
Advanced Distributed System

Professor Smriti R. Sarangi

Department of Computer Science and Engineering

Indian Institute of Technology, Delhi

Lecture 20

Corona: Distributed publish-subscribe system

In this lecture, we will describe the corona publish subscribe system. So, this is an extension

of what we have been studying in the distributed with regards to distributed hash tables,

particularly this is an extension of pastry. So, we will see how to use it in this setting.

(Refer Slide Time: 0:37)

So, first we will describe the general structure of publish subscribe systems. Then we will

discuss the design of Corona and finally, we will discuss the results the evaluation results of

Corona.

(Refer Slide Time: 0:58)

So, let us first describe the broad structure of a publish subscribe system. So, the broad structure

is like this.

(Refer Slide Time: 1:11)

So, in any public subscribe system, we have a set of publishers and we have a set of subscribers.

So, let us say that this is a hypothetical space. So, all of the publishers publish topics of interest

publish stories of interest to the Pub Sub system so, what could this be? Well, this could be

something like this, that so, let us consider the stock market. So, if I am a broker, I might be

interested in let us say the stocks or 5 different companies.

So, then whenever the stocks whenever the stock of any company changes, so, some dedicated

server can just publish the updates to a pub sub system there might be a set of subscribers who

would be interested in a subset of the stocks. So, the moment that there is a change a message

will go from the Pub Sub system to the subscribers whichever subscriber is interested telling

them that look there is a change that is an update. So, in the case of a stock market, one of the

stocks that you were interested in that stock has changed. So, you would like to take a look at

the new stock price.

So, in general what happens for subscribers is that they express interest in certain topics. So,

this is notified to the Pub Sub system similarly, the publishers also the first register with the

Pub Sub system and then they publish their updates so, this can be anything this can be stock

feeds, stock prices, these can be news feeds. So, it can be anything so, if you will see one of

the most common Pub Sub systems is called an RSS system.

So, RSS or atoms you would see RSS or Atom links with popular news websites. So, in this

case what can happen is that I can take RSS feed reader like aggregator for example. And then

whenever there is an RSS update that that will be shown to me. So, whenever there is a new

news story that will be shown to me.

(Refer Slide Time: 5:01)

So, I am showing you the RSS page of Times of India is a very popular newspaper in India.

So, if you see, So, the Times of India is publishing stories with respect to many topics. So, top

stories India World Business cricket. So, if I want, I can subscribe to any of these topics, the

moment that there is a new story in let us say, for example, science, I will have a dedicated

RSS feed reader. And the dedicated RSS feed reader will show me the updated sites. So, let me

click cricket, for example.

(Refer Slide Time: 5:36)

So, what you see over here is a complicated, unreadable piece of text. But if I were to open the

same in an RSS feed reader, then actually I would nicely see all of the updates in my feed

reader, And So, a quick word about RSS if I were to show you the Wikipedia entry. So, RSS,

the full form is a really simple syndication. And So, this gives us summaries of websites where

it is one of the most popular Pub Sub systems, the websites, publish the news, and then we can

subscribe to them.

And then I will immediately get notified the moment that there is a change in a website. So,

Pub Sub systems are not just limited to RSS, even the RSS is very common. Pub Sub systems

are kind of there everywhere, where we have a publisher that posts updates. And we have a

subscriber that registers to get updates. So, we just saw a example of RSS. But of course, this

can be in any kind of system. So, how does this actually work? So, the way that this actually

works is kind of interesting. Let us go back to our journal over here.

(Refer Slide Time: 7:13)

So, the way that this works, when we can have 2 methods, the first is polling. So, in polling,

what happens is that the subscribers keep on asking the publisher, has Do you have an update,

do you have an update and the other is kind of an interrupt driven mechanism, where the

subscriber registers her IP address with the Pub Sub system. And whenever there is a change,

the subscriber is notified. So, clearly, in an interrupt driven system, the Pub Sub system has to

do the work it has to maintain state, whereas in a polling-based system, the Pub Sub system

does not maintain any state.

(Refer Slide Time: 8:11)

So, the specific motivation for Corona other specific motivation for Corona is like this, that a

polling-based methods are not very efficient, because they place a lot of load on the server. So,

Corona, provides a very scalable method and very flexible method also to disseminate updates.

So, let us say for example, I am interested in updates, sports updates. And let us say there are

a million people like me, So, all millions of us should not actually be pulling the sports site,

and actually trying to get updates. And also, so let me draw this over here. So, let us say there

is a sports site, a website, and there are millions of subscribers.

So, we have discussed 2 methods polling and interrupt based. So, the polling-based method,

the millions of subscribers go to the site and keep seeing if there is so, me new news or that

there is so, me change. And clearly this increases the load on the site. So, most cricket lovers

would actually go to the site cricket info, whenever a match is going on, and we cannot actually

see the match. And pretty much we keep on pinging it to see if there is a new status update.

And the other is that actually the server essentially notifies the update every browser is

maintained state. So, in that case, if the state changes, then each of the client browsers needs to

be notified. So, this places this also places a large load on the server. So, the main aim of

Corona is to place a degree of intermediaries over here, which minimize the load on the server,

as well as stop the clients from polling. So, the intermediaries actually pull the server, but they

minimize the load at the server.

