the idea, you can in this case uses these intersection can has 5. So, this

will be a Boolean as well as algebraic factorization, now in this case, this is x 1 x 2 and

this one, actually this one is case it is Boolean product, because x 1 and x 2 is to

intersection, this will the actually x 2, because there is the common factor out of A.

And so, you are actually these are problem, this is the you have a common syntactic

variables. So, you have a Boolean product so, this was the definition.

(Refer Slide Time: 34:09)

Now, we are going for the we are now actually, come from using those definition, we are

coming to the place, now we wil try to factorize a given this thing. So, now function so,

what do you mean by factoriation. So, say if you will go to higher I -i mean junior is

school day, if you say that the factorize 15. So, we can say that 15 is equal to 5 into 3 or

if you that factorize 20, you say 10 into 2 or some 5 into 4.

So, a factorizing 20 that means, given is the say high school fundamental. So, the same

thing is actually, made by factorization, we may also be expression to the expression f.

So, this is one S O P form that, you mean function, which have factorize. So, another D

is there take 4 the time mean D is division. So, you can find out that a given a name, you

want to factorize it. So, some D is given to you that is the divisor. So, you get a quaint

also you gets a reminder.

So, but I mean this is very previous simples like a 15 is equals to S, consider a high

school days, now some divisor is given to you say D is equal to 3 then question will be in

this case will be to 5 and reminder in this case equal to 0. But, if 1 say the divison is 4

then then, what you say then the question will 4 is the the 12 and 13 14 15 reminder, that

is equal to do. So, same thing is actually, also holing for this functions. So, what we have

doing. So, in this case and division of S O P is operation is made to be S O P, this thing

is to generated this and this is your case.

So, if which is the function is the factorize some divisor is given. So, how the divisor is

given is the most typical problem, you have say the how is the given a division, you can

find the quaint and the reminder. So, what will you have doing what you have try what

are the basic idea. So, it will given a function, which we have factorize, now sum way

the D has to be given. So, this is very important how the it will selected.

So, in as we seen that the most problem, in finding out the maximally factored multiple

level implementation finding of the D id the most difficult problem, if somebody gives

you a good division for the time somebody gives you a very good division then what

you do. Now, you divide F by D and you get a question and a reminder, now you can try

to see that can D b the factor. So, best idea it I i will give you that, you a very good D.

So, you can not the D factor much. So, you have the factor Q and R.

So, now, again you have to take you to factorize Q and factorize R again, you have the

good division and you have to keep on doing it finally, we have find out that all the terms

have factorize and you did not have to go for anymore factorization the maximally

factored. So, now, you can understand that selection of the D is very important then all

stages. So, in the last we seen expression.

So, the D is an algebraic product and the operation is algebraic, otherwise in the

products, this product D Q is algebraic then the division is algebraic like, otherwise this

is Boolean product and the operation is called Boolean division. So, way if R is 5 then D

is factor, otherwise D is the divisor. So, that is very well known if, so of D can vey well

term and the the reminder will will be 0.

So, in this case obese the D is the factor, otherwise these A divisor and the question. So,

now an obese in D Q is algebraic product then division is also algebraic, if the product is

Boolean product the Boolean is the division, so that is division. So, we already know that

what is algebraic product, there is no only syntactic common terms in D and Q and there

is common term in the between D and Q then it become a Boolean stuff.

So, as I -i told you, first to take some good D then you do this then again, if you find that

Q and R can make it factorize then again, you find out the D prime for D and the D

double primes A a for R, you keep on doing it.

So, every time we out the very, we would, we which can doing. So, if you take a very

quality of the then then the factorization levels will be very, very slower as we will see

much more numbers of steps will be required to factorize it. And finally, you have make

a long time to make a good factored form and also, you will find that you may not have

receive the most optimal factor factorized , you got an improperly, so that is why

selection of these is very very important factor and I -i think in this lecture will not going

to elaboration.

