
Advanced Distributed Systems

Professor Smruti R. Sarangi

Department of Computer Science and Engineering

Indian Institute of Technology, Delhi

Lecture 24

Condor: Distributed Batch Processing System

(Refer Slide Time: 0:18)

In this lecture we will discuss the Condor distributed job processing system. So, we will first

go through an overview of what a distributed job management or a distributed batch processing

system is and then we will discuss the main modules of Condor and the detailed operation.

(Refer Slide Time: 0:40)

So, the idea was that towards the mid-80s, the power of distributed computing was realized.

So, it was realized that a single machine, regardless of the size of the machine, be it a small

machine like a desktop computer or a large machine like a mainframe, or even a supercomputer.

That is not sufficient for most problems. And also, even if it is sufficient for a very restricted

set of problems, and it is not very flexible.

So, the idea was to create a cluster of machines where, so these could be normal regular

machines in the lab aggregate their computing power. Such that they could outperform

supercomputers. So, that was the idea. So, what led to this is that by the end of the late 80s, and

early 90s, many households, particularly in the US and Europe started to have desktop

computers. So, these computers were not used at nighttime.

So, the idea was that, why not, we take over these computing resources when they are not being

used, and kind of have a large distributed system of all of these comprising all of these small

desktop machines that each of the individual users had. So, essentially a cluster of desktops

that did not everybody had, which people had in their homes, and then a take a large piece of

work divided into small chunks, and distribute these small chunks of work across these

machines.

So, this did sound to be a very interesting idea. The reason being that there was a huge amount

of compute capacity that was not being utilized. And this could be utilized for problems that

did not require the kind of synchronization, which a typical, job on a supercomputer would

require. And that would be something like inverting a matrix or solving a large differential

equation. So, for those supercomputers are better. But for other jobs, where, for example, we

need to run a large simulation with a large number of parameters.

And if they and let us say that we want to run just 100 copies of the same simulation with

different parameters, we can distribute one copy on each desktop. So, there was a need for a

middleware. So, middleware is kind of like a runtime system over the operating system to

integrate all of these third-party computers.

So, idea was to integrate computers with different types of hardware and software, provide

consistency and reliability guarantees. So, why consistency? Because we need to have some

idea of how these jobs execute. So, they may not be fully serializable. But at least, there should

be some rules to the game.

And second, we need some reliability in the sense, we should be able to trust the results that

we get in terms of their correctness, as well as the security and trust aspect, where essentially,

if a job is running on a remote desktop, it should not be possible for the job to hack into the

desktop. And it should not be possible for the desktop to tamper with the job.

So, these are third party jobs. So, pretty much let us say that today if I put my desktop on this

desktop cloud. So, this thing has a new name, also is called the desktop as a service. But let us

say it is a compute cloud. So, if I like to put my desktop on a compute cloud, then the idea is

that jobs then can run on my desktop. And but the thing is that I will not know which job is

running on my desktop.

So, it is possible that it might try to corrupt my system or the converse is also possible where I

have a malicious intent, and I am trying to corrupt that job. So, for both the cases security and

trust are required. Additionally, if we have a large distributed system of machines, we need

some notion of fairness. Otherwise, we will not be able to guarantee the timely completion of

these jobs. And second, it should be easy to efficiently run such large-scale distributed jobs.

So, the first such system to actually propose this was the Condor project, which initially was

born in the University of Wisconsin, and later on, as it kind of grew. So, now, condor is like an

open-source project. So, this is something that anybody can download and run. So, as long as

there is a cluster of machines, we can install Condor on all of them. And to any outside user,

they would actually appear, the Cluster would actually appear to be a single machine.

(Refer Slide Time: 5:55)

So, what are the advantages of Condor? Well, the main advantage is flexibility. Because we

can take a lot of desktop power that we are getting. And then we can sort of integrate all of it

into one single large cluster machine. So, much of this also started with the SeTI project. So,

the SeTI project was a project to find out if extra-terrestrial life exists. So, for this, a lot of

information that was actually captured by telescopes had to be analyzed to find traces of life

outside Earth.

