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Lecture 15 

Virtual synchrony, 2-phase and 3-phase commit protocols 

In this lecture, we will study about virtual synchrony and commit protocols. So the main 

idea over here is that we would like to see how to affect group communication, and that 

too reliable group communication, and how to use that to solve a very basic problem in 

distributed systems called the distributed commit problem. 
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So, first we discuss virtual synchrony. 
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So let us consider a one-to-one interaction between a client machine and a server machine. 

So it is possible that there can be faults in the middle and some of the messages may be 

dropped. So given the fact that messages can get lost, there would be a need to resend 

messages. So let us assume that the client sends a message. 

So either the unreliable network can drop the message over here, or maybe the server can 

crash or maybe the response can get dropped. So the client does not really have a 

mechanism of distinguishing between these three scenarios. So often when clients do not 

get a response within a pre-specified period, they timeout, and they send their message 

once again. 

So this is where the semantics of the server is very important. The question is that if let us 

say this is we are drawing money from a bank account, and if the message is sent, once 

again, we will have a double withdrawal which should not be allowed. So the two 

commonly used semantics that servers typically provide are At-least-once semantics and 

At-most-once semantics. 

So in At-least-once semantics, if you are sending multiple messages, which are essentially 

multiple copies of the same message, it is guaranteed that at least one of them will execute, 

but can be more. So in our bank account example, we do not, do not want this. 



We want at most once, which basically means we are fine if the transaction does not happen 

because in any case, the client has realized that something has gone wrong, if the 

transaction does happen, it should happen only once, which means that if money is being 

debited from the bank account, it should happen only once. So this is the, At-most-once 

semantics. 

So different models have to provide one of these semantics, At-most-once being the more 

common. So what clients typically do is they assign a unique serial number to every 

message which can be randomly generated. So even if they want to retransmit the message 

they keep the serial number the same. 

And so the server sees the serial number. If that message has been processed in the recent 

past, then the response is directly returned. the message is not executed once again, the 

command in the message is not executed once again. 
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So now, let us consider a slightly more sophisticated form of reliability where we actually 

create a process group. So let us first look at the kind of failures we are talking about. So 

one is a Fail-silent failure, where a process just fails without any invention. So nobody else 

actually gets to know the process has failed. 



The other is the Fail-stop failure mode. So in this case, the failure can be detected. But, so 

then something can be done. At least we know that a given process is failed. The third is 

Fail-safe. In this case, the failure is benign, which means that even if a process is failed, 

we allow it to remain fail because it will pose no harm. 

So what we actually do is we have a replicated state machine model which many consensus 

protocols notably, Raft also use. So what we do is that we actually replicate the servers. 

Each server has a state machine, which represents the internal logic of the server. So we 

have a centralized dispatcher. 

Any client request, it is sent to the dispatcher. What the dispatcher does is that it creates 

multiple copies of it and sends it to the different servers. And all of them apply the 

command in the message to their internal state machine. So one advantage is that just in 

case, let us say two of these servers fail, at least this server can keep the entire system 

running. So this adds a layer of redundancy to a distributed system, such that it is immune 

to failures. 

So this is done by replicating the state across the server processes and given the same user 

input, so same user input is given to all the servers, and they pretty much compute their 

results, which are supposed to be the same in the normal case. And then what we can do is 

that when their responses come, we have a voting engine where we essentially choose the 

majority, and that is passed on to the client. 

So let us look at some of the failure tolerance guarantees. So if there are k fail-stop failures, 

we essentially need (k + 1) processes because one of the processes will keep running. If 

the processes are given the correct input, but they can produce arbitrary outputs. We need 

(2 k + 1) processes with k failures. The reason is that we will have a majority with at least 

the (k + 1) correctly running once, hence voting in this case would work. 

If the dispatcher is not trusted, so the dispatcher is like the commander in the byzantine 

consensus algorithm. So if let us say the dispatcher is not trusted, so it can create different 

versions of the client request and send it. Then, we say that the input is wrong, it is 



malicious. So tolerate such kind of failures as we have discussed in the lecture on Byzantine 

agreement, that we need (3 k + 1) processes. 
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So let us just now define the notion of reliable multicasting because as if, as you see, this 

operation of sending one message to multiple servers is known as multicasting. So one-to-

one message exchange is a unique cast and a one-to-many is a multicast. And this is where 

we desire some degree of reliability. So this is a very central mechanism in the design of 

our distributed system. 



So let us define a multicast channel c, where if you look at it, this entire thing is a multicast 

channel c. And so we have a sender group, a sender group is a set of processes that can 

send messages on the channel. And we have a receiver group, which are a set of processes 

that can receive messages on channel c. 