How you will find out the very good, because a very well, we lot of work to find out how

can you find out a very good D. So, because the algorithm is standing on the seat of how

you find a good D. So, how can you find out a good D then factorization, this is also stay

forward I -i mean for a division algorithm, which we can follow, which we will see

selection of a D is good D is very important.

So, now given S O P Boolean expression is to converted into a maximum factored form,

we need the following steps, now we are just that somebody has given you a very good

D then how we have this factorization. Find the good divisor D exact and there there are

some exact algorithm as well as algorithms actually, is not algorithm, but when you are

just giving you very formal terms, there there algorithms and, you say this will algorithm

here there will be exact algorithm.

There is no in then a what for the I i mean just for delivery sense and just for I i mean,

for talking may not going to that formal computer science, this is more less and wire less

iPods.

So, I mean, sometimes, we the slide abuse of location I mean, as use of language, we

have saying that I mean, exact algorithm and heuristics algorithms, we just have to know

that I -i mean, for exact algorithm for this predefined steps and there no choice I -i mean,

this may give you optimal solution. But, in case of heuristics, we sometimes go about

randomly searching solution it and sometime may not give the most optimum solution.

But, beside solution of language I -i mean for the cede course I -i mean, if you can use

this term like exact algorithms and heuristics algorithms. So, there is good anther

example of algorithm heuristics to find out good D in this lecture, we give you a vey

brief that how it can be done. So, 1 that is there, so you have to go for this and then if

you said a very good D then what going to have R is going to have as few cubes as of

there that is that, you factorize that a 15 something like this.

So, you now let us take the prime number say 13 factorized such a way. So, that the

reminder is less as possible, you may you can say 6 into 2. To the divisor and the plus

reminder is 1, you have then if I -i say that, you take 5 the divisor 5, 5 as a divisor. So, it

will be 5 into 2 and the remainder will be 3.

So, in this case, if you take a very good divisor, so R will have as a literal as possible.

Now, perform the division F by the generate to this may be simple as see how is the

division can be done.

(Refer Slide Time: 40:20)

So, now you will see that also, we will see show you how the division can be done and at

same time, we also show you that, if you that taking a very good divisor in a number of

times to got to the most factors for by this will factored will be less compare, if you are

taking a bad quality division.

So, this is you will say a function, which you have to minimal a factor maxi maximally,

factor and this is the divisor x 1 plus x 2 dot x 3. Now, the points determining d will be

shown latter, that is the how you can find the good d, we see later just give you the idea

here, then for each cube of d now you will see, how it divide d, which cube of d x 1 and

x 2 x 3, we look cubes for f such that d has all the literals of f is all the literals of d has.

So, what you will do actually, for d 1 is equal to d 1 let us take the first term. Then we

see that f 1 x 1 dot x 4. So, you can represent as d 1 not x 4 right. So, this one, we are

repressive by x 1, now x 2 also has x 2 has also x 1, this is f 2. So, this is f, this is f 1, this

is f 2, this is f 3. So, what you have try to do for each cube in d, that you have this is d 1

and this is d 2.

For each cube of d 2 look for cubes of f f f j such that, f j has all the literals d i that

means, d i actually, becomes a subset equal to f i. So, if you see in this case I -i mean you

can factorize f i by d i. So, in this case f i, x 1 is common. So, you can write next d 1 x 4,

f is f dot is x 2 dot x 3. So, x 1 is basically d i d 1. So, you can write d 1 d i. So, write the

d 1 as this one, that is one is the term you are using. So, d are the d 1 is the cube of the

divisor using using d 1 an we x 4 because, first 1 make you x 4.

And the second these 2 and the second term x 1 is common, so x 2 and x 3. So, now, So,

this is the last term you see f 3 and this f 3 is x 2 dot x3 dot x 4 and this x 1 is no

common here. So, you you just cannot do anything with it, now here the next term d 2 is

x 2 x dot x 3. So, we get you see, x 1 x 4 in f 1, you cannot doing anything. So, if on you

cannot do anything f 2 use a 3 x 2 x 3 and a this one is x 2 x 3.

