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In this lecture, we will discuss the Voldemort project. So, the VVoldemort Project is an open-
source project. And, but it has some important modifications were made to the open-source
project to serve large scale data to LinkedIn. So, LinkedIn, as we all know, is a professional
networking site. And so, LinkedIn engineers, were working on many modifications, they
worked on Voldemort, and Voldemort later on was open source. But the important aspect of
this lecture is not to discuss Voldemort. Rather, it is to discuss modifications made to

Voldemort, for LinkedIn’s particular specific needs.
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So, we will first discuss the overview of the design, the overall structure and evaluation. So, of
course, in this case, we will rely heavily on the Amazon Dynamo paper. So, this kind of builds
on Amazon Dynamo. So, it is important that viewers take a look at the lecture on Amazon
dynamo, which is there in this lecture series is there in this playlist. But that is a very important
prerequisite for this. Because without understanding the dynamics of Dynamo, they will not be

able to follow this paper.
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] Data Intensive Web Sites

Many data intensive sites contain the following features:
@ People you may know ...
@ Items you may like (recommendations)
o Relationships between pairs of people

o Linkedin (135 million users) features many more such rela-
tionships

Three phases : data collection, processing, serving
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So, many data intensive sites contain the following features. So, | will discuss a few features
of LinkedIn by actually showing you my LinkedIn site. So, this site that you see over here is
my LinkedIn site. And that is me. So, LinkedIn, of course, does a lot of things like we have

some news over here regarding Coronavirus, and so on and all the posts on my site.

So, I would like to take you to my network. And this is the way that my network looks now.
So, the most important thing, one of the key things that LinkedIn actually does, is that it
suggests a name of people, a lot of people that | may know, | might know. And this is actually

the way that | make connections.

So, let us say that suggests a lot of people that | may possibly know. And in that so | can
essentially look through them and then | can make connections. So how does it know them?
Well, it is kind of mind my behavior. So, from my behavior, it has some idea of the kind of
people that | like to connect with. For example, 1 work on cybersecurity.
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So, it shows me cybersecurity people. And also, | work in computer architecture. So, it is
showing me Intel’s site, | read sources, just look at how much LinkedIn tracks my activity. So,
| read economic news quite a bit. So, the economic times shows up over here. | work on
multicore computing, multicore shows up over here, 1 am from 11T Kharagpur, IIT Kharagpur
shows up over here. And | also mentored some startups. So, | love startups also shows up over
here. So it is like my entire personality is reflected over here. So, find all of this data, LinkedIn

had to do a lot of data mining. So, this is the people you may know.
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Another thing that LinkedIn actually does is that it does something called collaborative
filtering. So, let me go to the website of my friend, Partha Dutta, who is also a very acclaimed
researcher in distributed systems. So, incidentally, he also works at LinkedIn. And the
important thing is to look at something on the right, that people also viewed.

So, this is also telling me that people who have seen Partha Dutta site have also viewed other
similar people. And so, these are all of his connections, so | might want to connect with them.
So, this is a collaborative filtering. You can think of it this way, that it is also telling me that,

others have also viewed Partha Dutta, and | might want to view them.
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And the key behind all of this is, of course, the VVoldemort project, which is a distributed
database. It is a key value store. Similar to the other key value stores that we have actually
seen. The it is open source. So, the source code of this project is available on GitHub. And this
source code can be used. We can make several configuration changes Voldemort has in

memory caching, replication, partitioning all of that.

So, what we will see is how was this made LinkedIn friendly? For the two things that I
discussed? Which was that, how is my network managed? In a sense? How does LinkedIn
suggest that I connect with new people? And also, how are my contacts managed? Let us say
if | were to go to a contact, how does it show me that who were all the other people who have
been viewing my contact. So, given that | have seen this, let me go back to the slide that | was

showing over here.

(Refer Slide Time: 5:43)
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And let us restart the presentation. So, now that you have seen that LinkedIn makes a lot of
recommendations. So, Amazon also does that. So, Amazon suggests items that 1 may buy,
LinkedIn suggests people that I may connect with, it looks at relationships between pairs of
people.