And instead of a client's polling, they actually send messages to their clients whenever there is

an update. So, the intermediaries maintain state. So, what is Corona once again, well, if there

is a very popular website, and there are a set of clients, it is a lot of clients, then Corona is kind

of like a middle middleman sitting over here. Where each of the corona nodes maintain state.

So, it keeps track of the clients. Whenever there is an update, it disseminates the updates the

client, and the nodes themselves, keep polling the website, but they do it in such a way to

minimize the load on the website.

So, the website is happy, the intermediate layer, which is Corona that we need to study. And

of course, the clients are happy, because they quickly get the updates without, increasing the

load on the server, because otherwise the server will crash. So, this is the basic idea the core

idea of having a kind of a middle layer, So, me kind of an intermediate layer in a traditional

Pub Sub system.

(Refer Slide Time: 11:35)

So, what is Pub Sub used for? Well, it is used for content that changes frequently. And for

which we need to quickly know that the content has changed. So, these could be blogs,

Wikipedia's new sites, but most common, it is like news, I would say that is the most common

stock prices.

That is also very common sports scores, updates. Cricket, for example, all day, if a match goes

on for the entire day, for the entire day, we are getting updates. So, the current Solution is using

RSS feeds, as I just showed you on types of India's website is called micro news syndication.

And it is kind of based So, now there are many more sites that also give us short news briefs.

So, many of these sites like in shorts and So, on, give us very, short news briefs, but all of these

are based on very simple polling.

So, there is clearly a tradeoff between the latency perceived at the client and the bandwidth at

the server. So, both need to be taken care of. So, one is minimize the server loads the other is.

latency of updates. The idea here is that the load on the server of course has to be minimized.

But also, the latency of updates for each client even that also has to be reduced.

(Refer Slide Time: 13:42)

So, what are the contemporary approaches? The contemporary approaches is that So, me

content providers impose a rate limit on the amount of bandwidth per IP address the number

of IP addresses that can connect at the same time or a range of IP addresses. So, service can

also ask the client to stop polling or change their polling intervals. So, that is why many of the

popular news sites like including types of India or anything else that has a large viewership,

So, actually they go via intermediaries. So, one of the most popular intermediaries is actually

a provider called Akamai.

So, what Akamai does is that it essentially sits between Some very popular websites and the

clients. So, whenever a client browser actually points to Some very popular website, it

essentially hits an Akamai node. And his job was Akamai node to collect updates from these

websites and give it to the client browsers. So, of course this process is hidden from us. So, as

a client browser, we do not get to see it. But it is kind of still happening. That Akamai with sits

in the middle that actually does it for us, which is that getting the updates latest updates from

the server and giving them to the clients.

So, Coronas aim is Something very similar. So, of course, Akamai is a proprietary Solution,

Corona is in academia. So, it manages the service bandwidth efficiently stays within limits, and

gives the clients the best possible update latency. So, of course, for clients, you can think of

this as Something which can either be pulling or interrupt, but the relationship between the

content aggregator or the provider like Akamai or corona, and the website is a purely polling

based relationship.

(Refer Slide Time: 15:48)

So, how did the corona system which was done way back in the 90s? How did that actually

work? So, users subscribed by sending instant messages to a registered Corona user ID. So, of

course, instant messages are there everywhere. So, we have a lot of instant messaging protocols

like Google Talk, and so, on, like Skype and Google and we a lot of instant messaging

platforms. Also, we have the Software called game in Linux, which kind of aggregates all of

them. So, they send an instant message to a Corona user ID. Corona is a set of nodes on the

cloud, that monitor is set of channels.

So, essentially, every website or every content provider is called a channel. So, essentially, any

service that generates an active feed an active feed of data, an active feed of news is called a

channel. So, the corona resource allocation algorithm will essentially dedicate a set of nodes in

Corona to monitor a given channel. So, they will do that. So, they will filter out useless content.

So, this can include timestamps and advertisements and things that actually clients do not need.

And then a difference engine will extract the relevant portions that have changed. And these

differences will be distributed, the new updates will be distributed to the clients. So, this is all

that Corona does, which means it first does pulling it pulls the channel, it extracts the

difference. And then it distributes the difference to their clients.

(Refer Slide Time: 17:43)

So, no motivation. Now, we are kind of well-motivated. So, let us look at a few of the solutions

and related work. So, the solutions and related work goal goes Something like this. We have

publishers who post the content, we have subscribers who subscribe to relevant content. And

so, this process of subscribing to relevant content can be done in 2 ways. One can be topic

based, which means that publishers and subscribers are essentially connected by a set of topics.

And each topic is a channel. So, the topic for example, can be food. So, whenever there is any

update on food, it is given to the clients.

So, this is not exactly how Corona works. So, Corona is content based, where subscribers can

make queries on the well, let me take back my statement. So, Corona is actually channel based.

And in this case, the channel is like a specific website or a specific provided, say topic, of

course, can span across channels. In the sense multiple websites can be providing food. So, this

is not exactly what Corona does is a single channel is kind of a subset of topic based. content

based is again when we make Verizon the content. So, the content is not organized by topics

but it is just like raw content.

And then we essentially asked Corona to go through all the content and find the relevant ones

that are that need to be sent to the clients. So, content based is not something that Corona does.

