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Lecture 14 

The Byzantine General’s Problem 

In this lecture, we will discuss Byzantine Fault Tolerance, which is also a method of 

consensus. It is known as command consensus. 
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So, we will distinguish between two kinds of faults. So, the first kind of faults are normal 

faults which we have been seeing up till now. So the normal faults can be crash faults. In 

this case, the process just stops. Or, it can be a crash fault with some intimation. So it can 

let other processes know, some entity, typically another process knows, that it has suffered 

from a fault. 

So, we have essentially been dealing with such easy to manage faults where a process just 

stops. So where essentially a process just stops. That is pretty much all that we have been 

dealing with now. In some cases, other processes get to know. And in some cases, other 

processes do not get to know, like in flp result. But that has not significantly changed the 

way that we design our algorithms. But what we will see now is that we will have a new 

kind of faults, a new set of faults known as Byzantine faults. 



So in, for a Byzantine failed node, everything is fair. So they can lie, they can collude with 

other failed nodes, and, so they can show up as crash failures, they can fake messages, they 

can forge messages. So they can pretty much do everything. So everything is fair. So they 

need not send, they need not participate in an algorithm, they can deny sending messages, 

they can just stop sending messages, they can lie. So for them, everything is fair. 
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So the command consensus that we are looking for now, so this is inspired from the classic 

Byzantine General’s problem which was proposed way back in the distributed systems 

literature. So in this case, we have a commander. So the commander issues an order. So all 

of them are general. So when we use the term general, they might refer to any of the 

lieutenant generals. So, we have three lieutenants over here. 

So any of these lieutenant generals are also generals, and the commander is also a general. 

So the command commander essentially issues an order. The order is sent to all of the 

generals, and each general, furthermore, can either be loyal or disloyal, which basically 

means that if the general is loyal, the general does not have a Byzantine fault. And if the 

general is disloyal, then it has a Byzantine fault. 

So what does it mean? So let us assume we are trying to do a binary consensus where 

essentially the generals are in different camps and they send messages to each other. So the 



message cannot be forged in the middle. So there are only 2 Kinds of messages, attack or 

retreat. So let us assume that the commander sends the attack messages to all of them. 

So what we essentially want is we want all the loyal generals to come to the same decision, 

whatever it is, attack or retreat. And of course, similar to regular consensus, it cannot be a 

dummy decision, in the sense that all of them cannot decide retreat or all of them cannot 

decide attack. We will see why in the next few slides. But essentially, the idea here is that 

if the commander issues an order, and assuming that the commander is loyal, all the loyal 

generals have to obey that order. 

So here is a fun part. So, anybody who would listen to this would say that, look, this is not 

hard at all. All that we need to do is we just need to compute a majority. So let us say that 

there are 2 k + 1 lieutenants. So if k + 1 of them are loyal, then pretty much all of them 

would have gotten the same orders. Even if there is lie about what they have gotten, at least 

we have a majority of k + 1. So even though this sounds rather reasonable, however, the 

main problem is that a commander himself may not be loyal. 

So, that is the main problem. So the commander is not loyal. What the commander would 

actually do is that it would send an attack message to the first lieutenant general, a retreat 

message to the second and then attack message to the third. So then they would sort of 

mutually get confused because the commander would have sent different messages to 

different people. And this would be very, very confusing. So in this scenario, if we still 

want all the loyal generals to make the same decision, it is rather complicated. 
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So let us now formalize these conditions. So the commander or any of the lieutenant 

generals can be disloyal. And here disloyal basically means the Byzantine failure, which 

means that they can behave in an extremely unpredictable fashion. So you cannot, you 

cannot, we cannot, nobody can trust them at all. So let us consider a synchronous algorithm. 

So note that this is not a synchronous because in a synchronous algorithm cannot even 

tolerate a single faulty process. And in this case, we want to tolerate a lot of faulty 

processes. 

So let us assume that there are total n generals. Out of that, we have one commander, and 

n minus 1 lieutenant generals, let us call them LGs. So the commander sends an order to n 

minus 1 lieutenant generals. So the commander himself, maybe disloyal. So in this case, 

we want to satisfy two conditions, IC1 and IC2. So IC1 is that all the loyal lieutenant 

generals obey the same orders. So which means that if the commander is over here and all 

of the lieutenant generals are over here, the subset of them that are loyal, they have to obey 

the same order. 

They come to the same decision. And IC2 says that if the commander himself is loyal, that 

every loyal general obeys the order, that the commander issues. So note that the important 

point over here is that nodes do not trust each other, processes do not trust each other. So 



there is no way for a lieutenant general in this case to actually get convinced that the 

commander is actually loyal. So we have to ensure IC1 and IC2 implicitly. 
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So now I will discuss few impossibility results, but before that, let us take a look at two 

cartoon videos regarding the behavior of general and a disloyal general. 
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Bad General: I am a bad general. I do not trust anybody. I have a Byzantine fault. I do not 

even trust myself. All that I do is just lie and lie. I lie to me, to you and to everybody. It is 

up to you to do something, not me. 
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Good General: I am a good general. I do what I am told. I never lie to anybody. However, 

unfortunately, bad generals give me wrong information. I thus need to verify this with other 

generals. It is true that I cannot trust anybody, but I never lie. 
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So now, let us consider an impossibility result for three generals. So we claim that in a 

three general system with 1 commander and 2 lieutenant generals, it is not possible for 

them, for us to solve this problem in the sense that it is not possible for all the processes to 

come into a Byzantine consensus or a Byzantine agreement. So our claim is that in this 

case, no solution is possible. 