So, as of the date of publication of this paper, which was quite a while ago, we had 135 million
LinkedIn users. Now, of course, we will have much more. And also, we will have many, many
relationships among these people. And these relationships have to be mined. So, we have to
collect the data, we have to process the data. So, all of this data about mean is to be collected.

So, as you just saw, everything that I do, via LinkedIn is kind of tracked.



And by that LinkedIn has an idea of what is it that | like, what is it that that dislike, so the fact
that I like economic news, maybe my wife does not know, but LinkedIn knows. So, this is to
the extent that online sites have an idea about us, which is okay, in the modern world. And that
is how they make recommendations to me, which means there is a huge amount of data

collection, all of this data is processed.

And when | open the site, all of this data is served to me. And I can quickly see, so of course,
all three of these tasks are not happening at the same time. Instead, they are happening at
different points in time. And that is the wonderful part of this. And that is why LinkedIn is such
a successful site, such a successful professional networking site. And as you have just seen, |

use it a lot. And I love using it.

And the reason is that a lot of information is given to me regarding what I should read, who |
should connect with, what are their connections, what is the relationship between the

connections, | kind of get to see all of that.
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So, Voldemort is a key value system. It is now open source, LinkedIn uses it. But VVoldemort
is used by several other sites. It is used by eHarmony, which is a very common matchmaking
site in the US. Even Nokia also used to use Voldemort, | am not sure about it right now. So,
Voldemort has an internal Hadoop engine, which is a MapReduce engine, which processes all

the data in LinkedIn data store.

And it essentially creates a read only database that VVoldemort uses. So, what is the key idea?
Well, the key idea is that outside the Voldemort system, we have a Hadoop system that takes



in all the information, processes it, makes it ready, and creates a kind of a read only version of

data. Gives it to Voldemort such that VVoldemort can serve it to customers.

So, what we actually need is we need a quick update system, where Voldemort can quickly
read whatever the Hadoop system is generating for it. And we need load balancing, we do not
want any server to get overloaded with data, which has been a constant concern throughout the

designs of this course.

So, the main aim over here, so if you would see our last lecture was on Facebook’s photo
storage. So, the photo storage was mostly read only data. But this data is even more read only
in the sense that it is not modified in the sense that | cannot go and let us say modify the list of
recommendations that LinkedIn is making. In fact, nobody can, only LinkedIn can. So, all of

this data is totally read only.

So, what happens is that the Hadoop system produces a tranche of data and the entire data is
sort of bulk loaded into Voldemort. And this and all of this data is read only. And so, the all of
this data is read only, so it comes into VVoldemort. And we need to ensure that this is much

faster than existing solutions.

An existing solution, the default solution is a MySQL database. And LinkedIn system is
reasonably faster twice as fast as MySQL. So, we load 4 terabytes of new data every day and

so, that was the date of publication of the paper. And nowadays, it must be much more.

(Refer Slide Time: 10:45)
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So, there are two MySQL solutions. So, MySQL has two native data storage formats, MyISAM
and InnoDB. So, MyISAM is a compact on disk data structure. So, it creates an index after
loading the data file. So, the even though the MyISAM system is reasonably fast, and it can be
used for this purpose, the main problem is that it locks the complete table during the process

of loading.

So, this process of locking the entire data set unnecessarily causes a disruption in the quality
of service and this is something that is clearly not desirable. So, this is not something that you
would like the other option is InnoDB. So, InnoDB supports far more fine-grained row level
locking.

So, it is possible to maybe read some data and whatever we are reading and updating only those
rows can be locked. The main problem is a rather slow process, it also requires a lot of disk
space. The main reason being that since rows are being accessed kind of individually, we need

a lot of disk space to actually store all the indexing data structures.

So, here also there is a overhead of locking. And in InnoDB, there is an overhead of, excessive
slowdown because of indexing. So, then Yahoo has a PNUTS system, where CPUs are shared
between the data loading modules and the data serving modules. So, even though this sounds
is a good idea, in the sense that we can have a very flexible structure, where there are some
data loaders, and there are some data servers, it reduces the performance as a whole. So, the
LinkedIn engineers did evaluate all of these solutions. And then they came up with a system of

their own.