So, what it does is actually a subset of a topic-based Pub Sub, where we get updates from

specific from a particular channel.

So, many of the research prototype Pub Sub systems require custom interfaces and they are

difficult to use. So, one great advantage of Corona was that it is kind of compatible with all

content providers. And it is rather easy to use it is based on instant messaging, instant

messaging is ubiquitous, it is available everywhere. And because of that the corona system is

extremely popular.

(Refer Slide Time: 20:31)

So, we have already discussed RSS, what is it, it is short updates of frequently changing data.

So, can be news stories, blogs, blog posts, So, they typically use an xml-based format to share

very short updates. And we can access it via HTTP over standard URLs as we just saw, and

there are dedicated RSS feed readers like aggregator. To display the data, so, then the server

informs the client when to pull and when not to pull by using a certain tag called a cloud xml

tag. So, the servers and RSS automatically or do some sort of rate control. And if let us say

there is excessive polling excessive load at the server, the server's control the rate. But in the

case of Corona, this is not required.

(Refer Slide Time: 21:37)

So, in the example of an RSS, xml snippet, So, the first mentioned the version of xml, the

version of text encoding the RSS version 2. So, this is a channel. So, the channel of course, can

have a lot of things. So, in this case, let us say I updated my homepage. So, then, So, my

homepage will come here along with a link that has been updated the description of my

homepage, and the particular items that have been updated. So, let us say I updated my teaching

page, and I updated my research page. So, both the updates, So, let us say just change the

descriptions, for example.

So, both updates the update for the teaching, as well as the update for the research, both of

them are showing up over here. also, for So, both of them that update for teaching and research.

Show up are separate items in the RSS link in the RSS snippet. And a dedicated RSS feed

reader displays these items to the reader.

(Refer Slide Time: 22:56)

Now, that we come to the design of Corona So, Corona stands for Cornell online news

aggregator. Because this was initially a project from the Cornell University, the key features of

Corona are as follows. The first is cooperative polling, which means we assign multiple nodes

to pull the same channel and share updates.

So, this is the same channel. And we are multiple notes. Then they pull the same channel and

they share the updates with a much wider base of clients. And of course, the number of nodes

that we assigned to pull the same channel depends on the popularity of the channel, the nature

of the content, the size of the content and how many clients are interested. So, this is posed as

a global optimization problem. And the honeycomb optimization toolkit is used to actually

solve it.

(Refer Slide Time: 24:20)

Corona uses a pastry-based overlay. So, recall that in pastry, what we were doing is that we

had created a large circular space, and we represented numbers in a given base. So, the first

thing that we actually did so, consider a channel. So, for each channel, let us say a channel is

uniquely identified by its URL from the URL using the SHA algorithm. We hashed it, it

produced a hash value. So, the hash value was not exactly represented in binary.

But it was represented in base b. So, recall a small clarification over here, in a pasty paper

actually the bases 2 the power b. But in the corona paper it is not 2 the power b, the convention

is that the base is b. So, we will go with this convention, the corona convention, even though

recall that in the pastry paper, the connotation of b was actually different and the actual base

was to raise to the power b. But as I said, in Corona, we will go with the convention that the

base in which the hash is being represented is not base b.

So, this hash is in base b. And for every such hash value, we can find a position for it in the

array. So, the channel can be positioned over here. So, it is expected that, the match that will

that it will have So, the nearest node So, the idea here also is the same that the closest node

with the channel that is the owner of the channel and it is expected that the level of the match

will be login to the base b, So, that is the expected value. So, if it does not happen, of course,

we will see what is done, but this is expected to be the common case.

So, what Corona actually does it or it defines a wedge around the channel, something like this,

Something like a pizza slice. So, which means it logically splits the nodes on this. So, what it

does is that for the circular ring, similar to pastry, it maps both the nodes as well as the channels,

the channels URL is hashed and mapped to the ring. And for the nodes, the IP address is hashed

and mapped to the ring.

So, once all of the ones all the nodes and channels, find that place on the ring, we can define a

wedge for a wedge is defined as a set of nodes that share a common number of prefix digits

with the channels identified. Also, if a channel has polling level l, this means that it is pulled

by all the nodes that have at least l matching prefix digits with it.

(Refer Slide Time: 27:40)

So, let us explain this in Some more detail. Because this is by far the most important concept

in Corona. So, both the channels as well as the nodes are mapped to the circle. So, let us say

that the channel is mapped over here. So, then one of the nodes will be the closest to the

channel. So, this node is made the owner of the channel. So, let us say this node over here, So,

this node is the owner of the channel. So, it is expected, the degree of the prefix match will be

login to the base b. So, of course, if it does not happen, we still find the closest on it and we

reduce the prefix match.

Now what we do is that around each channel we define a wedge So, every wedge So, wedge is

like a pizza slice. So, with every wedge, we define a polling level l. So, the polling level l

basically means that there is l matching. So, the URL matching prefix digits with the channel

ID. So, let us say that the channel ID we are representing in base 16. So, let us say something

like this. And let us assume by prefix we mean from left to right.

So, if this is the channel, then for a given node if let us say it is a part of the wedge that is

monitoring the channel. So, I will come back to what is monitoring the channel. But let us look

at this for the time being. And let us say diverges from here on. So, in this case, the polling

level is equal to the number of matching prefix digits. In this case, the number of matching

prefix digits is five. So, the polling level is five.