So, the SeTI project required the combination capacity that it needed. That was not available

formally. So, that is the reason these desktops were taken over, where people pretty much

contributed compute power to a cloud. And the cloud then ran jobs on them. So, what did users

get in return? Well, they got some money. So, in all such cases, these need not be fully

philanthropic altruistic activities. If I am contributing compute power, I get some money in

return. And that kind of allows me to sort of invest in more compute power and contribute.

So, in this case, communities grow naturally. And so, they build a bond of trust with other

communities such that we have a large cluster of machines with a large amount of compute

power, and this compute power can be used to support the needs of a very large community

where each job can be very different and the jobs will be heterogeneous, but on this large set

of machines, it would be possible to run them.

So, condor has some basic principles, the first is that we leave the owner of the computing

resource in control. Otherwise, owners would not come forward to actually donate their

machines to the pond or cloud. So, it should be possible for an owner for example, to terminate

the remote job and do work of his own, the system should be fault tolerant, which means that

if one machine crashes another machine can take over.

And also, it would be possible to lend and borrow concepts in this in the design of Condor. So,

many concepts have been lent and borrowed from other disciplines, particularly from parallel

computing, distributed computing, to actually create the system and also, traditional things like

Semantic web as we will see.

(Refer Slide Time: 8:46)

So, Condor provides a method for a set of users to of course, submit their jobs. So, this is done

in batch mode. These are not interactive jobs, they are batch jobs, which means that they run

and whenever they are done, the user gets an email that the job is done. So, Condor provides

job management mechanisms. This means that it provides methods to manage a running job.

Scheduling policies, which tell the user how the job should actually be run. Resource

monitoring, which is to monitor the resources, how much they are being used, and finally

manage the resources. So, Condor is not really one large pool, but it is actually a collection of

several small pools or machines.

So, we can have one small pool of let us say the IIT Delhi machines, another pool of another

machines. So, we can aggregate all of these and make one large virtual pool of machines. So,

in this there are two important concepts that I would like to mention one is called planning and

the other is scheduling.

So, planning is when we take a large job. So, let us say a large job requires 200 machines. And

we decide that we will take 100 machines from here, 50 machines from here and 50 machines

from here. So, this is broadly planning.

Scheduling is the next phase for each of these individual clusters, decides when and how to run

these jobs, because they will have local jobs as well. So, when and how to run these jobs such

that a given metric is maximized or minimized.

(Refer Slide Time: 10:42)

So, this is a broad idea that we have a large cloud of compute nodes called the Condor cloud.

And in each one of them, we have individual users who submit jobs, the cloud executes jobs,

and then finally, the results are given back to the individual machines.

(Refer Slide Time: 11:05)

So, now, we will discuss the main modules of Condor. So, the main modules in a condor system

are as follows. So, we have a ClassAds system. So, this is a language that lets users specify the

type of the job. So, this can include the type of the machine that is required the operating

system, the kind of software environment that is required, and the type of the resource that is

offered by the cloud.

So, this is used to specify both the job as well as the resource and any kind of a matching policy

because after all jobs have to be matched with resources. Then we have an execution engine,

which executes the user’s jobs. So, it respects the constraints of it of a job. So, job may not be

a single program, but it can be a set of programs, where the output of one program feeds into

the input of the other program.

So, in this case, the execution engine respects all of that, and it runs the jobs on a large grid of

machines. So, typically, the constraints are shown are represented using a directed acyclic

graph a DAG. Furthermore, a great feature of condor is that it allows job checkpoint and

migration. What this basically means is that let us say that on a machine a job is running. After

that in the middle of so let us say this the execution time of a job. In the middle of a job, the

user presses a key, which means the user is now active, the owner of the desktop is active.

In this case, we checkpoint the state of the job. And we migrate the job to another machine,

where it starts at exactly the same point in its execution, and continues to execute. So, the

checkpoint and migration is a key feature of Condor, which allows even running jobs to

seamlessly migrate between machines. Furthermore, we will define something called a remote

sandbox, which kind of dictates how jobs run on remote machines. Well, let us defer this

discussion to a later slide.