So, can usually represent x 1 d 2 because d 2 is this one. So, this is the case and also see

that, x 2 dot x 3 4. So, in this case d 2 dot x 3. So, we will do be nothing, but x 1 and x 4,

because, in this case x 1 and in the final case into a is d 3 x 3 x 4 also, this is what sorry,

this is 4. D 2 is nothing, but x 2 dot x 3 so this x 2 dot x 3. So, this is x 4. So, this d 2 is x

3 dot x 4. So, is small type is d 2 not x 3 and this d 2 x 3.

So, in this case we are having x 1 and x 2. So, it may be noted that, x 4 multiplies d 4 and

d 1 in d 2. So, actually then you take a intersection of this. So, you get x 4. So, you will

find out that x 4, basically multiplies both the d 1 and d 2. So, we can use factored this

one x 4 is the common factor for the whole thing. So, you can write in it this way. So,

you will write x 4 a you just factorize to it x 4 is equal to x 1 to dot x 3 x 1 x 2 x 3 will

reminder, so how you get x 4.

So, what do you have basically, done you have taken the first cube of d 1 and find out the

common terms. There is only factored the terms in n, which are, which were possible

then I -i have taken x 2 dot x 3. Similarly I i have done the same thing for f 1 f 2 dot f 3

then, I found out that, which is the common factor. So, in this I -i have found out that x 4

is literal, which is common. So, if we taking out x 4, we find out this expression, so this

one is becoming is your reminder this one x 1 x 2, this one this was is your divisor and

this one is your quotient.

(Refer Slide Time: 43:59)

So, this is the simple way I -i can actually go about factorizing a term or dividing a term.

So, if another example same lyrics and same f and now d 1 divisor is change. So, this is

the x 1 and x 2. So, for d 1 equal to x 1, we get x 3 and x 4 right, because if we a in this

case of you can cut this x 1, you get x 3 and this x 1, if you cut you will get x 4 over

here. So, these 3 terms there is no x 1 x 1 v d 1 is x 2 and x 4, similarly if you consider

the this x 2 term. So, in this case mean next will not get anything.

So, in this case, if you cut x 2, you will get x 3, in this case, if you cut x 3 x 4, you will

get x 1. So, we to x 3 and 4 x 5 will be no over. So, in this case if we I -i v d 1 and v d 2

try to find out the common term. So, we will find that x 3 and x 4 both are common. So,

in this case you can have a factor like x 3 and x 4 is the factor, because common thing is

both over here and and you find out the x 1 x will be there and this is the case. So,

reminder in this case is x 5.

So, from the ever that was the good division is determine, the division processes is there

is state forward, you take a term from here, find out what are the common, where you

can actually have a factored form where you can factorize then you make v d 1 take then

that term then repeat the same term v d 2 and you keep on doing. In finally, we out what

is the common factor about, this what were were the common factor will be that can use

to factorize, this term and you can here, that the element.

But, if a good divisor is not used than both R and Q was factorized over here. So, you

can see both the example. So, I mean in this case, if you just have a look at it. So, it is x 1

x 2 dot x 3, this one and are is going to this one. So, you can find out the neither this

cube. So, this this was divisor this one is the Q and this one is R, neither Q or R here,

similarly neither this was D this is Q neither R. So, neither D neither Q NOR R can be

factorize, it gain neither in this case. So, in this case you can say that, this D and this D is

divisor were very good divisor.

But, if you are not going to get a very good divisor, then what may happen you may be

other require to factorize Q and R. So, in this case these not a good divisor then Q and R

can be factorize again, they may not be minimum Q. So, you have to do again that in

such case Q and R are to factorize again and the process is repeated till no factorization

can be done a typical algorithm is given below.