So let us consider two scenarios, scenario I, and scenario II. Let us is also consider the two 

conditions for correctness, which are IC1 and IC2. So IC1 is all the loyal lieutenant generals 

obey the same order. And IC2 is that the commander is loyal, then every loyal general 

obeys, the order that the commander issues. So in this case, the idea is that the commander 

is a traitor. 

So the commander sends two messages. One message is attack. And the other message is 

retreat to General 1 and General 2, respectively. Now General 1 has no idea the commander 

is loyal or not. So the only other source of information that it has is actually General 2, 

which sends it a retreat message, which basically means that the commander had originally 

sent General 2, a retreat message. 

Again, General 1 has no reason for trusting General 2, but at least in this case, since we are 

seeing the entire scenario from a holistic point of view, we, we are assumed to be an all 

parts, powerful observer, we can clearly see the General 2 is speaking the truth. So now 



General 1 is in a fix. It is getting conflicting messages from the commander and General 2, 

which means then that one of them is disloyal. It is just that it does not know which one is. 

Now, consider Scenario II where General 2 is the traitor. So in this case also, we get an 

attack message from the commander, and we get a retreat message from General 2. So 

General 1 has no way of distinguishing between situation 1 and situation 2, because it does 

not know who is actually the traitor. So now let us apply our known conditions. IC1 and 

IC2. 

So if you would consider the condition that says that if the commander is loyal, all the loyal 

generals need to obey the same order, so by this condition, General 1 needs to obey attack. 

And then if you consider the next condition, which says that no, we will, we will not use 

that condition right now. So, so we will also use this observation, that General 1 has no 

idea whether it is looking at situation 1 or situation 2. So in both cases, it gets the same set 

of messages. 

And, so since General 1 has to choose attack in situation 2, it has to choose attack in 

situation 1 as well. So this part is slightly complicated. So the readers, viewers, listeners 

need to go through this several times. So the important point that is being made here, if we 

actually take a look at condition IC2, that if a commander is loyal, all loyal generals have 

to obey the same order. 

So in this case, the commander is loyal, she commander sends attack, hence General 1 has 

to obey attack. But since General 1 has no way of distinguishing between scenarios I and 

II, even in scenario I, it needs to obey attack. 
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Now we have deleted all the ink from the slide. So let me now quickly summarize what we 

just derived. So what we derived is that from General 1's point of view, it is getting two 

messages, a attack message from the commander and a retreat message from General 2. So 

both the scenarios, scenario I and scenario II, it is not possible for General 1 to differentiate 

between the scenarios. 

So since we want a loyal commander's orders to be obeyed, so it needs to choose attack in 

both cases. So this is what we were just able to prove. So if we take a look at this case 

closely, we will see that whenever General 1 gets an order from the commander, it has to 

obey it. So in this case, it is obeying attack. And the reason is very simple. 

The reason is that if it is getting an order from the commander, it has no way of knowing 

if the commander is loyal or not, just in case it is loyal. Then it needs to obeys order because 

both of these situations, 1 and 2 look exactly identical to it. Hence, whether General 2 is a 

traitor or commander is a traitor, it is not possible for General 1 to know. Consequently, it 

needs to choose the order that the commander gives. 

So in this case, which is scenario I, it needs to choose attack. We can use a very similar 

argument, an extremely, the same argument for General 2. And we can prove with exactly 



the same logic with the same set of reasoning, same steps, that in this case, General 2 needs 

to choose retreat because it has no other choice. 

It gets retreat from the commander. It has no idea if General 1 is a traitor or the commander 

is a traitor. And since it wants to fulfill the condition, IC2, which is that if the commander 

is loyal, then the orders of a loyal commander need to be obeyed. The only choice that we 

have in this case is that it needs to obey the order that comes from the commander, which 

is retreat. Same logic. 

So if you look at this, which is scenario I, once again, what we find is General 1 obeys 

attack, General 2 obeys retreat. So there is clearly no consensus. There is no command 

consensus over here. The loyal generals, if we see here, IC1, all loyal lieutenant generals 

obey the same order. This is not happening here. 

Since this is not happening here, we have derived a contradiction. And the contradiction 

basically says that in this case, which is with three generals and one traitor, we cannot 

obtain Byzantine agreement. Now, let us generalize this result to a larger system. 
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So the general result is assumed we have less than equal to 3m generals where m > 1, and 

there are m traitors. So we want to prove that no solution is possible. So way the, the way 

that we will do it is that we will essentially create two categories of generals. So let us first 



consider the simple, one of these cases, which where we have 3m generals. So we divide 

the general into clusters. 

So we just create clusters of one-third generals each, and to distinguish them from 

Byzantine generals, let us call them Albanian generals. So we will see in a second why? 

So we create three clusters and each cluster is simulated by a Byzantine general. So 

basically the cluster is simulated a Byzantine general. So we have three Byzantine generals. 

And we take the 3m generals, divide them into three equal size partitions, and we call the 

simulated generals, the Albanian generals. 

So let us, let me describe the meaning of simulation. So in this case, we are assuming that 

a protocol exists where with < = 3m generals and with at most m traitors, or let us say with 

m traitors, if we consider the worst case, we have a method of obtaining a Byzantine 

agreement. So what is this protocol? The protocol is essentially an algorithm to change the 

internal state of the Albanian generals, and a message exchange. 

So what we can do is each Byzantine general can simulate the finite state machines of all 

the Albanian generals that are contained within it, within its purview. So we will have three 

such by Byzantine generals, and so note that these are simulated Albanian generals. So 

they themselves are not honest or dishonest, so it all depends on the simulating Byzantine 

general. 

So here we make the same assumption as a previous slide, which I can show you right now 

where we have three generals, one commander, two lieutenants, and one of them is a traitor. 

So then, all that they do is that they simulate the final state machines and message 

exchanges of the Albanian generals. And of course, it is possible that a general here might 

send a message over here. So this would require the involvement of both the simulating 

Byzantine generals, this one, and this one. 