(Refer Slide Time: 12:56)
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So, the overall structure is like this, that VVoldemort cluster contains multiple nodes. And a
physical host in the multiple nodes. So, these are like virtual nodes in chord or virtual nodes in
Dynamo. And a physical host can run multiple nodes. Each node has a given number of stores

or database tables. And each stores some information.

So, what is the information? Well, if | saw, let us say that for a given member ID, which is me
if it is recommending a couple of LinkedIn groups, for example, then it can store the list of
recommended LinkedIn groups, the recommended Group IDs, and also for each group ID it
can store a description. And so, then the attributes of a store can be the replication factor on

how many physical machines is a store actually replicated? The size of a read write Quorum?

So, | am deliberately going fast on this, because read quorum, write quorum, we have all
discussed in great detail when we were discussing the other projects like percolator and
dynamo, where the read write quorum, where the basic idea was discussed. And recall that if
R + W > N, where R is the size of the read quorum, W is the size of the write quorum, and N

is the number of replicated notes.

So, what do we do? Well, the baseline is that this uses a DHT similar to dynamo so on almost
all of these cases, a DHT is used. Of course, we have replication in the sense that it is a chord
like system, but it is a one hop DHT, and every node is assigned to N of its successors subject

to the successors being on different machines.

And within the successors, we call it a preference list. Again, harkens back to Dynamo. So, |
would request the readers to take a look at Dynamo. And of course, R + W > N. So, for
transferring data we use this data needs to be serialized, which means that any object has to be



converted into equivalent text. So, we use XML or JSON. And also, for transferring textual
data, we use compression. The storage engines can either be Berkeley DB, which is optimized

for small files, or a traditional MySQL database on the store.

(Refer Slide Time: 15:40)
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So, the idea here is also similar to Dynamo and that we have a client API. So, how does this
work? Well so we have these VVoldemort clusters within LinkedIn. And the client is not really
the browser, but the client is essentially also a LinkedIn node, which is rendering a page for

me.

So, the client APl would essentially send a request to another network client or a network
server, which would access the storage engine, return all the versions, serialize and return as
versions. And of course, the clients need to do a conflict resolution, if there are multiple
versions. So, since conflict resolution we discussed in great detail in the lectures on CODA and

Dynamo. So, | am not going over it.
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So, let us now look at the routing. So, the routing module deals with two things partitioning
and replication. So, partitioning is the way in which we actually partition the hash space and
divide it among the nodes. And the replication is how a given data is replicated among the
nodes on the DHT. Let us say in the DHT. So, what we do is that if you would recall, we had
a scheme in Dynamo, where we assigned tokens, and it splits the hashing into equal sized

partitions.

So, we use exactly the same scheme over here, where we take the hash ring and | may split it
into equal sized partitions, then what we do is we map the partitions to the nodes. So, each key,
so the moment that, so we have any data, any member ID, or anything, we want to locate on

the DHT. Well, we do the same thing. Same idea of hashing, and we map it to a preference list.



So, the preference list will be approved will be a preference list of partitions. So, we can say
that look, if the key is mapped over here, on the DHT, we will have a set of partitions, a set of
partitions that are kind of like the preference list of the key. So, of course, there will be a
primary owner, which can be just the immediate clockwise successor of the key that can be the

primary owner of the key, the main partition.

And when we walk kind of clockwise, we will have N - 1 subsequent partition whose main job
is to store the replicas. So, this if you would see, this is a very standard architecture that we
have been following in this entire lecture series, where we take a DHT we partition it, so this
is a very Dynamo like fixed partitioning.

Where a key simply mapped to a partition which is clockwise successor and the N - 1
subsequent partitions subject to the fact that they are on separate physical nodes or we can also
say that they are on separate data centers for added reliability. So, this is the broad idea,
Dynamo used exactly the same thing. And the storage layer is pluggable. So, we have

traditional get input functions.

We also have block read functions in the sense that reading data, we support a streaming read.
And the main aim here is that, we need to support primarily read only operations. So, we will
see what modifications had to be done to an otherwise vanilla VVoldemort system. So, a system

is called a vanilla system and when you are using its base version, but in this case, we are not.