(Refer Slide Time: 13:29)

So, the structure of the Condor system, the Condor kernel is like this, we have the user. Then

we have the problem solver. So, the problem solver is essentially a software module, which

takes the jobs, the structure of the jobs that are represented as a directed acyclic graph and for

each job. So, the job is given to a condor agent. So, the agent registers itself with a matchmaker,

which tries to pair it with a resource.

So, the role of the matchmaker share is to pair a job with a resource. And once a job gets the

kind of resource that it requires from the Condor system with the help of the matchmaker. So,

after that, what happens is that the agent starts a process called shadow. So, the job of the

shadow is to help the sandbox on the resource run the job. So, we will discuss this in detail

later, how the shadow and the sandbox actually talk to each other how they collaborate.

And then the job runs on the sandbox on the resource. So, we can think of the sandbox as a

secure software environment that runs the job. So, that is the main aim, the Sandbox is a secure

software environment to run the job. Well, the job cannot maliciously access the resources, the

access features of the resource, and the resource cannot harm the job. So, it is a two-way

sandbox.

(Refer Slide Time: 15:31)

So, the flow of actions in condor is like this, the user submits a job to the DAGMan manager.

It parses the DAG structure of jobs. And sands, then a job one after the other to an agent. The

agent stores the jobs in persistent storage and find resources to run them. Agents and resources

periodically send messages to a dedicated matchmaker whose job is to essentially pair jobs and

resources it pairs agents with resources.

Once the matchmaker reports a match, the agent checks with a resource if it is still available.

Because it is possible that the resource might not be available because the local user on it is

using it. So, then the agent spawns a process called a shadow to handle the execution of the

job. The resource creates a sandbox to run the job.

(Refer Slide Time: 16:35)

So, we will not discuss Condor pools. So, pools are machines, pools are either agents or

resources can get together and form a condor pool. So, Condor pool is a pool of agents or of

resources. Every pool has a matchmaker. So, resource can enforce some policies regarding

what kind of resources offered and the matchmaker can have additional policies. And so, the

default is of course, that we get a machine in the same pool. But in the mid-90s, Condor started

expanding this to get machines from remote pools as well.

(Refer Slide Time: 17:21)

So, there were two approaches gateway flocking and direct flocking, which was to get resources

from remote pool. So, in gateway flocking, every pool will have a gateway that can interact

with gateways of other remote pools. So, if this is a pool this will have a gateway that can

interact with the gateway of other remote pools.

And if let us say in this pool, there is an idle machine. Then what can happen is a gateway can

let other gateways know about idle machine. So, if there is a request from within the pool, this

can be forwarded to the other pool that has an idle machine. And then the idle machine can be

assigned to one of the jobs in this pool. So, this way, we can forward information among pools.

Direct flocking is when an agent reports itself to multiple matchmakers. It does not actually

have to go through a gateway. So, it can directly report itself to multiple matchmakers in

different pools, which means it effectively joins multiple pools and it gets resources from them.

(Refer Slide Time: 19:00)

So, direct flocking and gateway flocking used to be the main approaches used to be the

mainstay of Condor till quite some time. Then in the late nineties, the Globus toolkit for

managing grids of computers emerged. So, it was a very standard architecture to interconnect

clusters and grids. It provided trust security and secure file access and transfer services using

the gram protocol, the grid resource access and management protocol.

So, then, along with direct flocking, which is when a agent kind of registers with multiple

matchmakers in different pools, and gateway flocking where each tool has its gateway. So,

essentially agent contacts its local gateway and then the local gateway contacts remote

gateways. A new an extension to Condor was added where the underlying architecture was

actually the Globus cloud architecture.

And the Globus cloud kind of took care, kind of virtualized the entire cloud system for Condor,

such that Condor saw the entire cloud as one large cluster of machines, and the notion of pools

kind of went away, because the entire cloud became a single pool.