So the reliability guarantee is like this, that if a process p is a part of, is an element of 

receive c, then message m should be delivered to p as long as p does not change its 

membership throughout the duration of the message transfer. So which basically means 

that we are creating these process groups of a send group and a receiver group, so assume 

we want to deliver a message m to process p. 

As long as p is an element of the received set and, it throughout the duration of the transfer, 

it continues to remain an element, the message should be delivered to p. So there is also an 

atomicity guarantee, which essentially says that if the message m is delivered to process p, 

it is delivered to all the processes in the receiver set of the channel. 

So why do we have the reliability and the atomicity guarantees? Well, the reason we have 

these guarantees is because the sender and receiver process groups can actually change 

with the execution. So the process groups, the process groups may change. So given the 

fact that the process groups change, the question is that will we deliver a message to, let us 

say one process that was there in a group, and which was not there, what is the correctness? 

So the reliability says that, look, if in the entire duration of the message transfer, a process 

was part of a group, it needs to get it. The atomicity guarantee says that if a message m is 

delivered to a process p in the group, then it is delivered to all the processes in that group. 

So we have all and or none logic, which we typically have with most autonomous city 

correctness constraints, that either a message is delivered to everybody in the process 

group, all the receivers in the process group, or to none of them. All or none. 
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So this is not very hard to do on a simple LAN of course, local area network, where all the 

modes are connected with each other on a bus. So the sender in this case would simply 

send a message to a set of receivers. One of them sends an acknowledgement, an ACK on 

the shared channel that it has gotten in. The rest are pretty much snooping on the channel. 

So what happens is that if let us say one of them has sent an ACK, the rest do not have to 

set an ACK. Furthermore, it is possible that if a receiver has not gotten the original 

message, but it sees an acknowledgement for it, then it sends a separate request to the 

sender for the original message, which it gets back. 

So this is kind of a simple way of doing this on a local area network, but the issue is that 

this requires some access to the internals of the network because in general, user processes 

are not allowed to snoop the Ethernet channel. So, so this is a good starting point, but we 

need to have a protocol that completely works at the level, at the application layer. 
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So this is where the notion of virtually synchronous networks or a virtually synchronous 

multicast comes in. So the assumptions are as follows, the processes can of course feel at 

any time with or without information. So we define a virtually synchronous multicast, 

which is like this, that a message is delivered to all non-faulty members of the group. So it 

is atomic, is either delivered, or it is not delivered. But if it is delivered, it is delivered to 

all the non-faulty members of the group. That is point number 1 

Furthermore, all the members of the group agree on the current group membership. So 

which means that the group membership, all the processes that are a part of the group 

membership, all the members agree on it. So that is the idea that a message is delivered to 

all the members, all the non-faulty members. And furthermore, all the members agree on 

the current group membership. And then either, we have an atomic delivery. 

So we define the notion of a view, just change it to a pointer. We define the notion of a 

view over here which is the subset of the received set and a sent set. So the processes are 

added or deleted by, via a view change. In a stable state, all the processes agree on the 

current view, and pretty much the way a view is defined, a message is either delivered to 

all the processes in the view or to none. 



And of course, the view is considered to be a set of working processes that are a part of 

non-faulty processes. That will clearly be a subset of the receivers and the senders. The 

good thing about the view in a virtually synchronous system is that a view is essentially a 

set of non-faulty processes, where you have atomic and reliable and reliable delivery 

guarantees. Furthermore, all the non-faulty processes see all the view changes in the same 

order, which means that there is a global consensus on the way that the view changes. 
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So, let us say that we have a given view, which means we have a set of processes. We have 

a process group. So view is essentially being used as a synonym for a process group. And 

the assumption here is that the process group is a subset of the global senders and receivers. 

And all the servers in this process group are non-faulty, at a given point in time. 

So, let us assume that V changes to V star. So if a message, if a message m is sent to V 

before the view change, then either all the P ϵ (V ∩ V*) receive m or none do. So the 

important point is that, let us define a view, V, and let us define another view V star. Let 

us say that before the view actually changes, I send a message m to view V. 

So, one thing that is clear is that all the rest of the processes that do not change, they will 

get the message, should get the message, but consider this set, which lies at the intersection. 

So what we claim is that all the processes in this set also, also get the message m. So there 



is an inherent sequentiality in the view change, which means before a view changes, all the 

messages are delivered to the overview. 

Then in a sense, so, if I were to consider a linear timeline, these are all the message 

deliveries of m, m’ and so on. Then there is a view change. And after that, all the messages 

get delivered to the new view, with the same guarantees of atomicity and reliability. 

So, the other interesting thing is that a message sent to view V can be deliver only to 

processes in V and not to successive views. So I will tell you the overall crux of this 

discussion. The overall crux of this discussion is like this, that we are defining process 

group of non-faulty processes called a view. 