So, we are somehow modifying Voldemort to take in data that Hadoop is generating. So, a
baseline Hadoop system kind of generates all the data, does all the data mining does everything
and kind of bulk loads it into VVoldemort, and VVoldemort has its DHT which serves as the data.
And also, some administrative functions like adding deleting nodes, et cetera, all of them also

have to be supported within this setup.
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So, there are two kinds of routing. So, this was also we are looking at one hop routing. So, here
we make a small departure from Amazon Dynamo. So, we support client-side routing, which
means that a client is a machine that is lying outside the DHT. So, the client can directly send
a message to the partition to the servers or the partition for this specific key, but of course, in

that case, the client needs access to all the routing tables.

So, then in that case, rather the what was our traditional routing algorithm, it was that we
contact a given server that contacts a few more servers, and then kind of the request jumps,
jumps, jJumps and reaches the right server. In one hop routing, also, in Dynamo, we contact one

server, over here, then it does a single hop insensate over here.

But in client-side routing, the client has all the routing information. The traditional approach is
of course server-side routing where the server makes all the routing decisions. And this option

is also supported in Voldemort, both are supported, both client side as well as server side.
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So, now let us so as far as what we have seen up till now, it is very similar to a traditional
vanilla DHT system, client-side routing was new, but most of it is otherwise the same. So, let
us look at the storage part. So, first, we will start with the shortcomings of MySQL and

Berkeley database.

So, here we are talking of bulk loading of data, where a Hadoop cluster kind of all night
processes the data that is there in LinkedIn. And once the data is in a nicely processed form, all
of it needs to be loaded into Voldemort. So, for this model, having a long sequence of put
requests is not the right solution, not the correct solution. So, what? So, the MySQL uses a B

plus tree that needs to be updated multiple times, that is rather inefficient.



An alternative solution might be that we maintain a separate server that maintains a copy of the
database, we first populate that copy of the database, and we switch to the new copy
instantaneously, so we maintain 2 copies. So, this has several disadvantages as well. The first
is that we are doubling the number of resources, the amount of resources, there is an overhead

of bulk copy of creating the indices, managing the indices, all of that is there.

So, let us look at another alternative solution, which is we run the Hadoop system to generate
the indices offline. So, in this case, you have one problem was you generate indices, well, you
also generate the indices offline. And then you load in the indices as well. This is fine, it is
doable that is maybe the way that many smaller systems actually operate.

But here we need a lot of additional resources and Hadoop along with kind of processing
LinkedIn data has to do a lot of work for the relational database. So, what we saw also in the
case of Facebook systems is that we will not actually use a relational database management
system, this is not something that we will do as a primary source of data. This is not what we
will do instead, we will create a custom solution, which is anyway the job of a distributed
storage engine.
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So, what are the requirements? Well, the requirements are that we will minimize the
performance overhead of live requests, any requests that we get, regardless of whether the
previous Hadoop data is uploading or not, we will minimize the performance overhead, we will
of course have fault tolerance, which you always have because of replicas will make the system

scale in the sense we will be able to add more servers as and when required.



Also, there is a possibility that there might be errors in whatever Hadoop computes. So, it is
possible that if Hadoop is giving us a lot of data, the data might actually be invalid. There might
be errors and then you know, we might have to jump all of it. So, in this case, we need to have
a fast rollback capability to a previous version. That is because for a system as large as

LinkedIn, which kind of relies a lot on the relationships that it has computed.

If let us say there is a bug in the code, or if let us say that there is a lot of superfluous data, we
do not want to actually end up with a bad state. So, what we would instead like to do is that we
would like to roll back to a previous version, where the data might be slightly stale, but it is
known to be correct. And if you see most of us also do not update our contact list that

frequently, so it will still kind of work.

Also, our system should be able to handle large datasets, say any kind of a Voldemort’s system
should, in a sense, provide all 4 of these requirements which any distributed system should also
ideally provide. And but additional so, scaling fault tolerance, ability to handle large datasets,
we have seen that. The two aspects that are kind of new over here is the first the fast rollback
capability. In the sense we have not seen that before.