(Refer Slide Time: 20:26)

So, with these three flocking approaches in mind, let us now come to matchmaking in Condor.

So, the matchmaking is that both agents as well as resources, advertise their details using small

snippets of text called Class Ads. So, the main aim is to pair agents and resources based on

their Class Ads.

And then once there is a match, the agent goes and claims the resource. So, it is of course

possible that in the time being the resources may be dead, the resources may be busy. So, of

course, availability needs to be checked. And if the resource is not available, then the

matchmaker needs to be contacted once again.

(Refer Slide Time: 21:19)

So, a typical Class Ads would look something like this. So, my type, the type of the ad, so this

is a job, it could be resource as well. The target type, the machine is the requirements of the

machine are like this, the other operating system should be Linux, let us say, the rank is equal

to the amount of memory we need. So, we will discuss the rank in some detail. So, the rank is

pretty much a function that is used to evaluate the suitability of a resource.

So, of course, the rank can be defined in different ways. So, the way that this Class Ads is

defining the rank of a machine for a job is memory times 10,000 plus the KFlops. So, flop is

number of floating-point operations per second. So, this is essentially specifying a function of

how a job would assess a resource. So, then, so these are all the requirements of what kind of

a machine we need to run on.

And if there are multiple machines that match the requirements, then of course, we use the rank

function and find the suitability of machines. And of course, we will choose the machine that

is the most suitable. The command is the command that is that will be executed on the remote

machine. So, in this case, it is abc dot exe directory, abc, and the owner so owner is, who is the

owner of the job.

So, owner of the job is myself, this is essentially my user ID. So, as mentioned requirements

indicate the constraints. The rank is like an objective function of the match that we can use to

assess how well the match is. And among the available resources, of course, a matrix the

matchmaker chooses the resource with the highest rank.

(Refer Slide Time: 23:27)

So, further enhancements, future enhancements were made to matchmaking. Support was

added for writing custom Java and C modules. For even more sophisticated matchmaking.

Also, Gang matching was allowed. Which means that so many a times, we might want to run

a program like MATLAB, that comes with a license on a given machine. So, in this case, we

will like to co-allocate the MATLAB license and the machine.

So, this kind of coallocation of more than one resource was is known as gang matching. So,

suppose this was added because many times in a cluster, we like to run jobs that use software

with certain licensing requirements. Or it is possible that certain licenses are available on

certain machines, and they are not available on certain machines. So, gang matching kinds of

allows that.

Then the support for collections was added, which provides some support for saving Class Ads

such that even if the matchmaker crashes, we can retrieve the Class Ads and do a matching

once the matchmaker comes up. And then there was set matching where instead of matching a

single Class Ads, we can match a set of Class Ads and also named references were added where

essentially one Class Ads can refer to another Class Ads which means that if there is some

information in this Class Ads, this is automatically being used by the one that it is, the one that

is referring to it.

(Refer Slide Time: 25:19)

So, now, what, how far have we gone? Well, we have discussed the broad philosophy of

Condor, we have discussed Condor pools. So, in this we have discussed direct flocking,

gateway flocking and we have discussed running Condor on a great with its own middleware,

which was essentially running Condor on the Globus toolkit. Now, we will discuss the problem

solver, which is essentially the core execution part of condor.

(Refer Slide Time: 25:55)

So, condor has a master worker mode, where there is one master process that directs the work

of many worker processes. So, the master process on each machine has a work list think of this

as a work queue. So, this maintains a record of all outstanding work all the jobs that need to be

performed. Then, we have a tracking module which keeps track of all the remote processes and

it alerts them work items.

So, the weights the master worker model of condor is essentially there is one Condor master

server. And there are like many of these worker kind of slave servers. So, in this master worker

model or this master slave model, so, I should rather maybe use the master worker model, that

is what the people refers to. So, the master maintains a work list a work queue of what work

needs to be done.