(Refer Slide Time: 46:21)

So, very simple you take a divisor so, these what is the thing, if k is not be factored, you

return F that the minimally, of already have you done these factorization algorithm, you

taken F you take a divisor you divide. That is what is the idea now D is the divisor F. So,

you have to find out the good divisor, that is very, very important. So, it is based on

heuristics algorithms. So, that we are going to just discus some of the references, you can

find out that in the fan out in the lectures.

So, I -i mean uploaded in the lectures. So, there is you can find out some good

algorithms, which can find out the how a good divisor can be obtain, but any way this is

very complex procedure. So, we are not discussing in this lecture. What just you given

idea, how you can find out some heuristic, which can determine in a good divisor.

So, now find out the good divisor, now what you do to do this division as exam as given

to the examples, if your division is good find out that this reminder and the quotient, they

cannot be again factored. But, if this is not the case then what you have to do again, you

have to factorize R again, you have to factorize Q and infect, if you not taken a very

good divisor also then again, you can able to factorize D and the process will keep on

way, but for the general cases, D is m not be factorize over again.

But, it may happen then Q and R actually, factorized but, in worst case, if you are, if you

are not a very good person at selecting D then you can use a D, which may again re

factored. So, can you keep on factoring D Q N F, you get a you give at the time where,

this expression cannot be factored again and you will find the values.

So, that is what I -i told you is given in this. So, you start with your you will find out the

good candidate. So, then you actually, divide this then you get this one. So, if can again

factorize, this Q and R and keep on doing till get factorization. So, that is the idea.

(Refer Slide Time: 48:04)

Now, we will be in the whole things some examples. So, this is the F and then this be the

D, Then if you repeated all these steps, you will find out that, this is the quotient and this

is the reminder. So, in the examples, there are not going to show again how it comes,

because it will be very easily find out found, you can very easily found out the the same

procedure first, you take x 3 and find out the terms.

Then you take x 4 and you find the D 2 then you find out what the common terms then

you then you actually, in this case x 3 plus x 4, you will find in this case, you will fin that

x 1 and x 2 for the common terms over here then.

So, it will you are a expression will be x 1 dot x 2 dots in the plus 4 and these 3 terms

like x 1 x 5 x 1 x is x term cannot included mean, these cannot be factored this divisor.

So, this is your quotient and this is your reminder, in this case, we consider this one, that

divisor is this. So, it is the reminder and the quotient is x 1 and x 2, we note that quotient

can be factorize again of this, but R can be factorize.

So, in this case you can see that, you can see this cannot be a very good divisor. So, this

is not the very good divisor, because using this divisor what happened, this quotient, you

have got the reminder. Of course, which are the factored that is the good point or the bad

point is that reminder can again be factorized it can easily factorize by use this x 1 out x

1 is can be done.

So, finally, we have 1 2 3 4 5 6 7 8 so, we have 8 literals and we reach in 2 step, because

first you get this term and then again you have to factorize R. So, so time step required 2

times and number of literals is equal to how much 1 2 3 4 5 6 7 sorry, 1 2 3 4 5 6 7 8. So,

8 literal form this. So, this what I -i have obtain.

(Refer Slide Time: 49:49)

Now, you see same F, but now we have change the factor. So, we have just try to show

you that how important D is to get a maximally factored form. So, now D is this. So,

now, if you take x 1.

So, you can easily find out that, this one will be your quotient. But, the same term and

reminder will be x 4, because you see x 1 is common over here, every time you have cut

it of so, this one will be your quotient and x 7. So, this one is your quotient, this one is

your D and this one the reminder. So, it is very obese that reminder cannot be factored D

is a good, this is D, this cannot be factored, but you can see, you can be further factored.

So, be further factorize Q, you can find out that, this one is the answer. So, in this case

how much 1 2 3 4 5 6 7. So, you have seven literals time, literal is equal to 7 and time

step is equal to 2. So, if you consider this D time step is 2 and literal is 8 S in this case

time step is to time remain save, what you have to decrease 1 literal. So, you can say

that, D equal to x 1 is a better divisor compare to x 1 x 3 plus x 4. So, they can give you

further divisor what you have see then.