So, for example, we did not see a rollback in let us say Facebook photos for example, but in
this case, the entire computed data is very sensitive. So, just in case, we feel that there is some
error, we would like to roll back to a safe previous version. And also, we would like to minimize
the performance overhead of live requests, because we are never really bulk loaded, read only
data, which we are doing right here right now.
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Let us now go through the exact sequence of steps that typical LinkedIn load would follow.
So, the first step is like this. So, the first step is like this, that a driver program would send a
message to the HDFS, the Hadoop file system to trigger a build. So, this is the first step. So,
the Hadoop plus HDFS systems, they would essentially tree start the build.

And so, what does it mean? Well, what it means is that they will fetch all the raw data, all the
LinkedIn data, they have access to it. So, all the LinkedIn data, the Hadoop system, will take

and process and from the data, it will figure out the list of recommendations that you just saw.

It will figure out the list of let us say if | access a certain person’s profile, it will also provide
the names of other LinkedIn members that whose profile | could go to so on and so forth. So,
the driver program sends a message to the VVoldemort cluster, asking it to trigger a fetch. The
Voldemort clusters a once it is a once the entire data has been generated. The Voldemort cluster
initiates a parallel fetch from all the Hadoop nodes. So, pretty much we have a set of distributed
Hadoop nodes. And similarly, we have a VVoldemort cluster. And essentially, we get a parallel,

it triggers a parallel fetch.

So, we have a lot of parallel 10 that keeps happening at this time. And then once all the data
has been brought into the VVoldemort cluster, each of the nodes will actually have 2 versions, a
new version and the old version. So, atomically, the driver program will send a message to the
Voldemort cluster to trigger a swap and the VVoldemort cluster would execute the swap, which
means atomically replace it will have a pointer. So, the pointer was, let us say previously
proposed pointing to the old version of the data, it will immediately start pointing to the new

version of the data, which is what we wanted.

So, it is an instantaneous swap. So, we load the data in the background, we do not have to lock
anything there is no disruption in service and instantaneously the pointers switch from the old

version to the new version.
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The storage format well, so what we discussed? So, we did discuss on a previous slide a storage
format that could be used by a MySQL implementation. So, in this case, we are not discussing
the MySQL implementation of Voldemort but a custom implementation. So, Voldemort is Java
based and it uses the OS, particularly the page cache of the OS to manage its memory. And it
assumes that the OS is doing a good job. So, what we do is that we the input data destined for
a node is split into multiple chunk buckets. And each chunk bucket is split into multiple chunk

sets. So, what is a chunk bucket? Well chunk, for a given partition.

So, of course, for a given partition here is a primary partition not the secondary one. So, for a
given partition all the data that maps to a given node, we essentially take all of that and we
create a chunk bucket. And of course, we will have multiple such chunk buckets for each
replica. So, we can think about this. So, the chunk bucket can be uniquely identified, or can be
uniquely named, with the idea of the partition. And the idea of the replica, which replica it is

storing.

So, each chunk set. So, within a chunk bucket, of course, we have a chunk sets. And each chunk
set, of course stores some data, so we will see what the data is. But in this case, each chunk set
is organized similar to Facebook’s photo storage, where we have a data file. And so, data where

we have a data file and an index file.

Fair, of course, the spirit of the design is that the index file will be there in memory, and the
data file will be there in disk. And the naming convention that we follow over here is that

naming convention will be the partition ID, the replica ID. So, partition is essentially a range



of the hash space for which, so any key that falls within the range of the hash space, we are

storing the data for it. And the replica ID, so which replica is this.

And so, this partition, and replica will essentially pointers to the chunk bucket. And within the
chunk bucket, we will of course have chunk sets. So, then we get the chunk set ID. And then
of course, the last will be either the data, data file or the index file. So, the entry in the index
file will of course be the top 8 bytes or the MD5 signature of the data. And so basically, the

index file will have two things.

So, the first set will have two fields, the first field will be that given the data that we are trying
to access, what we do is we compute an MD5 signature of its. So, first MD5 is another hashing
algorithm, similar to what we have seen similar to SHAL that chord uses. So, we use the top 8
bytes of it.

And then once we are able to find the index entry, we use a 32 bit offset into the data file,
similar to what Facebook’s photo storage used to do. So, what do we do? Well, what we do is
that we search through the index file, till we find the entry that we are interested in. This will
be the top 8 bytes of the MD5 signature. And from this, we find a 4-byte offset into the data
file.