And within this work list, these are assigned to different workers and a tracking module tracks,

how far the workers are progressed. And a steering module examines the results generated by

the workers, modifies the workplace and coordinates with condor. So, here the idea is that

workers can of course die at any time, they can crash at any time, the tracking module then

returns the kind of undone work back to the work list.

So, I start the work can be assigned to another worker. So, of course, in such cases, we assume

that the job is side effect free, which means that it has not access to other resources. For

example, if a job had to send a message on the network, and we are not allowed to send two

copies of the message. Now, assume that the job kind of dies midway, if it is restarted, another

worker will again send the same set of network messages, which will cause a problem.

Hence, to ensure that there are no third parties affected, we typically prefer side effect free jobs,

even though Condor can execute jobs with side effects. So, but then of course, a higher layer,

a higher application layer has to take care of the problems, then the tracking module can also

replicate work items. Again, for side effect free jobs, where if let us say a given work item is

crucial.

For example, it is possible that the DAG of jobs is like this, that job J 1 needs to be done first

and then we can start J 2, J 3, J 4 and so on. So, given the criticality of J 1, it might be a good

idea to run multiple copies of J 1 and use the results of that copy which completed first. So,

this will speed up the entire system, because J 1 is on the critical path.

(Refer Slide Time: 29:03)

So, the jobs are specified as a DAG directed acyclic graph like, you run J 1 first and then J 2,

then J 3. And then of course, you might have that okay, after J 3, you run J 4, but that J 4, but

for J 4 to run you have to finish J 2 and J 3 first.

So, in this way, you can specify a directed acyclic graph of jobs and Condor will respect those

constraints. And furthermore, pre and post processing of jobs is supported, which means that

if I have a given job, I can run a small program before the job and a small program after the

job. So, what do they do? Well, the first program essentially ensures that the inputs for the job

are in order.

And the second program for post processing that ensures that the outputs are in order. It also

verifies pre and post, it also verifies whether the job executed correctly or not. If it has not

executed correctly, then the job needs to be put back in the Condor queue such that it executes

once again. Now, assume that a given job fails assume that J 1 works correctly, J 2 works

correctly, but J 3 does not run. So, because J 3 does not run J 4 also does not start. So, it is

possible for Condor to print rescue DAG, which in this case, would only be J 3 and J 4.

Given that the jobs J 1 and J 2 have executed, if there is some problem in J 3, the user can fix

it, and just reissue J 3 and J 4. And that would complete the entire execution. So, it is possible

to have a retry command where these two jobs can be executed once again. So, in this case, we

do not have to run the entire DAG, we only have to run a part of it, which are the jobs J 3 and

J 4. So, a distributed system with, in a condor like system would allow us to do that as long as

of course, the jobs are side effect free. So, that will allow us to run the jobs as many times as

required.

(Refer Slide Time: 31:43)

So, now a little bit of the details of how exactly the process works? So, we will now discuss

the shadow and the sandbox. So, recall that the agent creates a shadow process. And the

resource creates a sandbox. So, what is the shadow useful for? So well, when a job is specified?

It might refer to a host of things, it might refer to a host of input files, to some network

connections, database connections, and anything else that is a function of the environment,

including environment variables.

So, to transport the entire environment, from here to there can be very expensive. It is like

moving an entire container or an entire virtual machine from an agent to a resource. And this

is very expensive, it is like a full operating system move. So, this is actually not a very good

idea. So, instead, what happens is a resource creates a sandbox, and the job runs within the

sandbox.

So, whenever the job makes a system call, which means that it let us say it opens a file, the

sandbox intercepts the system call, sends the system called to the shadow. So, let us say given

file foo or txt, the job wants to read the 10th byte. Then this information is sent to the shadow.

The shadow opens foo dot txt, it reads a 10th byte and sense the 10th byte back to the sandbox.

So, the sandbox creates a kind of a proxy environment for the job.