(Refer Slide Time: 51:58)

What you have see is that base on divisor, what is the idea based on the divisor the time

taken 2 factorize, the function also changes and quality of function also changes, now we

take a another example, we will now D equal to 2. So, if take D equal to 2 2, you will

find out, if do that, we will find out the quotient is this and reminder is this. So, in this

case you can find out the that, after the divisor this one is the quotient and we may not

that Q can be factorize at this one R can also be factorize as this one.

So, now, with this divisor factorize, you can, you have situation. So, you can also be

factored all can also be factor. So, in this case what will happen Q could not factor sorry,

R could not be factored, but Q could be factor and in the first stage what the happen ah Q

could not be factored could be factored. So, you see depending upon this choice of

reminder, what happen what is happen in this sorry. So, depending upon the choice on

the divisor also what is happening. So, different type of situation is arising both Q and R

factored R can be factored Q can be factored and so for. If this x 2, so is the quotient.

This is the divisor in this case both can be factored. So, now, the solution is this one. So,

this is the final solution. So, in this case you have 1 2 3 4 5 6 7 8. So, you have 8 literals

and again 2 time steps. So, 8 literals and and time step is also equal to 2. So, you can say

that 2 is the bad not a good good factor now divisor, but 2 is the best divisor then x 3

plus x 4, because in x 3 plus x 4, you required 2 time step and literal is 8.

So, in this case this is the same 8 and 2 things, but here after first step, you have to

factorize both Q and R again, but if you take x 3 plus x 4 then then time, it have almost

same, but actually in the second step second step you you are factoring only R you are

not factoring Q. So, you can say that, the best divisor in this case amount the 3 is this

one. So, where we have 7 literals 2 times steps. And you need to factorize only the Q in

the same again second one x 3 plus x 4 where the literals is 8 and time is 2, but you are

factoring only R and the where most 1 is x 2. Where you have I -i mean, you have taken

time step at a 2, but you have taken factorize Q and R both and again the number of

literal uses 8.

(Refer Slide Time: 53:09)

This one is the most bad and the worst amount the divisor. So, let us take an the example.

So, we have showing different examples, that how D is very good how D is quality of the

algorithms or the flow of multilevel implementation. So, this is another F and they have

taken a factored divisor call D. So, in this case you take this D will find out that, this is

your quotient reminder is 0.

So, you have getting something like this, in this case we can call that here, D in nothing,

but D is factored because this can very well means I -i mean, because it can factorize F to

the generated R. So, this on is the case, we know that now, we can have this is actually

quotient and further factorize into this. So, maximally factored from you can find out for

this one will be x 3 plus x 4 and this for a, this is this part is actually, Q.

So, can factorize this into this. So, when we take ah this one, you get a maximally

factored form into steps having 6 literal. So, in this case 1 2 3 4 5 and 6 literals are there.

So, that is what is mean save, this is not an another example, you can say that is the type

of divisor, we want to find out the where is good divisor and bad divisor.

So, you can think that, there is very good divisor, because at least you can generate R,

which is reminder is 0, if you could reminder reminder as a 0, very good divisor, there

very good divisor. You have found out, you can fully factorization a expression

reminder, even in zero that means, there is no Q were.

So, have made a lot of saving in the implementation, now you can again find out that can

again re factored that is different story. So, if you can find out that divisor, which can

entire a divide their function without generating, you can say with a very good divisor,

because what because, you are not generate the reminder that means so, number of cubes

are reduce. So, your implementation is minimize what just like prime number, you

cannot I -i there is no divisor, which can divide the number accept number itself.

So, I -i mean obese the if this is a cannot generate to this is equal to this is equal to D,

that is a very foolish way, we will think about it. So, just like some prime number such

that, which cannot be further factorize without 1 and the number itself. Similarly, there

can be some function for you can never find out a divisor where, the reminder will be 0

accepting the function itself, but cannot the obese the this is the divisor over divisor

over, which is very well known. So, if some functions are there for you can find out the

divisor can actually, give you what do I -i say.