So, we can always define a wedge based on the polling level, lower is the polling level, the

wider is the wedge, higher is the polling level, the narrower is the wedge. And of course, once

the polling level process login to the base b, we expect the size of the wedge to be 0. So, at the

beginning, the size of the wedge will just contain just the node and the channel.

And then the polling level is expected to be login to the base b. But of course, if the channel is

very popular, we would like a lot of nodes to pull for the channel. So, what we actually do is

we partition the hash space in pastry by defining a wide wedge, how do we do this by reducing

the polling level, such that we have a wide wedge over here.

And the magic of Corona comes here, that all the nodes within this edge pool for the channel.

So, what is the magic of Corona? Well, the magic of Corona the key, key, key idea is that all

the nodes. Is that all the nodes in a wedge poll the channel. So, if you just want more nodes to

poll the channel, well, all that we have to do is that we have to reduce the polling level. Once

we reduce the polling level, we will have more nodes that it will span. And the more and the

increased number of nodes will actually come and pull the channel. And let us say the channel

loses popularity, then all that we need to do is that we need to increase the polling level, the

wedge will shrink.

So, let us say the wedge might become something like this. And then a fewer number of nodes

will poll the channel. So, on a similar line, we can have different channels or different parts of

the (())(32:34) for each of them, we will have a wedge that is defined. Also note that in this

case, wedges can be overlapping.

So, in this case, let us see if there is another channel over here, let us say something like this,

we can have, let me use a different color. Let us see if I can do that in settings. I can. So, let us

say the other channel over here, which is this channel, then essentially, I can define a wedge

for it, which would look something like this.

So, here kindly note that the 2 wedges are overlapping. So, nodes in the overlapping wedges

would actually pull for both. So, Corona does have a way of managing such conflicts in a very

indirect manner. But we will discuss that later. As long as the key concept is clear. And the key

concept over here is the concept of wedges, which are essentially partitions of the hash space.

So, the concept of wedges is the most important. And it is essentially a partition of a hash space.

And that is clearly the most important concept here that we can either have a wide wedge or a

narrow wedge, depending on the polling level, which can be changed dynamically.

So, the entire optimization problem within Corona in Corona the entire optimization problem

is to essentially figure out the wedge sizes for each other. So, that would talk about the server

load that would talk about the load on the corona nodes. And that will also determine the update

latency of the client. So, all of this related to the web size, well how So, if the web size if the

wages are very wide, this will mean that we are getting a lot of updates from the server the

update latency will be low.

(Refer Slide Time: 34:42)

So, I can maybe summarize this over here. Let us say a wide wedge. Low update latency

because a lot of nodes are pulling, and they can also pull at random intervals. So, with that,

what will happen is that, if there is any change, it will quickly get caught by one of the nodes

in the wedge, it can then distribute the updates to the rest of the nodes.

So, wild west will have a low update latency and a high server load and vice versa narrow

wedge will have a high update latency and a low server load. So, we need to find this and we

need to So, there are conflicting requirements of the update latency and server loads, we will

see how Corona solves it.

(Refer Slide Time: 35:40)

 So, we understood the notion of a wedge the common number of prefix digits, a channel has

falling level l, if it is polled by all the nodes with L matching prefix digits with it, which means

all the nodes within the wedge.

(Refer Slide Time: 35:58)

So, a little bit of math over here, let the total number of nodes be N, a channel with polling

level l will have on an average N/ 𝑏𝑙 nodes in its wedge. So, I am not proving this instead, I am

directing the viewers to the pastry paper that proves this in great detail. So, this paper has to be

read as a prerequisite before looking at before leaving this lecture. So, we will assume that this

is the this is kind of a gospel truth here. It should be τ. So, let tau be the polling interval. So,

the average detection time for updates, so, the average detection time. So, if let us say we call

it that, so, let us give it this name, det time.

So, the det time is clearly proportional to the reciprocal of this are inversely proportional to the

number of nodes in a wedge higher or the number of nodes in the wedge. So, assuming that

they are pulling at random intervals, which is the case, the detection time will be inversely

proportional to it. So, we can see it is
𝐵

𝑁

𝑙
. Furthermore, the detection time will also be

proportional to the average polling interval, which means that for every server if it is polling,

once every tau seconds detection time will be proportional to that.

And in addition, given the uniform distribution that you are assuming here, which means that

let us say that if a server is polling, and between time 0 and τ, it could have been changed, the

data could have changed at any point in time, the average latency will be
𝜏

2
 which is easy to

prove. So, this gives us the average detection time for updates to be
𝜏

2
 .

𝑏𝑙

𝑁
. And the collective

node placed on the server is clearly proportional to the size of the wedge, which is
𝑁

2𝑙. So, the

problem is to estimate the polling levels of each channel or alternatively, the sizes of the

wedges.

(Refer Slide Time: 38:17)

So, let us now discuss a few of the corona schemes. So, the first is Corona lite, which is also

the first game that comes to our mind when we think about this problem. Intuitively, this

ensures good update performance, while ensuring that the load on the servers is light. So, let

us first look at the terminology.