It needs to ensure the job cannot harm the host. Well, this is automatically insured, because all

the system calls for the job are intercepted and sent to the shadow. So, this is ensured, it needs

to ensure that the host cannot harm the job. So, this is also ensured in the sense that the main

way that the host actually harms is by giving it wrong arguments for system calls. But since

the results come from the shadow, and the sandbox also has checks of its own. And

additionally, modern sandboxes also run on secure trusted hardware, it is not really possible

for the host to harm the job and the host tries something like this it will get detected.

So, the long and short of this is that the host will not be able to tamper with the job. So, then,

in some cases, well it is actually in most cases, we need to marshal and un marshal IO data. So,

marshalling basically means sending data from the sandbox to the shadow. So, basically when

we send data, the process of kind of making it, machine independent is marshalling. And then

again reading the data and deciphering it for the shadow is unmarshalling.

So, in this case, what happens is that the data is sent for every system call, the shadow executes

the system call, and it sends it back. So, of course, modern versions of the Condor, we can, we

can split this a set of system calls. So, instead of for every system call, we can say that look,

the shadow will run, all the system calls for the file, maybe the database connection, these will

run on the shadow.

And the sandbox can run other system calls which do not really require the shadow for example,

get time. So, get time we are okay. If it gets a time on the sandbox for example, or maybe send

or receive a message on the network. Even that also, we are okay subject to some limitations

with these can run on the sandbox.

So, of course, as I said, modern avatars of Condor allow you to write very, very flexible scripts,

and also change the source code of Condor to ensure that a certain subset of system calls

actually get handled by the shadow. And the remaining subset get handled by the sandbox.

(Refer Slide Time: 36:34)

So, the universe, what is the universe again? Well, the universe is a matching sandbox and

shadow pair. And in this case, of course, the universe has a certain set of rules. So, what I just

described is the standard universe, so you can have other universes as well. And we will discuss

that. In this case, of course, the idea is that the entire environment of the shadow is not sent to

the sandbox. Instead, the sandbox traps system calls. So, we will see how and it sends them to

the shadow the shadow executes them and sends the results back.

(Refer Slide Time: 37:14)

So, the standard universe which is for Unix environment, the typical system calls that are

actually, where actually data transfer takes place is IO. So, the shadow run IO server, it takes

requests from the running job satisfies the request to the home file system, returns the data. So,

the way that we actually do it, the simplest possible way, is that at compile time, user code is

linked with Condor libraries.

So, let us say a certain file command like open or F write or seek or something, read, write and

seek, which are typical file access system calls. What happens is that all the library calls that

call the system calls they here or something like for example, let us say F scanner, say F scan

F in C allows us to read a line from a file. So, when I link a file with the Condor library, it kind

of provides a wrapper on F scanner.

So, the rapper actually ensures that there is a call to the shadow, the shadow executes that and

it returns the results. So, this is how we are essentially defining a kind of virtual file system

with the file system is resilient on the shadow. And every single sandbox where the job runs

via marshalling these IO arguments and getting the data back, we have essentially ensured that

even if the cloud node does not share the same file system, our job can still run.

This is very important. Because the reason being that let us say if some remote job is running

on my desktop. It should not access my files, it should access the files from where it came

from. And this mechanism precisely allows us to do that. Additionally, a standard universe will

provide support for check pointing which means that periodically, the entire state of the

process, which is registers, the memory contents are all check pointed and they can be restored.

(Refer Slide Time: 39:39)

So, then, along with the standard universe, we have a Java universe. So, why was it necessary

to create a special universe for Java code? Well, because Java code typically reads a lot of other

files like Java libraries. It would not have been a good idea to read all of the, read the contents

of all of these files over the network using the shadow and sandbox mechanism. So, instead a

Java universe kind of places all the necessary class and archive files in the class path or the job

on the remote machine as well.

So, this kind of ensures that if I have the agent over here and the resource over here for any

Java program running on the resource, if it needs any library file for standard Java functions, it

need not come to the agent, it will find them locally in the resource itself. So, Furthermore, any

kind of the so, this is clearly the biggest advantage that all of Java’s baseline boilerplate files.

All of Java’s baseline files are available at the resource, so the job does not have to come back

to the agent. That is point number one.