So what we want to prove is that if a protocol exists for Byzantine agreement with Albanian 

generals, then we can solve the Byzantine general problem with three generals and one 

traitor. So what we have seen in the previous slide that this is impossible. So we will use 



this fact to derive a contradiction for this problem. So the notion of simulation should be 

clear at this point. 

So now let us go further. So one of these clusters will have the Albanian commander. So 

the cluster that Albanian commander, let it also be the Byzantine commander, and the rest 

of the two clusters will just have Albanian lieutenant generals. So let them also be 

Byzantine lieutenant generals. So the Byzantine commander will simulate the Albanian 

commander and at most m minus 1 Albanian generals.  

And each of the rest of the Byzantine generals, which means these two clusters, will 

simulate at most m Albanian generals. Simulate means simulate their final state missions. 

So since at most one Byzantine general can be a traitor, which means one of these clusters 

can be a traitor, at most m of these Albanian generals can be a traitor.  

That is because if the simulating Byzantine in general is a traitor, then the working of the 

final state machines of all of these simulator generals is suspected. So if, let us say, the 

Byzantine general simulating Albanian commander is a traitor, then that makes Albanian 

commander a traitor as well. So using the simulation logic, it is very easy to derive a 

contradiction for this problem. 
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So let us assume that we have a solution to the Albanian General's problem. This means 

we have essentially insured our two assumptions, IC1 and IC2. So what is the assumption 

again? Whether the Byzantine general is loyal, then that implies that Albanian general is 

loyal. And if the Byzantine general is a traitor, it implies that all the Albanian generals that 

it is simulating, they are also traitors. 

So now let us look at IC1. So this means that all the loyal Albanian generals obey the same 

order. So let us see. So since we are claiming that we have some protocol that ensures this, 

the two Byzantine generals that are simulating them will also obey the same order. So this 

will automatically ensure condition IC1, which is this condition for the Byzantine generals 

as well. So let me draw the three clusters once again, and just mark the Albanian generals 

that they simulate. 

So let us say that two of these simulating clusters are honest. Then by implication, all the 

Albanian generals that they simulate are also honest. So they will definitely come to an 

agreement. And by your assumption, by the IC1 assumption, they will agree on the same 

value, either attack or retreat. So whatever they agree on, can also the agreement values of 

the simulating by Byzantine generals. 

So this ensures that condition IC1 holds for the Byzantine generals as well. Furthermore, 

if the commander is loyal, then the Albanian commander is also loyal. So what this further 

means is that all the loyal Albanian generals will obey this order. So that is assumption. So 

let us assume that the Albanian commander lies over here. 

So if the commanding Byzantine general is loyal, then the Albanian commander is also 

loyal, which means that all the loyal Albanian generals in each of these clusters will obey 

the same order that is issued by the commander. So then what we can do is that the 

Byzantine generals that are simulating these clusters can also obey the same order and that 

will automatically ensure condition IC2, that whatever the commander says, if the 

commander is loyal, then all the loyal generals also obey. 

So what have we just done? What we have done is that out of the solution for, so we have 

taken the solution for the Albanian generals problem, let, just call it the AG problem, and 



we have derived a solution for the Byzantine general’s problem for, essentially for three 

generals and one traitor. So what do we do? So what we know now is that this is not 

solvable. And given that this is not solvable, the Albanian General's problem is also not 

solvable. 

So this essentially, we have obtained a contradiction over here, that if so, what did we 

assume? We assume that if there is a solution for the Albanian General's problem, there is 

a solution for the Byzantine General's problem, for three generals. So since the latter is not 

true, the former is also not true. Consequently, it is impossible. So how do we make sense 

of this result? 

Well, let us say that we have 6 servers. Out of 6 servers. Let us say 2, have a Byzantine 

fault. It is clearly not possible for the rest of the 4 correctly executing servers to actually 

come to an agreement. So what you actually need is that if m = 2, you need 3m + 1, or 7 

servers. So if you have 7 servers, then it is possible to arrive at an agreement. 
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So now let us present the Byzantine agreement algorithm. It is also called a command 

consensus. That is because there is one commander and the commander wants his 

command to be agreed, agreed to by all the loyal generals. And of course, if the commander 



himself is a traitor, then the loyal generals will at least come to an agreement between 

themselves. 
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So we have to make several assumptions. So the assumptions that we make are like this, 

that every message is delivered correctly, which means that it is possible to check for 

message integrity. So no general in the middle actually spoils or tempers a message. So let 

us say General 1 is sending a message to General 5, the message is delivered correctly. 

Furthermore, the receiver of a message knows the identity of the sender. So it is not possible 

for a general to actually fake the identity. So this is a key assumption we need to make that, 

and in practice it is possible to do so using digital signatures, it is not possible to fake an 

identity. 

Now the assumption A3 says that it is possible to detect the absence of a message. So since 

we have a synchronous algorithm, in a round, it is possible for a failed node not to send a 

message, but this can be detected. So typically, you, the rest of the nodes can assume a 

default value. For example, they can assume that retreat has been sent. 

The last is we assume a majority function, v 1 to v n, that returns the majority value. So let 

us say given a set of values, it returns the value which enjoys a majority in the set. And 



clearly if a majority does not exist, then we return and default value, which can be retreated. 

So the majority function is important, and we will use it. 
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So let us look at the steps of this algorithm. So this algorithm is actually a recursive 

algorithm. So we need to first define the base case, which is OM 0. So that is the name of 

the agreement algorithm. So the commander sends its value to each lieutenant. So that is 

the first step. So each lieutenant accepts the value or accepts retreat if no message was sent. 