Let M be the number of channels. qi be the number of clients for channel i, write is important

q is for number of clients. For channel i. li is a polling level of channel i, N is the total number

of nodes. And si is a content size for channel i of course, appropriately normalized this is

important. And this is not something that the paper stresses on was important for me to stress

that it has to be appropriately normalized.

So, it is the normalized content size for channel i. So, what are we trying to do here? Well,

what we are trying to do is that we are trying to ∑ 𝑞𝑖
𝑏𝑙𝑖

𝑁

𝑀
𝑙 . So, let us see what this is. So,

𝑏𝑙𝑖

𝑁
.

Just let us just go to the previous slide. So, this is proportional to the update time the update

detection time. It is proportional to this quantity. So, we say that this is the update detection

time. And this we are kind of waiting with a number of clients for channel i.

And some moment, we want to minimize this quantity, which is the weighted sum of the update

detection time. Let me repeat that this quantity is the weighted sum of the update detection time

where the weight is the number of clients for channel i. We want to minimize that. So, what

effect will this have? Well, the effect that this will have is that for any channel that has a large

number of clients, we would like to minimize the update time as much as possible.

So, essentially, for popular channels, we want to deliver updates as quickly as possible. And

we essentially want to penalize less popular channels. So, this is of course, objective function,

what is the constraint? The constraint is, so,
𝑁

𝑏𝑙𝑖
, which is the same as this quantity over here is

essentially the expected size of the wedge. So, this is the expected size of the wedge. And this

is the size of the content of the channel. So, if I multiply the content with the size of the wedge,

this gives me an idea of the bandwidth requirement from the server to kind of supply data to

all the corona nodes.

So, this is an estimate of the bandwidth of the server. So, if I were to add up the collective

bandwidth are all the servers for all the channels. So, the collective bandwidth for all the

channels has to be less than equal to the number of clients. And this is like kind of a bandwidth

constraint. The reason that there is a bandwidth constrained is that, look, if this was equal to

the number of clients, we did not need Corona. So, one main advantage of Corona is that we

want to pretty much reduce the bandwidth at the bandwidth requirement at the server.

Because otherwise, the server could just provide it provide data to all the clients, we did not

need Corona in the first place. So, we keep this as a constraint that the normalized content size

multiplied, of course, with the size of the wedges, the sum of that across the channels should

be less than equal to the total number of clients for all the channels.

Switch, if you see from a common-sense point of view also makes sense, because this kind of

justifies Corona. If we did not have this, then pretty much, Corona, what would happen is that

in the quest of minimizing the update time, the bandwidth requirement from all the servers

would be more than what a non-Corona system would require, which will not make any sense

at all. So, given this kind of a common-sense constraint, we tried to minimize the update time.

(Refer Slide Time: 43:09)

So, here, what happens is the clients are popular channels, needless to say, gain a lot. Because

for them, the average update time gets reduced that to significantly. This nicely partitions the

bandwidth across the channels. The update performance, of course, would vary depending upon

the type of the workload because the type of the workload is not being considered here, very

explicitly. And for less popular channels, they kind of suffer in this case.

(Refer Slide Time: 43:43)

So, then we define Corona fast, which is expected to be the fastest. So, I will explain in a

second, why the terminology remains the same for M is the number of channels. qi is the

number of clients for Channel i, li is the polling level of channel i. N is the total number of

nodes. si is the content size, and T is a certain constant, it is a performance target. So, what am

I trying to do over here I am trying to minimize this quantity, what is this quantity? So, this this

quantity is exactly the same as this quantity. In this case, si is the content size, as I said

normalized, multiplied by the size of the image.

So, in this case, what I am trying to do is I am trying to minimize the bandwidth, the load placed

on the content servers and trying to minimize that subject 2. So, this is interesting, this quantity

is the same as this for Corona light, which is the. This is the weighted update time. So, this is

essentially the update time weighted by the number of clients. So, we want to keep the update

time less than a certain threshold. So, there are 2 aspects to this threshold, 1is a constant, and

the other is the total number of clients.

So, of course, the update time should be a function of the total number of clients. Because as

the number of clients increase, what that would essentially do is that that would place a higher

load. And here what we are saying is that, look, if the total number of clients are increasing,

then the system is expected to be less responsive, the update time should increase. And that is

kind of getting captured over here. And T is just a factor for normalization. But the key aim

over here is that look, I want to achieve a target update time and the target update time is should

be less than a threshold.

And the threshold is proportional to the total number of clients across all the channels, which

also it should be that is a less clients, I should expect a lower update time. And if there are a

lot of clients, I should expect a larger update. So, Corona fast is clearly the fastest when it

comes to update time. The question is why? So, an astute reader can always ask that look for

Corona lite, you try to explicitly minimize the update time. Whereas in Corona fast, you try to

minimize the bandwidth. So, from a common-sense point of view, Corona lite should give the

fastest update time when Corona fast should not. Well, that is true. But that is not the case.

In this case, we are like kind of forcing the update time to be less than a certain value. So, this

is like a knob, which is totally under our control. And we are turning the knob to a point where

update time is the lowest possible time that is possible. And in this case, the bandwidth is kind

of going free. So, we are trying to minimize it. But think of the update time has been constrained

and the bandwidth has been free.