The other point is that we can link the same way we do in C, we can link the job with a custom

Java library. So, the Java IO interface is a wrapper on Java’s input and output streams. So, that

does the same for regular files, sends it to the agent, and the agent sends it back agent runs the

shadow, and the resource runs the sandbox. But this can be a smart interface, which can never

do authentication, pass via firewalls and so on.

(Refer Slide Time: 41:38)

Now, condor has some support for data intensive computing, where we need a lot of data for

biological scientific applications. So, we create a new resource manager called nest that has

file transfer agents. So, a new file transfer agent was added to Condor called stork that can

synchronize large file transfers. We can also use a variety of network protocols like http and

ftp.

And to smooth out very large data transfers, Condor adds a series of disk base routers that

optimize the communication with the hard disk. Also, condor has a new module called parrot

for communicating well, I would not use the word unusual, it should not be unconventional

storage devices something like flash and so on was unconventional in those days. So, that is

the why this specific word unusual was used, even though it should be unconventional.

(Refer Slide Time: 42:44)

Finally, a word about security. So, security is clearly a big issue in a distributed system in a

condor like system. Because remote job because jobs run on untrusted machines and machines

run untrusted jobs. So, condor has a secure communication library called Cedar. So, Cedar is a

wrapper on all secure technologies, like SSL, SASL, Kerberos and other protocols. So, it

ensures that any network traffic passes in an encrypted fashion.

Furthermore, for secure execution, the question is that let us say if a remote job is running on

my machine, what permissions does it have, one of the options is that at resource users are

given a very restricted login and clearly the chroot the change root feature is not there, which

means that they are kind of stuck to a part of the file system and there are a very limited number

of things that this login can do.

That is one option. But the other is that Unix, all Unix based systems including Linux support

the nobody account. So, if you look at etc slash password, you will find the nobody account.

So, nobody account is also one search extremely restrictive account that just allows us to run a

compute job and access very little of the file system. So, this is actually a default, unless we

have other mechanisms. Condor uses the nobody account. And which gives it very, very limited

and restricted permissions on the resource.

Condor can dynamically assign a user ID to a job and create one that is also possible. Or it is

possible to create a setter, create a domain of users within a group where they kind of trust each

other. So, let us say that if my friend wants to run a job on my machine, and I trust my friend,

then I can create a login for my friend on my machine or my friend can use my login or we can

have a standard network login. So, all have those combinations are possible.

And so, it depends on the level of trust. But as I said, nobody is a default. And creating a single

domain per user like a distributed group is also possible. And finally, condor has a cleanup

feature that kills all the processes. And you start from the beginning.

(Refer Slide Time: 45:28)

And so, the first description of condors, so even the condor has been around for quite some

time. But the first, nicely written description of Condor the paper that this presentation is based

on was the Condor experience published in February 2005. So, what I would like to encourage

the viewers of this video to do, is to maybe download a condor system which is freely available,

install it on their machines, and larger the cluster the better it is.

So, they will find that it is very easy to actually submit, monitor and execute a job. So, what

they can do is that they can create, see if this is the Condor cloud, the machine can submit a

job and particularly for those who run simulations, and let us say that they need to run 1000

simulations, these all can be sent to the Condor cloud. Condor will schedule and run the jobs.

After that, several post processing scripts can be run, which means the outputs of the jobs can

be taken and graphs can be plotted and then the results can be sent back to the machine. Here

also we can run a post processing script and it is possible to send an email the Job submitter to

say that look, all your jobs are done and the results are ready for you to view. So, this is

something which can increase productivity quite a bit in the sense that we do not have to

continuously poll the system to find out how far the jobs have gone.

So, we can create a large cluster install Condor on it and automatically Condor will ensure that

all the jobs correctly execute and once it is done, the user will get to know. So, this was kind

of like pre 2005 technology. So, now, in the next lecture, we will discuss something which is

far more recent. So, we will discuss the Microsoft Dryad link system, which kind of extends

this and makes it more sophisticated.