So, the view is essentially the current set of receivers. So if I were to send a message, it is 

either delivered to everybody or to nobody. And if the view changes, that is considered to 

be an atomic event. Just before the event, all the messages get delivered to the previous 

view. Just after the event, all the messages get delivered to the new view. So this is a 

sequentially happening thing. 
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So let me give an example of virtual synchrony. Let us say that the view here would be P1, 

P2, P3, P4. So any message will have to be sent to all of them. And so similarly, if I were 

to consider this message of P2 sending the message, it will have to deliver the message to 

P1, P3 and P4, which means the rest of the processes. 

Now let us assume that there is a failure with process P2. So the view changes to P1, P3 

and P4. So in this case, any subsequent message transmission and message receiving that 

would only go to the processes in a new view, which are P1, P3 and P4. In this case, P1 

also sends, it sends to P3 and P4. 



Now assume that P2 comes up and P3 goes down. So the new view becomes P1, P2, P4, 

and any subsequent message transmission is only sent to the members of the new view, 

which are P1, P2, and P4. Finally, it is possible that at one point in time, denoted by this 

dotted line, the view will finally change to P1, P2, P3, P4. 

So here, if I were to draw a line like this, this would be wrong. And because of, why is 

that? Well, that is because nothing can be delivered to this process. It is faulty. And also if 

I were to draw a line like this, that also would be wrong because this message was 

fundamentally meant for the processes of the older view. So it cannot be delivered to a 

process in the newer view, which is something that is being said here. 

A message sent to view V can only be delivered to processes in V, and not to processes in 

successive views, which is why this particular message transfer would be illegal. So we 

consider a view a closed world of its own of where atomicity and reliability guarantees are 

provided. And once the view changes, all old messages are like all dead. So our time starts 

from when the view changes. 
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So a few more assumptions. Well, so people in the literature have made two kinds of 

assumptions. So should a sender be a member of view V, well, many people say yes, many 



say no, need not be. So the assumption that we are following is that the sender should be a 

part of view V. 

So now, assume that if a sender, that is part of a view, the sender crashes. So if the sender 

crashes, well what happens then? What happens is that we need to flush all of its multicast 

messages that are in flight, if possible, because we wish to provide atomicity guarantees. 

So, this will be elaborated. It is a fairly complex process. So I have just summarized 

multiple slides worth of material into a single line, but this is a reasonably complex process. 

So this will be elaborated quite a bit in subsequent slides. So first is that we take care of its 

messages, which means that either messages get delivered to all the processes in the view, 

or whatever messages are there, they are flushed from the system. 

Then we remove s from V. So then of course, we go in for a view change. So as long as S 

ϵ V, all the assumptions of virtual synchrony continue to hold. And after this is removed, 

we go for a view change. If a receiver crashes, we can either deliver the message later 

because rest of the processes in the view have a copy. 

So if let us say, it comes back up, we then deliver it later if we are willing to tolerate 

transient fault or the other is that we remove the r ϵ v, the latter being more common where 

the receiver is removed and we go for a view change. 

So one important point is that here we are simply talking of delivery, and we are not talking 

about the consistency requirements like causal or sequential consistency. So virtual 

synchrony as such is independent of the order or message delivery. The only thing that 

virtual synchrony cares about is essentially these process groups, which we are also calling 

as views. 

So it basically says that message is either delivered to everybody in the current view or to 

nobody. And the view changes appear to happen to everybody in the same global sequential 

order. 
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So how would implement a virtually synchronous system? Well, that is easy to do. And in 

fact, it is required in any practical distributed system. There is a requirement, and that too 

a reasonably strong requirement to implement virtual synchrony. So this is how we 

implement. So first we start with defining view p, for process p as follows. 

So if p ϵ view (q), then q ϵ view (p), which means the views are identical. So if a given 

process is in q’s view, then q ϵ view of that process. So any message that is received by 

process p is, at the moment, is temporarily kept in a buffer called the queue of, so consider 

this to be an array, which points to this buffer. 



So, any message that is received by p is stored in this temporary buffer. Now assume that 

p fails. So if p fails, we first flush the messages sent by p. If they are not delivered to any 

process in the view. So if let us say p has failed, and let us say, p has some of the, some 

messages that intends to send, and they have still not been delivered to any process, then 

the messages are flushed because if any, if a single process gets it, all the processes need 

to get it. 

Then we need to ensure that all the outstanding messages, which means those messages 

that some subset of processes in the view have gotten, they are ultimately delivered to all. 

Once that has happened, we remove p from the view and we go in for a view change. So 

the important aspect that we need to consider over here is that if any process p fails, then 

we need to look at all the messages that it has sent or is intending to send. 