So, we can lower this as much as we can, you know to achieve kind of any target within a

feasible range. And once we have kind of set up our mind on this, then we can of course, So,

once we set up this threshold over here, which is the constant T, which is the most important

that sets our target.

Once the target has been set, we minimize the bandwidth. So, clearly, this is totally in our

hands, we can make corona as fast as possible. Whereas in this case, the target is the bandwidth.

And then of course, space for reducing the update time is kind of constrained. That is why

Corona fast, as the name suggests, is genuinely fasted in terms of update time, as compared to

Corona lite. I would ask the viewers to go over this logic several times till they are convinced.

(Refer Slide Time: 48:25)

So, this of course bounds a total amount of network traffic that it indeed it does. So, well it

does not bound, if you would actually see it actually tries to minimize I should maybe change

this it allows us to tune the update performance per application, which is just what I said, given

an application we can fix a target. For example, for a stock market application, we might choose

a very fast update performance.

So, along with providing application, the desired level update performance, it tries to shield

web servers or spikes in load reducing the band. So, of course, the negative aspects for both of

these protocols is that both Corona lite as well as Corona fast. Do not consider the rate of

change of objects in the channel. In the sensor load the update time only makes sense in the

context of the rate of change of the object. So, the object is not changing. There is no point in

actually polling the channel. So, Corona Fair takes this into account.

(Refer Slide Time: 49:41)

So, it introduces a few additional variables. So, recall that this structure qi b and N is similar to

Corona lite qi b and N. So, this is kind of Corona lite plus plus where this is the normalized

update time qi b li N multiplied with tau which is the polling interval they should have been

there and also the polling interval can be different for different channels.

This of course, this variant of Corona does not consider, but this is something which can be

considered and the other is the update interval for channel i because for different channels, the

update intervals will be different. For example, for stock prices, the update interval will be low,

particularly when trading is happening, some stocks will be changing very quickly.

But once the stock market has closed for the day, the update interval will actually be very high

right, because the stock prices are not going to change the stock prices will only change when

the market reopens. So, any kind of a Corona polling should take this into account and the rate

of change of the content is what is coming up over here.

So, let us say that the rate of change is very high, then ui will be low. So, this constant will be

high, if this constant will be high, then essentially, we want to minimize the update time. But

let us say that we have a very, very slowly changing channel ui will be high, this fraction will

have a low value.

So, then of course, we can afford to have a high update time for the channel. And this is our

regular bandwidth constraint, which we had in Corona lite, if I were to show you, So, is the

same constant that we had over here, which is what we have over here. So, this remains the

same, the only addition is the update interval.

So, we are using 2 terms here, update interval and update time. So, update interval is a property

of the channel and the channel only. This is ui. And the update time is a time that a client

perceives between the actual update to the channel happening and the client actually seeing it,

that is the update time.

So, the update time recall the keep in mind is different concept and it is what is perceived by

the client. So, of course, it can be one criticism of this formula is that for very very slowly

changing channels to update time can be very large, we just kind of unfair. So, we are basically

giving too much importance to ui to kind of reduce the importance in ui.

What some, so, 2 other variants of Corona what they do is fair square root actually consider

the square root of this quantity to kind of temper down the effects of ui. And if you further

want to temper down the effects of ui, instead of the square root we consider the log. So, that

will further kind of reduce the effects of a large or small ui. And So, we consider the ratios of

the log.

(Refer Slide Time: 53:30)

So, as we discussed, Corona fair is similar to Corona Lite Corona fair, of course has 2 versions

where square root and corona log. It also tries to minimize the update detection time, which we

call the update time in the lecture. So, the Call Update time is different from Update Interval,

just go back to 2 slides back.

So, it minimizes the weighted update detection time with a limit on the total amount of traffic.

It also introduces a term to reduce the number of allocated servers, the date of updates is small,

which we have been calling as the update interval. Furthermore, it is possible to dampen this

term damping by considering the square root the ratios of the square roots are the logs as we

just saw over here.

(Refer Slide Time: 54:19)

So, this can be posed as a core optimization problem. So, the optimization problem, in this case

will be something like this, that we want to minimize the quantity f subject to some other

quantity being lower than the threshold. So, these can be kind of expressed as generic functions

as f and g where we want to minimize f subject to G being lower than a threshold. If fi and gi

are the performance, or the bandwidth cost of the channel at polling level li, so, it does not

matter what these are, but, for different variants of Corona, f and g will be different functions,

then we can have, you can set up an optimization problem.

And if you would see the corona paper, it proves to the problem is NP hard. But, of course, we

can find good approximations to it, where m being the number of channels N being the number

of nodes, we can find good approximations within O(M log M log N) time. Honeycomb can

do that.

(Refer Slide Time: 55:32)

So, how does honeycomb actually do it? Well, the honeycomb, what it does is that it combines

channels with similar tradeoffs, where the tradeoffs are defined as the fng functions into a

tradeoff cluster. channels with similar behavior are nodes and channels, similar behavior are

clustered. And the nodes periodically exchanged these clusters. And furthermore, nodes locally

run the honeycomb algorithm to figure out the assignment of nodes to channels. And of course,

disagreement regarding the assignment of nodes to channels can be a problem with this, of

course, does not happen.