Now, that at this point, | have kept the discussion reasonably independent of LinkedIn. This is
because Voldemort is a generic system. And so, till now, | have not introduced any LinkedIn

specific things. That is the reason what | have maintained is the 8 bytes MD5 signature.

And, of course, this is the MD5 signature of the key. So, previously, what we were doing is
that we were taking the data of the key and computing in SHAL, instead of SHA1 that we have
used in all the DHT that we have seen up till now. We use another hashing algorithm, which
does the same thing.

So, what does the DHT do? What does the DHT does is given a key it gives us the value. How
do we do that? Well, we compute the hash of a key and we find the node that stores it. How
did we compute the hash? Well, we use the SHA1 signature, instead of SHAL. In this case, we
just use MD5 that does the same thing with MD5 has some better properties with regards to
uniformity. That is the reason it is used. And of course, we use the top 8 bytes of if not all the
bytes. And then we locate this on the index file inside a given chunk set, of course, and that
points us to the data file. so, the main aim over here is that given a key, we would like to go to
the right partition.



And then that is the first thing and we would essentially route ourselves to the node that
contains the partition. Within the partition, we will, for a given replica ID, we will try to find
the chunk set ID. And in the chunk set ID, again, we will have an index file and a data file.
And here we will use, we will not use SHA1 signature, but the MD5 signature to essentially

locate ourselves in the index file. And then there will be a pointer into the data file.
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So, it is possible that we can have hash collisions in the data file. So, we will have a number of
collided tuples. So, the data file additionally will store a list of collided tuples that will store
the number of key value pairs that have collided with a given key value. And the list of collided

tuples will be stored at the end of the data file.
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So, how do we generate chunk sets? Well, so that is the main idea that the input will be the
chunk sets per bucket, the cluster topology, the definitions of where the stores are into HDFS.
So, we will have a mapper that maps that emits the upper 8 bytes. So, the MD5 key along with
some more data. So, this will be the node ID, the partition ID, the replica ID, the key and the

value.

So, the job of the matter is that when the HDFS system is generating data, it will generate data
in key value pairs. So, we will discuss the exact semantics of what is the key and what is the
value in the context of LinkedIn in latest slides. But for the time being, let us assume that it is

a key value pair.

So, what we do is that the job of the mapper is to take a key and a value computer 75 Key and
map it to a given node partition. So, essentially map it to a set of replicas. So, first map it to a
node. And then from the node, we will find the partition that is the on and off, then we will find

a set of replicas, store them in those replica servers for that particular key value.

So, the partitioner, what does it do? Well, it routes data to the correct reducer, based on a chunk
set ID, what is a reducer? A reducer further processes the data. So, recall that we are doing a
MapReduce kind of computation. So, for every chunk set ID we first extract all the relevant
raw data from HDFS, then what the reducer does is that it processes all of that data and stores
it in the node ID that we have computed in the past. Say every reducer, let us call the reducer

a dedicated process is responsible for only one chunk set.



So, what Hadoop would do is it would sort the inputs, all the inputs based on the keys, and each
Voldemort data, each VVoldemort node, each node is Voldemort, is a directory in the baseline
HDFS file system. And we have a separate file for every chunk set. So, essentially, for every
chunk set, we have a separate file, and we generate that in Hadoop. And that contains all the

key value pairs that we would be interested in.
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So, given that given store is represented by a directory, which we saw in the last sentence over
here, that every store, every Voldemort node, which is essentially a store is represented by a
directory. This allows us to store versions very easily in the sense that every version of a store

will have a unique directory.



So, we can say that let us say for a given store, this is version 1, for the given store this is
version 2. So, the current version of a store would point to the right directory using a symbolic
link. So, which is very easy. So, let us say that for given store S that will just be a symbolic
link in the file system. It will previously be pointing to version 1 will make it stop pointing to
version 1, will make it start pointing to version 2.