So if a message is still there in it is output queue, and it has not been sent, the message is 

flushed. Otherwise, we wait till the message is delivered to everybody. And then we 

remove it from the group. So sending a message, what we do is we attach a timestamp with 

each message. It increases by one with every send. So we essentially attach a timestamp 

and the ID of the sender. 

So let us provide a solution to this assuming FIFO channels. So for this, we introduce the 

data structure received p, q. So the highest numbered message from q that is received by 

p, let it be stored in this array, which essentially, so, as we have just described, every 

message has a sequence number. So the structure of a message would look like this. 

So if q sends a message to p over a FIFO channel, p maintains a data structure, which is 

the message received from q with the highest sequence number. The latest, the sequence 

number of the latest message received from q. So we will see that this helps us ensure 

enforce virtual synchrony. 
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So, let us now look at the second aspect of the implementation. So p periodically sends a 

received p, the received p array to all the processes in its view. So recall that the array was 

defined over here where the received p array pretty much says, what is each column of this 

array, let us say the qth column, pretty much stores what is the sequence number of the 

latest message that it has gotten from process q? 

So, p periodically sends this array to all the processes in its view. Each process p records 

received q, where we are assuming q is a generic process that can send messages to p. So 



this is stored in an array remote p. So the structure of the rcvdp[q] that it has rows and 

columns. So if I were to consider the qth row, which in this case is for P2, so it stores a 

vector of four values, and this is pretty much the received q array that came from q. 

So, each element of this row stores the sequence number of the latest message received 

from the corresponding process, of that column. So let us say that, let us give a practical 

example of a remote area. So, consider this row over here, which is the row for Process 2. 

So in Process 2, what this is saying is that Process 2 has received a message with sequence 

number 2 from Process 1, it has received a message with sequence number 3, from Process 

2, it has received a message with sequence number 1 from Process 3, and finally, it has 

received a message with sequence number 4 from Process 4. 

So this is the state. So, so let this remote area be from the point of view of Process 1, where 

Process 1 = p. From p’s point of view this is what P2 has been seen, because this is the last 

state of the received q array that was sent to p. So it has simply stored it in the corresponding 

row of its, of the 2d array remote. Similarly, it has something about, P1 has something 

about P3, and P1 has something about P4. 

And so, this would basically be the received 3 array that it got from P3, and this would be 

the received 4 array that it got from P4. And of course the row that is corresponding to 

itself is pretty much its own received array. So, this is received p. So, the important point 

to consider over here are actually these columns, where the columns are telling us 

something. 

So, consider the first column. So this is what all the processes know about messages from 

P1. So clearly, P1 will have the latest information about its message because it also sends 

to itself. So, in the column the message with Sequence 2 has been received by P1, by P2, 

and by P4. However, P3 has not gotten that message. The latest message that it has gotten 

has a sequence number with 1. 

That is the reason when we compute the minimum, the minimum does not match all the 

entries. There is a diversion. So this message, which is message 2 from P1, this is 

considered to be unstable. That is because it has not reached all the processes. So it is still 



in flight. However, if I consider this message, which is message 1 from P3, so it has reached 

P1, it has reached P2, it has reached P3, it has reached P4, and the minimum is equal to all 

the elements of the column. 

So message 1 from P3 is considered stable. So message 2 from P1 is unstable, we can 

clearly see why. And message 1 from P3 is stable, we can also see why, because everybody 

has gotten it. 
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So now, let us look at the flush process and the view change process in some more detail. 

So, till now we have slightly been looking at it superficially, but given that we have 

introduced these tools, we can look at it in slightly more detail. So, a given message, a 

message m is stable, if it has been received by all the processes in the current view, refer 

to the minimum vector. 

So, if the minimum matches all the injuries in the column, the message is stable for the 

remote array. So, the message can be delivered to the process’s next layer. So of course, a 

remote area, the 2D remote area from the point of view of a single process only, but even 

if a single process knows that all the processes in its view have gotten the message, this 



means it is stable. So it can safely be delivered to that process’s next layer, or what is called 

in the terminology of typical consensus papers, is applied to the FSM. 

So it can be applied to its, to the FSM it maintains, and a change can be made. Now, let us 

look at some of the complicated cases over here. So let us say that we have a failure 

detecting process, and it detects that a process has failed, it needs to be removed. So it 

multicasts a flush message to all the processes in the view. And a flush measured message 

indicates the possibility of a view change. 

So the moment that a process receives a flush message, the first thing it does is that it stops 

sending new messages. So it enters a pause state. The processes send their received arrays 

to other processes, such that all the processes can update their remote arrays. So all the 

processes can update the remote arrays and figure out which message is stable and which 

message is not stable. 