So what is 0? 0 is a number of traitors. So if there are no traitors, then of course it is assumed 

that the commander is loyal. So each lieutenant will simply accept the value that the 

commander sends. And just in case no message was sent, then you accept retreat. But in 

any case, as we can see assumptions IC1 in IC2 tend to hold. And that is mainly because 

there are no traitors. 
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Now, that is considered OM m, so where m is the number of, so consider that this is greater 

than 0. So we have a total of n generals and that includes the commander. So the first step 

is the same that the commander, so let us say these are, these are all the lieutenants. 

So the first step is the same that the commander senses his value to every lieutenant. But 

of course, the lieutenant can get different values. So let lieutenant i receive value v i from 

the commander. So that this be, lieutenant, let us have a, well, this, I should have given a 

different name. So let us say this is lieutenant Gi, and it gets value vi from the commander. 

So now from lieutenant i’s from point of view, it has no idea if the commander is loyal or 

not. So the only thing that it can actually do is it can check with others. So how does it 

know that the same value was sent to other lieutenants? Well, it does not know 

immediately, but after some message exchanges, it will get to know. So it starts a recursive 

algorithm with a smaller argument. 

So it starts an algorithm OM(m – 1). So this is very crucial. So what is crucial is that let us 

say if a message comes to a certain lieutenant, it starts a recursive algorithm with a reduced 

subset, which is essentially the set of lieutenant other than the commander. So the, what is 

the aim of starting this? 



The aim of starting this is to basically verify and understand what is it that they have gotten, 

and try to arrive at some kind of an agreement, at least between the loyal lieutenants, to at 

least see what is it that they have gotten. So this is very similar to an office situation where 

we have one of those mischievous bosses who tell, who tells different things to different 

people. 

So the only way for the people to actually is to just ask each other, what is it that the boss 

told them. So this is extremely similar over here, that we have the commander sending 

messages to different lieutenants. Once the lieutenants get the messages, the only thing that 

they can do is they can take the commander out the picture and run an algorithm between 

them to understand what is it that they have gotten? and what is it that they should agree 

upon? 

So these loyal generals in OM (m – 1) need to come to an agreement about the value that 

has been received by Lieutenant i. So what is the idea here? Well, the idea here is very 

simple, that let us say if we had a total of n generals at the beginning, we create a smaller 

subset, which is n - 1. And there what the ith lieutenant tries to do is that it broadcast the 

value that it got, which is vi from the commander, to the rest of the nodes. 

So what is it trying to do over here? Well, it is trying to initiate another Byzantine consensus 

where it is trying to convince everybody that it has actually gotten vi from the commander. 

So it is running a Byzantine algorithm precisely, to do that. So after OM (m – 1), what is 

the final state? Well, the final state is that the rest of the lieutenants in this set come to an 

agreement about what is it that Lieutenant i,  

General i, so general and lieutenant, we will use interchangeable, so what is the value that 

Lieutenant i has actually cotton from the commander. So this is something that, so this is 

again a Byzantine problem because it is possible that different nodes in this set might be 

dishonest. It is possible that Lieutenant i might be dishonest.  

So different combinations are possible. So again, it is a smaller instance for the same 

problem, but after that, at least all the loyal generals in this set will mutually agree on what 

is it that Lieutenant i actually got. If Lieutenant i is honest, that that value has to be vi. If 



Lieutenant i is a traitor, then it has to be some other value, but at least all the loyal generals 

in this set will agree on that value.  

So it does not matter if Lieutenant i either by himself is loyal or not. That is not important. 

The rest of the loyal generals simply have to agree on the value that i got from its 

commander after OM (m – 1) finishes. And this is where they have to follow the IC1 and 

IC2 assumptions. 

IC1 is what is just written that all the loyal generals come to the, come to an agreement. 

And IC2, if I were to just take a little bit back IC2 is essentially that if the commander is 

loyal, every loyal general obeys the order. So which in this case, would basically mean that 

every loyal general in this set agrees on the value vi. 

So what is the big picture? What is the overall picture? Well, the overall picture is that OM 

(m) starts with the commander broadcasting its value to a set of lieutenant. So if there are 

total n generals in the beginning, we have (n – 1) lieutenant, all (n – 1) get the values of the 

commander. If the commander is dishonest, it sends different things. 

Now, they need to chat and gossip among themselves to figure out that what is it exactly 

that the commander is sent? So what each of them does is that each of, each one of them 

starts an instance of OM (m – 1). So how many instances in total, (n – 1) instances in total, 

and in each instance, the ith lieutenant broadcast the value of vi that it got from the 

commander in the beginning of OM (m). 

And the rest of the loyal generals have to agree on this value, and what are they agreeing 

on? They are agreeing on what? The ith general has actually caught him. Essentially, that 

is what they are agreeing on. And the agreement has to follow the IC1 and IC2 correctness 

conditions. So, OM (m), essentially ends up making (n – 1) calls to OM (m – 1). And 

similarly OM (m – 1) ends up making (n – 2) calls to OM (m – 2). So we have a pretty 

much a factorial like complexity over here. 
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So a little visualization over here that the commander at the beginning broadcasts the 

values, its value to everybody. So let us say that any general does not accept the value that 

the commander sends. So it simply does not accept. Instead, it asks the rest of the lieutenant 

and comes to an agreement regarding the value sent by the commander. So essentially it is 

written in an imperative style, that you do not accept the value and you actually ask the rest 

of the lieutenant, what is it that they have gotten? 