(Refer Slide Time: 55:30)

The minimum representation I -i mean remain remain 0, you can consider is very good

divisor. Now, you see so, this was her 6 literals. This case now in this case, now if you

take same F now you consider x 1 plus x 2 as a divisor. So, we will find out that, this is

the quotient and this is the reminder.

So, now you have seen that x 1 plus x 2 is not a factor. But, in this case x 2 plus x 4 was

a factor. So, what happens now in this case, this is the quotient and this is reminder. So,

if you represent F. So, are going to get something like this.

So, in this case, you can find out that would can be factorized and finally, we have this

solution. In this case, these the divisor so, maximum factored form is I -i mean 2 literal 8

literals and time step is 2. So, it is 1 2 3 4 5 6 7 and 8 literals and time step is 2, in this

case the number of literal is 6, 1 2 3 4 5 6. So, that is why.

(Refer Slide Time: 56:22)

If you find out a divisor actually, which is which can generate the reminder equal to 0,

you consider that is the very good kind of divisor. So, no we have seen that, once you

can find out the very good divisor and the problem is very simple. So, what to have to do

that is this algorithm step you have already seen that is in simple in a step seen that what

do you do you just generate the first cubes of their over here.

Factorize the Q, which have then by D 1 D 2 D 3 and then final common factors

common literals and then you again generate generate the quotient and the reminder

again, you try to find out whether the quotient and the reminder factored and you keep on

doing it to reach a state where, nothing can be factorized over again.

So, that is what is going to tell you that, we have gone for the most factorize, but the

most difficult problem is that, how can you given a function, how can you find out the

good divisor. So, that is a very difficult problem and we are not going to elaborate in

this, but we can say that, there are lot of exact algorithm lot of heuristics, which can you

can find out, if you if you you can find out the references given in the hand out that, you

can read, but you can find that why can be very complex, because if see that for the 2

level implementation, there was a some some solutions.

The solutions spaces are is what set of the primes. That is solution space, but in this case

you have you have staring of the subset prime, because you have to go minimal level S O

P minimization minimize form, that is the subset of prime and from there you have to

find out that what what I -i mean go for a multilevel factors form, that is there again.

Now, just I -i mean I -i mean not going in elaborate, but just think of that, if if subset

sum that is given some prime implement, you have to find out subset of them, that is

number prime implement, that is solution space, but in this case you can see different

depending upon different type of factors. You can see that a different type representation

that are coming up.

So, you can see you just realize and think how the be the solution space, the solution

space in case multilevel implementation is much much larger in the 2 level

implementation two level implementation is nothing but, the power set of the prime , but

in this case what is happening, it is it given as different type of factor.

So, factor can be n where n number of different, you can generate a factor and for each

of the factor, you can find out, you can have just see how different factorization

procedure . So, you can think of the solution bases extremely extremely large compare to

2 level implementation. So, that is why the algorithm of the heuristics to find out the

good divisor is also a very difficult problem.

So, whenever the solution spaces small then your algorithm are simple, where are the

solutions spaces are very very high, the algorithms are complex, that is why finding out a

good divisor is a very difficult problem and we are nit going to elaborate, in this lecture

what you can think very simple heuristics can be a divisor is the single Q, you can that I -

i always take divisor single, Q then x plus y or something like this and involves literals

that are occur then in most of the cubes of f.

(Refer Slide Time: 59:05)

So, just go for this, if you just give you example I -i want to find out a divisor of this one.

So, I -i will not take divisor like x 1 plus x 2 or something like that, I -i will this either x

1 or x 2 sum up to x 6 1 of them, now which I -i will take I -i will take the literal, which

is common to most of that like in this case 1 2. So, x 1 is in 2 places x 3 is 1 2 3 x 1 is x 3

is in 3 different places. X 5 is in 1 2 4 is x 5 is a 5 cubes.