So, for moving to a new version, what we will do is we will get a read write lock on the previous
version’s directory, will close all the files, will open new files in a new directory, map them to
memory and then switch to symbolic link. And so, basically it is important that when we switch

the symbolic link for the new directory, all the files are already map to memory.
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Data Loading, how does it work? Well, that driver program that we have that triggers a Hadoop
job to create a new version. Once the new version has been created, so what does this mean?
Well, the new version over here would essentially create different chunk sets per chunk bucket.
Once all of that has been created, and pretty much for every chunk bucket, we store it in a

directory, in the directory or multiple files, where each file is a chunk set.

Once we have done that, the Voldemort nodes pull these directories into the local file system.
And then atomically, do a swap as we are mentioned. So, in the version of LinkedIn that

corresponded to this paper, this was a very, very fast operation.

And so, which was this the swap process, this was a very fast operation, it took around 0.05
milliseconds. So, which is 50 microseconds to actually do the swap. And this happened,
atomical.
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Now, a little bit of search and load balancing. So, the retrieval goes like this, that we calculate
the MD?5 hash of the key. And from that, we generate the ID of the primary partition. If we are
going to a replica, then we can find the ID of the replica. And the idea of the chunk set, which
are set to be the first 4 bits of MD5 key from that we access the machine on the DHT and we

find the junk set index file.

From the chunk set index file, we locate the values within the chunk set data file. So, how do
we do that? So, in an index file, let us say that based on the bits from the MD5 hash, all the
keys are stored. So, one option is that we do a binary search. So, if we do a binary search, it
will take us all around login time. This further might involve multiple discrete is a part of this
is stored on disk, what we can instead do is we can perform an interpolation search, which

means that we take a look at the keys.

And based on that since they are in sorted order, we make an approximate guess of maybe the
keys lie in this range. Once we go to that range, we again make an approximate guess and keep
on trying to find (())(42:54) in the range. So, interpolation search is faster in the sense, it is
faster than binary search is O(log(log(N)))). But of course, the search is probabilistic. In the
sense it is a probabilistic random algorithm, which kind of relies on an expected distribution of

the keys.
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Now, for rebalancing and schema upgrades so well, we might want to change the schema of
the chunks or the chunk sets. So, to do that, we will actually use version bits with every JSON
file. So, JSON is the textual as is the text format is similar to XML. It is a text format in which
data gets transferred between Hadoop and Voldemort.

So, every JSON file will have some version bits to indicate the specific schema that it is using
in this meta data. And also, for rebalancing to handle any additional pressure on the nodes. We
can dynamically add partitions, we can create a plan for moving partitions and the replicas to

new nodes.

And also, we can start moving the partitions and lazily propagate information about the
temporary topologies. So, that also can be done. And so, all of this kind of support the elasticity
of the server farm, in the sense that as we keep on adding more servers, our system gradually

keeps on growing.
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So, the experimental setup, well, we had a simulated data set. The keys were random 1024-
byte strings. So, in an actual LinkedIn system, it may not be this way, the key can actually be
my member ID. So, my member ID, Srsarangi, that can be my LinkedIn key. So, what
Voldemort would do is if it would like to fetch all the recommendations, so the value would be
all the people that I know, all the people that I should know, all the LinkedIn recommendations,

this can be the key, and this can be the value.

Alternatively, let us see if you visit my profile. So, then the key again will be my user ID, and
the profile will be see and let us say on the side, when you get the list of people that have also
visited my profile, that could be the value. But for the sake of this experiment, the keys were

just random 1024-byte strings.

Baseline Linux system was used with 8 cores, 24 GB RAM. And the number of nodes was set
to 25, with roughly 940 Giga Bytes data size per node, 123 stores any replication factor of 2.
In a sense, each data item was replicated on 2 servers. The size of the store data did vary, it had
a very wide variance from 700 kilobytes to 4.15 terabytes. And the maximum number of store

swapes per day was set to 76.
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1= _minutes (for 125 GB). Results are not shown beyond 125
| LJ{HGB. e
‘ o For Voldemort, the build time increases linearly from 0 to
¢ 40 mins.