And so, for that reason, it is necessary to broadcast, but again, as we have seen a simple 

broadcast is useless. That is because generally n itself can be dishonest. So this, again has 

to be a smaller instance of the original algorithm, which is OM (m – 1). So of course, in 

this case, the commander is not included. So at the end of this, if this had gotten the value 

vn, everybody would come to a Byzantine agreement regarding the value that general n 

got. 
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Finally, step 2. So in step OM (m – 1), each general receives a total of (n – 1) values. Well, 

how is that? It is like this, that the commander actually senses the (n – 1)  lieutenants, each 

one of them starts an instance of, OM (m – 1). So, if I were to consider any node, any 

process, any general, it would get one value from the commander, and it would get (n – 2) 

values from the rest of the lieutenant, making it a total of (n – 1) values. 

So, which is exactly what is written here, that from (n – 2) lieutenant generals, it gets (n – 

2) values. So of course, it gets values, I am not referring to the value that was broadcast. I 

am essentially referring to the value that was agreed upon after running OM (m – 1). So, 

essentially after these OM (m – 1) algorithm is concluded. So, if let us say there are four 

nodes, so it will be clear about the value that v1, about the values v1, v2 and v3. 

It will clearly know what are these values. And of course these nodes could be dishonest, 

but then as we have seen, there will still be an agreement among the loyal generals 

regarding the value it got, which incidentally might not be the value it actually got, but at 

least there will be an agreement. So after this, what we do is we have a total of (n – 1) 

values which are there with each of these lieutenants. 

So where, why (n – 1), one it got from its commander at the beginning of OM m, and (n – 

2), it got after running the individual instances of the reduced Byzantine problem. So once 



at the end, so basically, if I were to consider the OM m algorithm, so initially we have a 

broadcast stage where the commander just broadcasts. Then, we run n minus 1 instances 

of OM (m – 1). 

In these instances, all of these values are agreed upon. And after that, we have a set of (n – 

2) values with each, for each i. We, we, we have a set of this, (n – 2) values + 1, which is 

what was received from the commander for each of these is. So we compute a majority 

value, which is, we compute the majority function. And whatever we get, that is used as a, 

as the output of the algorithm OM m. 

So for each i what is it that we do? What we do is at the beginning, the commander 

broadcasts its value to each of the lieutenants. Each lieutenant initiates a round of OM (m 

– 1). Fair. It tries to obtain an agreement over the value it got from the commander. After 

that has happened, we end up running (n – 1)  instances of OM (m – 1), which means 

essentially, for each left end, we end up agreeing upon (n – 1)  values. 

These many, for each lieutenant we agree upon these. So out of this, of course, one value, 

the lieutenant would have received from the commander in the broadcast stage and the rest 

(n – 2)  would be received because of the other instances of the reduced problem. So once 

it has these, it can then compute the majority of the set. 

It computes the majority of the set. And let us say the output of that is v. So v is pretty 

much the output of the OM (m) algorithm. And this v is stored in each other lieutenants. 

So this is clearly a recursive algorithm with a very factorial like field that initially we run 

(n – 1)  instances, and then (n – 2)  instances, (n – 3)  for each. So this, so clearly the 

message complexity is high. So, that is true. 

Even though the time complexity is not that high. I mean, it would be incorrect to say that 

it is not that high. It all depends upon how many messages and how many computations 

we can fit into a single round. But what should be important is that the number of instances 

of these, these algorithms and the sheer number of messages sent, that clearly goes up in a, 

as a factorial function. 



So the crux of this algorithm is that nodes do not, generals do not trust their commander. 

Hence they are not willing to accept any order at face value. For every order, there is a 

need to consult the others and then come to an agreement. And because of this consultation, 

we have to run smaller instances of the same Byzantine Agreement algorithm. 

And we expect that the majority function that we compute, which is essentially this step 

over here, has some favorable properties. And what are the favorable properties? So I am 

using the American spelling here and ignoring the u. So the favorable properties are that 

IC1 and IC2, the two correctness conditions that we have, both of them should be satisfied. 
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So let us give a simple example because the algorithm is, even though it is simple, it is still 

reasonably complicated. So General 3 is the traitor here in this case. So, essentially what 

happens? At the beginning, we are going to run OM (1), which means the commander 

sends its value v to everybody. After that, each one of them runs an instance of OM (0), 

which is as simple as just simply sending the value.  

So I am not showing all the messages, I am only showing those messages that are relevant 

for General 2. So General 2 gets the message v, v and x. So as you can see, it would 

compute majority of v, v and x. So, so where x can be anything. So x is a placeholder for 

any message, because it is coming from a dishonest, from a traitor node.  



So the majority of v, v and x is clearly v. So which means that General 2 is going to agree 

on v. We can do something very similar for General 1. Here also, we will find it will agree 

on v. And of course, the commander, since it is loyal, it will also agree on v. So we have 

the Byzantine agreement conditions here. 
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Now, if I consider a disloyal commander, so let us assume that in the first round it sends 

messages, x, y, and z to General 1, 2 and 3. So then in the second round when each of them 

run the reduced instance of the Byzantine problem, General 1 will send x to General 2, 

General 1 will also send x to General 3. General 2 will send y to generals 1 and 3, General 

3 will send z to General 2 and General 1. 

So, if you actually look at it, each of these generals actually receives the same set of 

messages, x, y, and z, x, y, and z, x, y, and z. And all of them compute the value of the 

majority function. So the majority function does not depend upon the order of the inputs. 

So all of them will essentially compute the same value, which is majority x, y, z. 

So in this case, of course, condition IC2 is not relevant because a commander is not loyal, 

but at least all the loyal lieutenant generals who are generals 1, 2, and 3, all of them are 

going to compute, are going to agree on the same value, which is majority of x, y, and z. 

Whatever it is, we do not care because it will be the same for all of them. 
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So now that we have seen the algorithm, it is time to move on to the proof. So the proof is 

rather elegant, and it is important to appreciate it because algorithm was pretty complicated. 