So, the important thing to notice over here, and we have also seen this in the Chandy–

Lamport algorithm, that the moment a process receives a flush message, it simply stops 

sending and creating new messages, because now a major change is going to happen. So 

only the next view will, process will actually be sent. Then, the processes elect a leader or 

a coordinator. 

So, what happens is once a process finds that its messages have all been received, which 

basically means its latest message is stable. So this is important. So once the process finds 

that all of its messages have been received by the rest of the processes in the view, which 

is stand amount to saying latest message is stable, and it too has received all the messages. 

So that is why, so, so why is that the case? Well, that is the case because at least the sender 

always knows or always has the latest message. So just, just look at this, just look at the 

diagonal elements in this figure, and it will be clear what I am trying to see. So just take a 

look at the diagonal messages over here. 

So, this message is what Process 1 knows about messages it has received, which means 

that, so this is based on the fact that when Process 1 creates a message, it immediately 

receives it. So this is the latest state about Process 1, which it keeps. And so similarly, if 



Process 2 is saying, is sending a sequence number of 3, it basically means the moment at 

which Process 2 generated this array received 2, 3 was the sequence number of the last 

message that it created. 

And the same holds for Process 2, the same holds for Process 4. So after a flush message 

is sent, we know that no new messages are being created. So any received array gotten, any 

received array that a process gets, which is this array over here, this array over here, that a 

process gets after processes stop creating new messages, one of the entries, which is the ith 

entry of the, let us say received q is being sent, then its qth entry is going to be the latest 

that q has generated. 

So this, viewers need to convince themselves of this fact that the qth entry of received q 

will be the latest because q will at least know what is the latest message it has created. And 

if it is not creating anymore, so this would be the latest message. And so that is how a 

process can know if it has received the latest messages generated by all the processes or 

not. 

So coming back to this point, every process would know via exchanging these received 

arrays whether all of its messages have been received, which means its latest message is 

stable, and whether it has received all the messages. If both hold true, then it sends a flush 

okay message to the coordinators, which means that from the point of view of the current 

view, it is done. It has gotten everything, it has sent everything, and whatever it has sent is 

stable. 

Otherwise, the coordinator waits for some time and the processes, individual processes 

wait for some time. And if their messages are not becoming stable, then they send a list of 

unstable messages to the coordinator. So the coordinator takes upon itself, the owner is 

tasked of ensuring that all the processes sent to a view reach everybody. That would be the 

atomicity requirement. 

So if the coordinator does not get all the flush okay messages, then it will collect unstable 

messages by wearing the individual processes, adding multicasts all of them once again to 

all the servers that have not gotten them. And after getting acknowledgements, which 



means after ensuring that every message sent in the view has reached everybody, it is time 

to change the view. 

So it send a view, change message to all the servers in V U V*, where,V star is the new 

view. So the old ones, either remove themselves from the view and the new ones add them 

to the view. So it sends a view change message and the view is changed. So this ensures 

the correctness. 

So if I were to go back to this figure, so this basically ensures that none of these arrows, 

none of these solid arrows cross this dotted line arrow. For example, if I were to delete this 

and I would do this, this would be wrong, this would violate virtual synchrony. And the 

reason is that this was sent in a previous view and it is being received in the next view. 

So this is clearly not allowed. And our method of essentially flushing all the messages and 

ensuring all of them have been received by the receivers before changing their view would 

precisely stop this situation from happening. So this was virtual synchrony for us. 
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So now assume that I have been able to achieve virtual synchrony, which means I can 

create a stable process group. And I have been able to achieve a reliable multicast, which 

means that I can send a message to a group of processors using a virtual synchrony kind of 



approach. So what is it that I can do with it? Well, I can use this as the baseline substrate 

to design what are called commit protocols. 
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So, consider a typical problem which all of us have faced, and that too it is a very nasty 

problem. So we have a credit card machine, a user, of course, swipes the card on the card 

machine, then a bank which provides the credit card functionality, a data center something 

like a major, like make MakeMyTrip, Expedia which provides a travel, a ticket booking 

facility, essentially an online travel agent, and then of course the airline. 

So, we want to buy an air ticket. So unless there is a complete agreement among these five 

entities, what is going to happen is that I might charge the card, the money might be debited 

from my credit card account, the data center might do some processing, but this is where 

things may fail, and I’ll never get the ticket, even though the money has been debited. 

So, this is a very common problem, it is a very nasty and very annoying problem. So what 

most of us do in this case is that we call up the office to the online travel agent, we are 

lucky if somebody picks up the phone and then after sometimes after 10 minutes, 

sometimes after half an hour, sometimes after three days, we get the money back. In some 

cases, we get the ticket, in some cases we do not get the ticket. So that also destabilizes our 

travel plan, and it is clearly not an optimal situation. 

So, what we want is that we want all of them, all of these entities to come into an agreement. 