@ Read latency (y axis) vs time since swap in minutes (x axis)

(e The MySQL median ney reduces from 32ms (1
I min) to 2ms (180 mins)
o The interpolated and binary values for Voldemort reduce
from 2ms to 0.1 ms (same range) )
' 20% fu!w
NPTEL
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So, what was observed is that the building time as we increase the file size from 1 GB to 1700
GB. If let us say | were to use a MySQL database, the build time for MySQL would increase
linearly from O till 350 minutes or 125 gigabytes. Henceforth, the overhead of storing
something in MySQL, in terms of calculating the index structures and so on is so high, that it

becomes an order of magnitude slower than VVoldemort.

But for Voldemort, even with 1700 gigabytes, within 40 minutes, the entire data can be
generated as well as stored in Voldemort’s format. So, of course, when we are comparing
between MySQL and Voldemort, the inherent build time is the same. But to bring it to my
SQL’s format, which means to create the indexing data structures, it actually takes a very long
time. In VVoldemort, we do not need that much of time, because essentially, we are partitioning
all this.

So, let us look at it in a different way. If we are creating a billion key value pairs, and you are
storing them in MySQL. MySQL will have to create a very large indexing structure, which
takes time. In this case, what we are doing is we are kind of partitioning the keys based on the
hash of the key, we are doing a hash space partition.

And for every partition, we are essentially treating that as a chunk set, and we are creating a
small file for it within the store. This is much faster. So, we will see Voldemort’s internal
system is much faster. The Read latency versus the time swap well, for MySQL, the median
read latency reduces from 30 milliseconds to 2 milliseconds, mainly because most of this data

comes into the cache.



For both interpolated and binary searching these values for Voldemort reduced from 2
milliseconds to 0.1 millisecond. So, Voldemort is still within the same range still 20X Faster,
which is expected. Given that it has the small index structures for the small data files, instead
of one large index structure for the entire database. So, the 20X speed up here is kind of
expected.
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Evaluation

| Queries Per Second

@ For the same 100 GB dataset, the throughput (queries per
second) was varied and the latency was measured.

@ For MySQL the latency increased from 1.7 ms (100 gps)
to 3.3 ms (420 qps). The rate followed increased steeply
after 300 gps

@ Voldemort's latency increased from 1.2 ms (100 qgps) to 3.5
ms (700 gps). .

@ Conclusion: For the same latency, Voldemort can support
twice the throughput.
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And if | were to compare the gps of the queries per second, for the same 100 gigabyte data set,
the throughput was varied and the latency was measured. For MySQL, the latency decreased

for 100 gps, it was 1.7 milliseconds. For 420 gps, it was 3, roughly 3.3 milliseconds.

In comparison, Voldemort was latency increased far more gradually. So, it will we were able
to scale it, the authors were able to scale it from 1.2 millisecond for 100 gps. Just compare the
numbers over here and here to 3.5 millisecond and 700 gps. Just compare these 2 lines, which

means that for the same latency, Voldemort can support roughly twice the throughput.
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Evaluation

| People You May Know and Collaborative Filtering

@ The latency was measured after a swap for two data sets:
People You May Know (PYMK) and Collaborative Filtering
CF)__

o PYMK : A suggested set of users that the given user may
like to establish connections with.
o CF : Profiles similar to the visited member's profile that were
17 \iewed in the same session.

@ The latency was plotted after a swap .
@ In both cases the latencies decrease sub-linearly .

o CF has a larger latency than PYMK because of the larger
A size of the value .
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Then so, this the previous experiment was on randomly generated keys and data. In this case,
it was done more with a LinkedIn specific data set. The first is people you may know, which
is something that you saw when | showed you the demo, which is a suggested set of users may
like to establish a connection with and other was collaborative filtering, which was profile

similar to the visited members profile.

The latency was plotted after a swap. In both cases, the latency is decreased sub linearly. And
CF has a larger latency than PYMK, because of the larger size of the value, but of course, this
depends on how many contacts are shown. And on the LinkedIn version. Nowadays, of course,
the people you may know, has increased to a very long list. But so, this can be this is kind of
an idiosyncrasy of the specific LinkedIn version. But the important point is that both of them,

both of these operations were really fast.
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Evaluation
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So, this brings us to an end of this lecture. This paper was published in 2012. And it has been
8 years ever since. So, in these 8 years, the number of LinkedIn users have clearly increased
by leaps and bounds. So, we need to wait for more information in terms of research papers to
understand how exactly the increase in scale has been handled.