So unless its proof is also understood, it will make, it will be hard to retain the key concepts 

of the algorithm. 
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So this is kind of a loaded slide, so we will go slow. So we will first prove a lemma. So for 

any m and k, where m is the round. So of course, m is not the number of traitors here. So 

let us not confuse ourselves with that. So for any m and k, OM m satisfies IC2, IC2 was 

the commander is loyal, all loyal generals obey his order. If there are more than 2 k + m 

generals, and at most k traitors. 

So if we have k traitors and, and more than 2 k + m generals, then we can say that, OM m 

will satisfy IC2. So let n be equal to the number of generals, n > 2 k + m, where k is the 

number of traitors, and m is the round number. So the assumption here is that the 

commander is loyal because if the commander is not loyal, then IC2 is not relevant. 

So it broadcasts value v to the rest of the nodes. If m = 0, this is trivially satisfied because 

all the nodes simply accept what the commander sent. Assume it is true for n - 1. Let us try 

to prove that it is true for n. So we are essentially using induction. So in induction, the base 

case is satisfied. Now we want to prove the induction case. 

We want prove the induction hypothesis. So we are assuming it is correct till n - 1. So step 

1 is commander sense of value to n - 1 lieutenants. This step is correct. So now let us 

consider step 2. Each loyal lieutenant applies OM (m – 1) with n - 1 generals. So we have 



the simple math over here that if n > 2 k + m, which is our assumption, (n – 1) > 2 k + n - 

1. 

So the same assumption that we have made over here, the exactly same assumption can be 

made for OM (m – 1), which means the number of generals for OM (m – 1) is and - 1, that 

is > 2 k + n - 1, which means that OM (m – 1), the, since the basic assumption is in place, 

the induction hypothesis, it runs correctly. 

So in OM (m – 1), if let us say, one of the loyal left is as a commander, all other loyal 

lieutenants will also agree on the value v. So the commander is loyal, it sends value v to 

all the loyal lieutenants. And if one of them becomes a commander in OM (m – 1), given 

the induction hypothesis, all other loyal lieutenant will agree on v. 

Now, here is the catch. We assumed that in this case, m ≥ 1. So if m ≥ 1, and we put it over 

here, what we are essentially going to get, or, or let us say, if we put it over here, we, we 

will get that (n – 1) > 2 k. If m ≥ 1, this follows from here, this result follows from here. 

This means that a majority of the lieutenants are actually loyal. Why? Because we have k 

traitors and since (n – 1) > 2 k (n - 1 – k) is essentially > k. So a majority of lieutenants are 

actually loyal in this set. So loyal lieutenant i receives v from every loyal lieutenant j in 

OM (m – 1), which is an assumption. 

Out of the (n – 1) generals participating in each instance of OM (m – 1), a majority are 

going to receive v. Hence all the loyal generals will decide on v. So it is important that I 

elaborate on this part a little bit more. 
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So what was the assumption over here? Well, what our assumption was that n > 2 k + m. 

So assumption here was that n > 2 k + m, and this was an algorithm. Now, if I consider a 

reduced algorithm, n - 1 is greater than, so this means that essentially in a lower round, the 

same hypothesis also holds. 

And by our induction assumption, we assume that OM (m – 1) works correctly. So if I were 

to look at this expression over here, if m > 1, that implies m - 1 > 0. So, so this means that 

if m is greater than, let us say, m ≥ 1, so m - 1 ≥ 0, so we will then say that n - 1 > 2 k. 

That further implies, so what we have, we have a total of n - 1 loyal lieutenants. Out of 

that, we have k traitors and we have n - 1 - k loyal generals. So these k traitors, we do not 

really care, but the n - 1 - k loyal generals that we have, they are the ones that we really 

care about. 

So in this case, what we have shown is that this number, which is the number of loyal 

generals is greater than the number of traitors. So these are essentially the number of loyal 

generals, and these are the number of traitors. So since the commander, so, now let us see. 
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Since the commander is loyal, what the commander essentially did is it sent its value v to 

everybody. Out of that, the loyal generals, let us assume these are the ones, and let us say, 

this is a traitor. So, so these are the ones that, so I am not showing all the general. So these, 

so these are the ones who will again, take the value v and again, broadcast it in OM (m – 

1). 

So, one thing that is clear is that all the loyal generals are going to send v. And between 

any two loyal generals, they will also receive v. So every, if I were to consider a loyal 

general over here, it would receive n - 1 - k values for v, and the remaining it will get from 

traitors, which can be x and which we do not care. 



But since this number, the first number is greater than the second, any majority function of 

these values is going to return the value v, which is essentially what we care about for a 

loyal general, that all the loyal generals would receive this, and thus, they would decide on 

v. And this is exactly IC2, which again, proves the statement of the lemma. 

So what was the statement of the Lemma, once again? It was that for any m and k, OM m 

satisfies IC2, if there are more than 2 k + m generals and at the most k traitors. So this, we 

have been able to prove via induction. I would request the listeners to, the viewers to go 

over this proof once or twice till it becomes reasonably clear. 
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Given that we have proven this key lemma, so now we can prove the theorem. So the 

theorem says that with at most m traitors and with more than 3m generals, which means ≥ 

3m + 1 generals, OM m or Byzantine algorithms satisfies the conditions IC1 and IC2. Well, 

if m = 0, this is trivially true, as we are just seen, there are no traitors. 

So assume it is true for OM (m – 1), again, proof by induction with the base case being 

proven here. And let us try to prove it for OM m. So assume that the commander is loyal. 

So in this case, in the previous lemma, I take k = m and I use Lemma 1. So with Lemma 1, 

if k = M, then m > 3m. 