Either my ticket is booked or it is not booked. So in that sense, I do not mind if my ticket 



is not booked. So I will at least immediately get to know. So I can try with the same travel 

agent or a different travel agent. I am talking of an online travel agent, a website any travel 

booking site. I can try 5 minutes later, 10 minutes later, I am okay with that. 

What I am not okay with is if my money is debited and I do not have a ticket or I have a 

ticket, but I do not have an e-ticket, I do not have an email, so I do not have any paper proof 

or a digital proof of my ticket. So, I do not want that. I am okay to be told, look, our site is 

down, we cannot book a ticket right now, but I am not okay with anything else. 
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So, the first algorithm in this space is called 2-Phase Commit. We will see it as some 

problems. So the nodes elect a coordinator, they elect leader using any of the leader election 

algorithms that we have seen. The coordinator in this case, asks all the nodes to vote. So, 

so the nodes would be each one of these, the user card machine bank, data center, and 

airline. Of course the user is being represented by the command running on his BS, on this 

browser. 

So, the entities either say Vote-commit or Vote-abort. Vote-commit means we are okay 

with the transaction. So for a user, it would mean pressing the submit button, for a credit 

card machine it would mean that the card details have been read correctly. For the bank, it 

would mean there is sufficient money in the credit card account, for the data center, it 

would mean that they have been able to process the details, and for the airline, it would 

mean that they have been able to book the ticket. 

Once all of them say yes, that would mean all of them are voting Vote-commit. If one of 

them has a problem, let us say the airline does not have tickets, it is simply sends a Vote-

abort, and then the entire process gets aborted. So the coordinator collects all the votes. If 

all of them are Vote-commit, which means the ticket can be booked, it sends a Global-

commit message to all the nodes and tells them, okay, go ahead and commit. Commit 

means issue the ticket. 

Otherwise, it sends a Global-abort message, which basically means that you just decline 

this transaction, and the user is informed accordingly that the ticket could not be booked. 

Each participant, participant waits for the messages from Phase 2a. It acts accordingly. 
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So, the 2-Phase Commit state diagram would look like this for, so this part is for the 

coordinator. So coordinator starts at an INIT state. So initially nothing happens. It just 

sends a vote request. Once the participant that also starts in its INIT state, once that gets, 

once the participant gets a vote request, the participant decides what needs to be done. 

If it decides to abort the transaction, it sends back a Vote-abort message, and it moves to 

the ABORT state. Otherwise, if it decides it needs to commit, it sends a COMMIT message, 

and it goes to the READY state. So mind, in the READY state, it is not aware of what the 

other participants have sent. So, it waits. 

So, the coordinator also waits once it gets all the messages, if one of them is Vote-abort, it 

goes to the ABORT state, and it sends a Global-abort message to all the participants. So, 

which means that the participant gets a Global-abort message. So the participants just abort. 

So this means that any of the nodes over here has a veto power, and it can simply say no, 

and the entire process gets aborted. So, as I said, we are fine with that as a business model. 

And if all the participants Vote-commit, so once the coordinator sees that and all are saying 

Vote-commit, it sends a Global-commit message and it moves to the COMMIT state. Once 

the participant gets the Global-commit message, well, it sends an acknowledgement and it 

moves to the COMMIT state, which means it finishes or commits its transaction. 



So this is a fairly simple state machine over here, and this works in most cases, but the 

reason that it is not used is basically when we consider failures. So after all, why did we 

do this? The reason we did this is basically because any of the nodes in here might have an 

issue with the transaction. So it would then send it would then send either a COMMIT or 

an ABORT notification. 

And if there is a single ABORT, the entire transaction would get cancelled. So, the reason 

we have problems, particularly with this is because any of these entities can fail. So failures 

are something we have to consider. And most often, we have network failures, we have 

time-outs, all kinds of things. 
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So in this case, let us say a participant fails, and there is some amount of non-volatile 

memory. So the participant recovers and restores itself to the old state. So the participant 

recovers and restores itself to the INIT state with no problem, it just aborts because from 

this state, nothing really has been sent. So which means that I was there in the INIT state, 

and I just, and then I recovered in INIT state, which means I have not sent any message.  

So you have not sent any message, the coordinator also cannot proceed. So then I can just 

abort the entire transaction. That is simple. The main problem is the READY state. So in 

the READY state, what happens is I was there in the ready state, which means I sent either 

ABORT or COMMIT decision, and then I crashed and then I woke up and I woke up to be 

in the READY state. 

So if I had, earlier, if I had sent the ABORT message, well, that is fine. Then the coordinator 

would have aborted, so I can abort. But if I had sent a COMMIT message, a Vote-commit 

message, it kind of becomes problematic. So what I would do is that I would not know 

what happened to the system after I crashed. And I might wake up like 2 minutes later, 

which is a long time in the computer scale.  