But the key idea over here is that there is a distributed mechanism of solving the optimization

problem. So, it is not that one central site solves it. Instead, what happens is that if let us say

this is the wedge, each of the nodes individually solves the problem. And each of the nodes

individually can on its own volition increase or reduce the polling level. For example, let us

say if this node perceives that it needs to reduce its polling level then what can what it can do

is that it can reduce the polling level on volition and consider a bigger part of pastry. bigger

part of the pastry ring.

(Refer Slide Time: 57:14)

Now, some other systems management issues. So, let us just go over the entire process of

running the corona system. So, each channel in Corona hashes its contents to catch this unique

pastry key this we have seen, it is assigned an owner node the same way that pastry assigns it.

For added fault tolerance, a key is assigned to F succeeding nodes.

So, if you would recall, we had seen something very similar in Amazon dynamo, very key is

not just assigned to one node. But it is actually assigned to a series of nodes F successive nodes.

So, is that if one fails, the rest can take over. Owners receive subscriptions and send updates to

all the subscribers.

So, what are the owners do owners are the one who receive all the subscriptions, and then they

send updates to all the subscribers, subscribers typically. And also, we have cooperative

polling, which means that all the nodes within which they poll cooperatively and share updates

among each other.

So, there are three phases in cooperative polling. And this is cooperative polling, as well as

independent polling, in the sense that nodes can independently increase or decrease the web

sites. So, the first is the optimization phase, where a node applies the honeycomb-based

optimization technique to the traffic data that it has collected from the servers.

So, any change to the polling level is communicated to the peers. And of course, nodes can

change that on their own and nodes and then So, there is the maintenance phase. And then the

aggregation phase is when nodes receive trade off data from other peers. So, that again, they

can run the next round of optimization.

(Refer Slide Time: 59:23)

So, initially, the node at the owner node at level K = (log 𝑁𝑏). Polls for the channels. Any node

in the maintenance phase, which you will recall is a second phase over here might decide to

reduce the polling level to k - 1 In this case, a small wedge will form that will perform

cooperative polling. Whenever there is a change in the polling level, some nodes need to be

instructed to start or stop holding which a node will take care.

Owners will typically monitor the status of all the nodes in the wedge and aggregate all the

maintenance messages. at the end over here in the aggregation phase. whenever there is a

failure, Corona will remove the nodes from the ring and on the addition of a node, Corona will

add it to the ring is the same as pastry. And if let us say the owner fails, then the subscription

state of the owner is deleted, and a new owner will take over.

(Refer Slide Time: 60:34)

So, Corona in this case, well, first, I think it is important for me to describe the way that the

corona DAG will form. So, the way that it will form is something like this. That if I were to

consider the pastry ring, So, initially, we will have Seville other channel here and just the owner

node, it will be a very narrow wedge what will happen is this will be essentially the when the

channel is being added. So, after that, of course, the servers will be polled and the node will

get an idea of whether it should increase or decrease, holding level and aggregation and

optimization phases.

So, let us say decides to increase it is polling them. Say we decided to increase this polling

level, this is the size of the new wedge. So, this means that if the original owner was node, O,

then it will point to N1, N2, N3 which are there N s wedge. Here is the interesting part of which

might be hard for review for readers to readers or the pastry and corona papers to appreciate at

the beginning. But this is something that needs to be explained. So, what each node actually

does in pastry is that it maintains a routing table.

And in this routing table for every prefix. There are a set of nodes that match the next digit. So,

some of these nodes are kind of capped in the routing table. But the important point to note is

that these are not the only nodes that have l, prefix digits matching with their binary many more

nodes, but basically does not keep a list of all the nodes.

So, recall that this is the most important point hence I am repeating it once again, that let us

say that between the ID of the channel. So, let us say that these are all the digits in ID of the

channel. And let us say that will let us consider all the nodes. So, let me first consider the owner

node that has let us say log in matching groups.

And now let us assume that it has reduced the polling level to (𝑙𝑜𝑔𝑁 – 1). So, when it reduces

the polling level to any l, which in this case is (𝑙𝑜𝑔𝑁 – 1), it will essentially go to a node, it will

actually go to a row in its routing table. Where it will basically see that look, show me all the

nodes which have l matching prefix digits. And then depending upon the next digit, there will

be a set of nodes which will be N1, N2, N3. But recall that the list is not exhaustive. There

might be many more nodes, which also have l matching prefix digits, but which do not show

up in the routing table.

Because the routing table typically, at least in this case does not store multiple entries. Now,

assume that node N2 on its own decides to reduce the polling level to (l – 1). If it does that, it

will again point to a set of new nodes which are N4 N5. But given that N1 and N2 also match

in the first l digits they will also match in the first (l – 1) digits. So, one of them N1 is showing

up N2 routing table N2 will also point to N1. And so, what we will essentially and then again

N5 might decide to again changes polling level it might end up pointing to N3 and maybe a

few more nodes.

So, what we will actually have is that we will have a directed acyclic graph or a DAG and the

reason will have a DAG is because the nodes independently choose to either increase or

decrease the size of the polling levels. And this is what gives us a directed acyclic graph kind

of structure. And the moment N5 or N2 and N1, anybody reduced the polling level, they will

cut off edges and vertices from the DAG. So, of course, we will have an overall owner, and the

overall owner will only know its children. And N2 will know its children N5 will know its

children.