And with at most m traitors, we use this to proof that it satisfies IC2. And if it satisfies IC2, 

which means that if all the loyal generals obey what the commander is saying, and the 

commander is loyal, this trivially satisfies IC1. So because of the previous lemma, proving 

this condition where the commander is loyal, actually became trivial. 

Now, let us consider the case for the commander is not loyal. So again, several simple 

points. At most m - 1 lieutenants are traitors. So that is because there are am traitors. And 

one of them is a commander, so n minus 1 left lieutenant are traitors. So, OM (m – 1) runs 

on, so for OM (m – 1), it runs on more than 3m - 1 generals. 



And 3m - 1 > 3(m – 1). So the same assumption we are making at the top, the same holds 

for OM (m – 1). And if the assumption holds, then the basic conditions for OM (m – 1) are 

there. So the induction hypothesis can be applied to the reduced Byzantine problem. 

And the induction hypothesis will then basically say that all instances of OM (m – 1) will 

satisfy IC1 and IC2. So let us make this assumption and try to prove the induction case 

where OM (m) also satisfies IC1 and IC2. 
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So what this means is that in Step 3, any two loyal lieutenants get the same values for each 

instance of OM (m – 1). So if I were to explain the Byzantine algorithm to anybody, I 

would say that this is by far the most crucial and critical step, which in my view should be 

visualized like this, that if these are all the lieutenants. 

And if I am assuming that OM (m – 1) runs correctly, then what happens is that in a second 

step we have (n – 1) instances of this algorithm, and pretty much after the algorithm ends, 

pretty much the output of each algorithm, it is not explicitly sent because let us assume that 

this is, in any given Gi. So it is not explicitly sent, but what we have seen is that this is 

inferred, but everybody infers the correct thing. 

So now, I am assuming that in OM (m – 1), the induction hypothesis, it runs correctly. Gi 

was a party to, (n – 2) instances of this algorithm being initiated by its fellow lieutenants, 



and also it received one value from its commander, which it used to seed an instance of 

OM (m – 1). So if I were to add that, all the (n – 1) values that it gets, assuming that if Gi 

is loyal and another Gj is loyal, we claim that they get the same set of values. 

This is very important, and this is the crux of the entire proof. And the question is, why 

would they not actually get the same set of values? So they will not get the same set of 

values pretty much under the following circumstances. So let us try to understand what are 

those circumstances which might lead us to think that they will actually not get the same 

set of values. 

So let us, there is a need to elaborate on this. So let us maybe draw another diagram over 

here. And let us only consider two of these loyal generals, Gi and Gj, and there are a few 

more in the middle. So for all the generals in the middle, each one of them initiates a round 

of OM (m – 1). And since we assume that they run correctly, by the IC1 assumption, 

whatever value that let us say, another vk got, both Gi and Gj both of them are going to 

agree on this value of v k. 

So then, let us consider the value vi that Gi got. Since Gi will be a commander of its own 

instance of OM (m – 1), and it will send the value to Gj, and so it will essentially initiate 

round of OM (m – 1), Gj is also going to agree that Gi actually got vi because of IC2, and 

the same will also hold for Gj. So this essentially means that for each of these individual 

sub algorithms, algorithms with a reduced input, all the loyal lieutenants will actually end 

up with the same set of values, for the same v 1 to v n - 1. 

It is going to be the same set. There is no reason why it should be a different set. And the 

reason is very simple that for each of these OM (m – 1) instances, if it is running correctly, 

each of it will correctly produce a Byzantine agreement. So whatever it is that they have 

actually gotten from their commander will reflect in the set of the other loyal generals.  

And it is possible that one of them can be a traitor, but that does not matter because all the 

loyal generals will come to an agreement of about what the traitor must have gotten. It does 

not matter if the traitor got that or not. As long as the rest of the loyal generals agree, IC1 

is satisfied, which is anyway, what we care about.  



Given that the vector of values is the same for all the loyal lieutenants, the majority of this 

vector, whatever it is, will be the same for all the loyal lieutenants. And that is the key, that 

is the crux. So if you go back to our example, something very similar was happening. 

So, essentially the majority of the same set, majority of the same set or vector will be the 

same for everybody, for all the loyal lieutenants. So they are going to compute the same 

majority value. And hence, thus, we have an agreement. So with m traitors, what this means 

is we need at least 3m + 1 generals.  

And then we showed an algorithm, we showed that it is possible to get byzantine 

agreement. So this particular algorithm that we showed is actually very, very expensive in 

terms of computation, in terms of resources. And it is essentially a cursive algorithm that, 

whose complexity is essentially a factorial complexity. So it is clearly more than 

exponential. 
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And so that is the reason typically in most instances of Byzantine consensus, we make 

some simplifying assumptions. So let us make one search assumption, which is a solution 

with signed messages. 
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So here, what we will do is that we will create an additional assumption and we will find 

that such kind of Byzantine solutions with signed messages are common in the world of 



cryptocurrencies. So that we will have a separate lecture for that. Here we add an additional 

assumption, which is A4. So, we claim that this will make our life significantly easier. 

Here, our claim is that a loyal general signature cannot be forged. So it is not possible to 

forge the signature of a loyal general. We can detect any kind of an alteration. So what this 

furthermore means that if let us say the commander is sending a value v, the value v cannot 

be tampered. 

So if let us say the commander is sending value v, and the commander is signing it with, 

so we will use the colon. The left side of the colon is a value, and the right side is a signature 

of who is signing it, and let the commander be general number 0. So if there is a message 

of this type, this message cannot be tampered with. So this, there's no way that this message 

can be forged or tampered. 

So if this is what the commander has said, well, this is what it is said. So we will use a 

notation x: i to basically mean x is the message, which has been signed by General i. 