So then I would ask the coordinator, and if the coordinator says we have all aborted or all 

committed, I would do the same. But the problem is the coordinator itself might have failed, 



or the coordinator might just have finished the transaction and erased its state. Furthermore, 

even other, so then what I would do is I would ask other processors. 

Other processes might have committed or aborted. They also might have erased all the 

history of the transaction. So I would not know what to do. So I would kind of get blocked. 

Because the thing is, I am recovering in the READY state. So kindly take a look at this. So 

I am recovering in the READY state. So when I am recovering in the READY state, I have 

already sent a Vote-commit message.  

And then, well, I do not know what is to be done because I crash and then I wake up. And 

then I do not know what the others decided. Of course from INIT if I had sent a Vote-abort, 

then that is okay, I would have simply gone to the ABORT state or if any state, any 

intermediate sub-state, I would have recognized that everybody is aborting, I would have 

aborted.  

But in the READY state, I really do not know what is to be done because everything 

depends on what the others have voted. And if I am not able to contact the coordinator or 

another process, then I really do not know what happened to the system. So I will keep on, 

I will remain blocked forever. 

So this is just called a blocking protocol, and it does not give us a deterministic answer, 

which is why the 2-Phase Commit protocol is not actually used. And of course, if I even 

fail in ABORT or COMMIT state, that is not an issue because I already know the state of 

the system. So to fix this problem, the problem of crashing and recovering in the READY 

state, what I do is that I propose a new protocol where I can show that diagram at first, 

which is called 3-Phase Commit. 
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So instead of two phases, I have three phases. So in this case, I add an extra PRECOMMIT 

state between READY and COMMIT. So between READY and COMMIT, I add an extra 

PRECOMMIT state, which in a sense increases my distance from, increases the distance 

from the wait to the COMMIT state, which we will see is important. 

So in this case, what we are actually doing is that if I were to compare this diagram with 

the previous one for 2-Phase Commit, there is an extra state in the middle. We call this the 

PRECOMMIT state, and we claim that by adding this PRECOMMIT state, many of our 

problems have been solved. So let us first go through the protocol and then we will discuss 

its advantages. 

So, it starts in exactly the same way, the coordinator sends a vote request message, which 

is step 1. Each of the processes gets the vote request message, so they either send a Vote,-

abort, which immediately takes us to the ABORT state. So this part remains the same. Or, 

the, we, so this is also a time step 2, the participants send a Vote-commit message and they 

move to the READY state. 

So what happens is this part is the same that they either vote a Vote-abort or commit, and 

if they Vote-commit, they move to the READY state. So when it is in the READY state, 

the participant keeps on waiting for messages. If it gets a Vote-abort, then of course it sends 



a Global-abort. Or, if it sends, or if it gets all the replies and all of them are a COMMIT, 

then instead of directly global committing, it sends a Prepare-commit message. 

So this should also be time step 3. So it is a sends a Prepare-commit message and it 

transitions to the PRECOMMIT state. So once a participant gets a pre, Prepare-commit 

message, so then it sends a Ready-commit message, which means, it is saying that I am 

ready to commit. That is mainly because that it is already voted that it will commit, so it 

cannot change its mind. So it will send a Ready-commit message, it will go to the 

PRECOMMIT state. 

Once all the Ready-commit messages have arrived, this should be times step 5. Once all 

the Ready-commit messages have arrived from all the participants, then the coordinator 

knows that all the participants are ready to commit. And so then it sends a Global-commit 

message. And the Global-commit message, once it is received, all the participants commit 

and send an acknowledgement as well. 

So the important point to note over here is just this additional state in this path, which is a 

Prepare-commit. And when the coordinator receives all the Vote-commits, instead of 

directly committing, it sends a Prepare-commit message, which also takes all the 

participants to the intermediate state called PRECOMMIT. And from there, once they 

receive a Global-commit message, they finally commit. 

So this is the algorithm that each of the participants has to follow. And so this part of the 

algorithm was for the coordinator, this is for a participant, they look more or less similar, 

just with this extra state. 
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This is summarized in this slide so I am not going over it once again. So, this is something 

that I just described. The operative part of it is that we actually send a Prepare-commit 

message that takes us to the PRECOMMIT stage, and then after a Prepare-commit 

message, we move to the final COMMIT, after the PRECOMMIT state, we move to the 

final COMMIT state. So this extra state over here is what we clean does all the magic. So 

how does it do that? Well, let us see. 
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So consider, let us do a similar failure analysis where the participant fails and then it 

recovers to the same state. So, it is assumed that the participant maintains some degree of 

non-volatile memory, which allows it to recover to the same state. So consider a 

participant's failure in the READY state. So if it fails in this state, so it knows what it has 

voted for, it has clearly voted for COMMIT. 