So, any update that is disseminated by the owner that pretty much and of course, any node will

also know who its parent is in the DAG. So, let us say N7 finds an update, its job is actually to

propagate the update all the way up. There can be different variants of this, but the most

common variant would be for N7 to propagate the update all the way up to the final owner.

And the final owner will then again disseminate the update to all of the child nodes So, that all

the child nodes get the update.

So, this is pretty much what is being said over here. And of course, the owner dies, a new owner

comes up, it will take control of the det, and maybe delete the subscription state or the new

owner and requests for new subscribers. So, a lot of things are possible over here.

Corona has a dedicated Difference Engine that computes the difference between different

versions of a file by polling the server, it will only sell the deltas or the differences to other

nodes in the polling wedge. Only if it sees it. it does not send the entire file only the deltas.

And each new version of a file is given a new version number.

And definitely it will share the Delta with other nodes in the wedge. And also send it back up

to the owners. This is not what i am mentioning here. This is what is mentioned of what I just

mentioned, previously a slider. So, sometimes it is possible that a node is not in a position to

determine if the current version of a site is new or old.

So, it cannot get a reliably get a timestamp from the server. Then what it does is it sends the

data to the owner, which is supposed to be a repository of all the past versions of the site. So,

the owner thinks that the timestamp is different, then it assigns a timestamp to the new version

of the site and it multicast sick.

So, essentially, the new update flows through the entire DAG. So, the owner of the wedge, the

original owner still has a lot of role to play because it kind of owns the DAG. And it also

decides if an update is new or not. It does that and also it propagates the update to all the nodes

within the DAG.

(Refer Slide Time: 67:54)

How does the user interface work, So, users need to add Corona simply as a buddy as a friend

in their instant messaging system. Subscribing or unsubscribing to a URL is as simple as just

sending a message to Corona all the subscriber messages are routed to all the nodes in the

polling wedge for that particular channel. Whenever an update is detected with the owner of

the channel, it is sent to all the subscribers through the IM system. So, here polling again is not

required. This is kind of like an interrupt driven mechanism where you have consistent

connections with the owner of the channel.

So, this kind of rates the server or maintaining the state Corona maintains the state like any

good content provider and IM systems will typically allow such kind of a peer to peer

communication with persistent network connections in something like what similar to what

Skype does.

(Refer Slide Time: 68:58)

And So, how was this entire system implemented? Well, a standard pastry bit pastry

implementation 160-bit SHA one. Of course, we have been alluding to the problem that the

size of a wedge at the beginning might be 0. Then of course, we need to adjust the sizes of the

clusters or the wedges by just reducing the polling level such that the wedge is not 0. Traditional

instant messaging systems like GAIM are used to talk to the owner establish a connection with

the owner.

So, security and trust. Well, a lot of emphasis was not given to it. We assume that all the nodes

in the corona system are trusted. And the evaluation of course happened on a large cloud of

machines on the planet lab cloud fair essentially micro news feeds were collected from real life

workloads. And the same was simulated on a Corona based environment.

(Refer Slide Time: 70:00)

So, the system had 1024 nodes and 100,000 channels. So, this is kind of a very large system

actually. So, with 100,000 channels and 1000 nodes and 5 million subscriptions, this is even

much larger than many of the commercial systems that we see. But that was also the aim to see

how large How much does it scale. The polling interval was set for 30 minutes and the

maintenance interval for 1 hour, every 1 hour. So, there was a reconfiguration, and all the

variants were compared Corona Lite, Corona Fast and Corona Fair.

(Refer Slide Time: 70:50)

So, for all the variants, what we actually get to see is that for the legacy RSS based system, for

which we are comparing against the average update detection time, So, everything here is

measured in seconds, the average updated update detection time was 900 seconds with the

average load. So, let us say the average load, let us look at that in terms of arbitrary units, that

was 50. So, Corona lite, which of course, tries to minimize the update detection time subject to

a constraint on the load.

So, that immediately brought it down to 53. And the load also remained kind of similar to 50,

so, the aim was never to increase the load beyond what a legacy RSS system would produce.

So, it brought it down 48.97 It is 53 If I were to compare Corona fast, which you have argued

that it will be faster.

So, it brought the average update detection time to 32 and the average load to 58.75. So, of

course, Corona fast is the fastest and we can see it is very fast, but it increases the load at the

service not much though Corona fair is something that considers the also the, the rate of change

of the content itself.

So, even with a moderate load, the average update detection time was very high, the reason

being that, it gives too much of emphasis to the rate of change of content to that time, but once

that was kind of tempered down, and it was kind of made fair that even slow-moving content

will at least get some servers. So, with this fair regime, with both the square root and the log

schemes, the update detection time came roughly to the same ballpark as Corona lite, albeit

with much more fairness and the load also remained very similar to the baseline RSS load.

So, what we see is that if we are looking at just straight forward update detection time we go

for Corona fast. If we are looking for fairness, as well as a reduction in the server load, the best

options are Corona fair square root and Corona Fair log.

(Refer Slide Time: 73:28)

So, the corona paper is around 14 years ago, it is a very classic paper, and almost all future Pub

Sub systems have been built on the lines of Corona So, it is kind of provided a template for

future Pub Sub systems. It was published NSDI 2006. Readers are most welcome to read the

entire paper and comment about this video.