Similarly, x 6 is in 1. So, you can say that I -i will take x 5 as a because x 1 appearing

over here a very over here up to the over here over here. So, I -i take x 5 then going to

get as x 1 plus x 3 sorry, x 1 x 3. I –i will get x 1 x 3 plus x 1 x 4 x 2 x 3 x 2 x 4 and so,

for. So, that is if I -i take the literal, which id the common in most of cubes then, I -i can

able I -i can able to reduce, I -i mean factorize the expression in a most.

(Refer Slide Time: 01:00:04)

So, this is the one very simple heuristic way, you can think, but exact algorithms and

heuristics are more complex. So, a with this, we actually closing this discussion and we

are coming to question answer session.

(Refer Slide Time: 01:00:17)

So, we just say that given example, we show that the Boolean divisor procedure better

solution have at prime and that is very important now, till, now we discussion what to

have found of we have discus that, all we have done is basically nothing. But, we are all

talking about different type of expression divisor etcetera all are all all algebraic divisor.

So, what are the idea that algebraic divisor, that you have 2 terms, we should not x 1

here, on 1 that is the idea and if you allow this then, you will become a Boolean division

and infect, Boolean be give you better solution, then algebraic division, but Boolean, but

Boolean divisor was more complex then algebraic divisor, that is we have not gone into

this, but just to give you the idea.

(Refer Slide Time: 01:00:56)

That, but is the case. So, if this is your some f, then three equivalent factor forms. First is

literal then second 1 11 literals and third one has 8 literals, this is the first, this is second

and this is the, so you can observe that, these 2 are algebraic and the third one is a

Boolean, because you can see x 1 x 1 is common over here.

So, I -i mean this is a very common topics and we are not going into details into this

course, but the idea is that, you can easily you can you can verify, if you are, if you go in

to the depth that Boolean expression I -i mean, Boolean factor from R, further minimize

the that to algebraic form. But algebraic division and algebraic is minimization of the

factorization is a more complex procedure.

So, we have not gone into depth of this, that is why we just given you overview and

infect multilevel implementation is a very complex topic. So, in this this course, we have

tried to give you the exposure in a very minimal way just to give you an idea just that

given a 2 level form what is the problem and how we can go and approach in a multiple

level implementation, we have not gone any amount of depth by any means in this multi

level implementation.

So, there is lot of words, which is been done and a lot of word still is going on in

multilevel implementation, that is what is practically, require for implementation, this is

type of the eyes for multilevel implementation, we have given you and the we have also

show you that algebraic with factorization, if you compare with Boolean Boolean gives a

much better solution. But, again this is a very more complex though, you have not even

discussion how to do Boolean level Boolean level factorization for the in that case. So,

with this, we close this lecture.

(Refer Slide Time: 01:02:26)

And also we come to the end of the design module. So, in the design module, what we

have seen, we have seen that, we start of the design specification and from design

specification, we go for high level synthesis. For high level synthesis, we go for Boolean

synthesis, first you for multilevel sorry, first you for 2 level implementation and if is the

sequence circuit then you have go for state minimization and state encoding and then you

go for minimization, if is combinational circuit, you can directly go for 2 level

minimization.

And after the 2 level minimization is done, we go for multiple implementations and the

final at least for the gate level implementation goes on for what you can say fabric

location what.

What before you go on a fabrication, we have to se that all the transformation, we have

done, specification to high level deigns, high level design to Boolean level design 2 level

from 2 level to multiple level then it should be all equivalent. That is there should not be

any changes specification in between this stuff.

So, the next module, we are going to see formal verification take needs that will that is

the design A is equivalent design B, design B equivalent in design C. So, you can say

that with the final design is out, you can claim that final design is same as is equivalent

to my specification or they needs my specification. So, in the next module of the course

at the this course is design and tests, in the next module, we will see about verification.

Thank you.