So then it asks the coordinator, once it gets up, what really happened? Did you ABORT or 

did you PRECOMMIT? So if the coordinator has failed, then we can elect a new 

coordinator and the new coordinator can check that if any process has gotten a 

PRECOMMIT message, then it will proceed towards a Global-commit via this route. 



But, if let us say after querying all the processes, nobody has gotten a PRECOMMIT, which 

basically means that no process has, so the important point to keep in mind, so this is the 

most important point that in the previous case, what would happen is that if I woke up in 

the READY state, the rest of the processes would have either aborted or committed. So 

essentially, they would be done. 

In this case, only the processes that would have aborted would have been done, but the rest 

of the processes would actually be there in the system, they would not have completed 

because the thing is that after READY, a Prepare-commit message has to be sent, which 

has not been sent. So those processes would still be there. this is what makes the entire 

difference. 

Since those processes are still there, they can be queried about their current state. And if 

all of them are in their READY states, none of them is in their PRECOMMIT state, then it 

can safely be assumed that the coordinator crashed before sending the Prepare-commit 

message. And then all the processes can move from the READY state to the ABORT state. 

So they can just be safely aborted. 

So this is the main advantage of this protocol that even if the coordinator fails, even if a 

process fails we will still not have a situation where we need to block. We can always make 

a decision and the decision in this case will be correct. So let me go over this, this is the 

prime primary advantage of the 3-Phase protocol, which is that as compared to the 2-Phase 

protocol, where if I woke up in the ready state.  

There is a possibility that the coordinator would have failed and the rest of the processes 

would have just completed their execution. They would have either aborted or they would 

have committed so that, like the protocol would be over and I might not get what is the 

current state. In this case, only those processes, so only the processes that would have 

aborted would be out of the system, if there are any, otherwise, all the other processes, if I 

am moving towards the COMMIT would be there in the system.  

So they can always be asked for their current state. And if all of them are READY, we can 

safely assume that the coordinator crashed before sending a Prepare-commit message. So 



then we can simply abort all the processes and take them to the ABORT state. And that 

would be correct. So, so what again is the key, key, most important insight? 

The most important insight is that a PRECOMMIT state over here stops a process from 

actually leaving the system. So the processes will still be there in the system. And because 

they are there in the system, we can query their state and figure out what the coordinator 

must have done. 

If I fail, and then I, so I being a process, fails, and it wakes up in the PRECOMMIT state, 

well, no problem. This means that it must have sent a Prepare-commit message from 

READY and gotten a Ready-commit in return. So in this case, all that needs to be done is 

we need to elect a new coordinator that will send a global commit message and commit all 

the processes. 

So, they do not move automatically. It is still done via coordinator to ensure that everybody 

commits. And the coordinator sends the Global-commit message to all, and ensures that all 

the processes commit. And in this case, the reason we can safely commit is because all the 

processes have already agreed that they want to commit. That is why they have come via 

this route. 

So all the processes have agreed that they have a desire to commit, and we have also 

verified that all of them have a desire to commit. So that is the reason the process entered 

the PRECOMMIT state in the first phase. So that is the reason we just need to commit all 

the processes, which can easily be done. 

Now, the coordinator fails in the WAIT state, so the coordinator would fail in the WAIT 

state. This means that it would have not gotten all the Vote-commit or Vote-abort 

messages. So the processes will timeout in the READY state and ultimately they will elect 

a new coordinator, which will take a decision accordingly. 

If the coordinator times-out in the PRECOMMIT state, well, that also means that the 

coordinator is in this state. So which means it has sent all the Prepare-commit messages, 

so all the participants will also be there in the PRECOMIT state, they will timeout, they 



will elect a new coordinator, which will commit all the processes. So as we can see this 

algorithm has inherent advantages, the 3-Phase Commit algorithm.  

And it stops the, the biggest problem that it stops is that it stops the blocking problem of 2-

Phase Commit. So 2-Phase Commit had a problem of blocking. So this particular problem 

is not there in the 3-Phase Commit protocol. So, this does not have that problem. It is 

always possible to make some decision, which is correct. And the entire advantage is 

accruing from one additional state that we added between WAIT and COMMIT. 
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So this completes the lecture. So the original slides were in Andrew Tanenbaum Maartenn 

Steen’s book, and they have been very grateful to allow me to present the slides in my 

class. And you can always find the original slides on this link. So Virtual Synchrony and 

2-Phase and 3-Phase Commit protocols are otherwise also very popular. So the viewers 

will get a lot of resources on the web that describe these protocols in detail, and also the 

Cornell University has a toolkit that implements Virtual Synchrony. So that toolkit can also 

be used for physically, running a system with Virtual synchrony. 