Something of the notion x i: j would mean that, well, the contents of the message are x, it 

was first signed by i then by j. And of course, this, this particular sequence, this is not 

tamper able. It is not possible to with it. 

All that we can do is we can append signatures. And we will see why it is done this way 

when we discuss more about cryptocurrencies and so on. But at the moment, the contents 

of the message and also the existing set of signatures cannot be changed. Only thing that a 

node can do is append to this list. That is all. 

So we will find that if we have such kind of a facility available, then it is possible to have 

a significantly simpler solution for this problem of Byzantine generals. That is mainly 

because we will, this non-tamperablitiy will give us, will give us the ability to significantly 

simplify the way we do things. And we do not have to run this factorial style competition. 
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So a few more assumptions. So let V i be the set of properly signed orders. Well, a properly 

signed order is essentially the value of the order, plus a range of signatures. And this entire 

message has not been tampered with. So then it is a properly signed order. 

So initially for each general, V i = ϕ, it is empty. Additionally, assume a maximum of m 

traitors, which is a standard assumption that we have been making up till now. Assume a 

function choice of V. So V is a set of values and choice of V has certain properties. Let us 

see what it is. If V contains a single element, choice of V is that single element, small v. 

If the set V, capital V is empty, then this is a default value. So, choice of V otherwise is 

fixed for a given vector. So, for a given vector or set of values, the choice is fixed, and it 

does not depend upon the order of the elements within V. So it is independent of the order. 

And for a given set, the choice of V similar to the majority function for a given set, the 

choice is fixed. 
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Now, the algorithm goes as follows. It is a very simple algorithm, substantially simpler 

than what we have seen. The proof is also substantially simpler. So the commander signs 

an order and sends it to every left. So the commander's value. So here also, we make the 

same assumptions about loyalty. Commander can be disloyal, so it does not matter. It 

essentially takes a value and essentially signs it. And commander is General 0, sends it to 

every lieutenant. 

For each Lieutenant i, if he receives a message of the form v : 0, which means from the 

commander and has not received any order, so then it set V i. So lieutenant i sets, it set V 

i equal to the value that it receives. And then so, step 1, it sends the message v 0 i to every 

other lieutenant. So, what happens? So what happens is for the first message that any 

lieutenant gets in this synchronous algorithm, it adds the value V to its set and it appends 

its signature v 0 i and sends it to every other lieutenant. 

So now, let us consider the steady state case. So steady state case is that Lieutenant i 

receives a message of the form, the value V initially signed by the commander and then a 

sequence of signatures from j 1 to j k. And the value V is not present in its own set. Well, 

how can this happen? Well, this can happen if the commander is not loyal, then the 

commander will essentially be sending different values to different nodes. All of them will 

have its own signature, which is fine. 



So, then the nodes will be exchanging these messages among each other, which was similar 

to what we were doing in the previous algorithm. But in the only differences that in this 

case, these are signed messages. So the advantage of the sign messages is that it is possible 

to exactly know who has received what, and then if the rest of the lieutenants just exchange 

these signed messages, just between themselves, they will get an idea of every single 

message that the commander has sent. 

So, this is important that the lieutenant generals cannot create any new values. So this was 

not the case in the previous algorithm, but in this case, all the messages have to be initially 

signed by the commander whose values and the values of those messages cannot be forged. 

So essentially, any values that is there in the system, all of those values have to ultimately 

be generated by the commander because nobody else can. 

So, the task of this algorithm is just to get all the values that the commander has generated 

and sent, just in case it is disloyal, and to ensure that all of those values are there with all 

of the loyal generals. So, if a loyal general has all the values, which the commander has 

generated and sent in the first round, and if they get the set, then they use the choice 

function. And as long as the set of values is the same, the output of choice of these also the 

same. 

So, what is the main aim of this algorithm? The main aim of this algorithm is just to 

circulate all the values that the commander has generated and ensure that they reach all the 

loyal lieutenants. So, the steps 2a and 2b are vital in doing that. So in this case, if a message 

is received with the form v 0 j 1 to j k, and if v is not there in the set V i, so it is one of 

those traitors values that the commander has generated, then we add v to V i. 

And if k < m, so k is pretty much equal to the number of signatories of this message, other 

than the commander itself. So this is the value of k. Please do not confuse it with the k we 

have been using in the previous algorithm. So if k < m, then lieutenant I sends. So it 

appends its own signature, which essentially becomes j k + 1 to the message, and sends it 

to every other lieutenant, which is not in the original set j 1 to j k. 



And of course, it does not send a message to itself, so its sends a message to every other 

lieutenant. And the message is basically that a new value has been discovered. In any round, 

if a certain lieutenant does not send a message, it should send a message to everybody 

telling them that it will not send a message or this can be detected via timeout, and a default 

value can be inferred. 

When Lieutenant i will get no more messages, it chooses choice of V i. And what we have 

just discussed that as long as every single value, which the commander generated and sent 

is all of those values are there with all of the loyal lieutenants, they have a set of all the 

unique values.  

And the moment they compute the choice function on it, the output is guaranteed to be the 

same, and this is essentially the Byzantine consensus, the Byzantine agreed value. So what 

is the aim of this algorithm, is just to circulate all the values that the commander has sent 

to everybody among all the nodes. That is the key, that is the key aim. 
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So what, so a quick clarification. So how will a lieutenant know that it will not get any 

messages? Well, so how do we terminate? So in round k every lieutenant gets a message 

with k signatures. So other than the commander, of course, so the lack of a message can be 



detected. So that by the end of round k, every loyal lieutenant is sure that it has seen all the 

messages with k signatures. So this can be insured. 

So this is something we need to proof that we will require at the most m rounds where m 

is the number of traitors, and ultimately the algorithm will terminate. So before a question 

is asked, let me answer, it is the most common question, that look, if the commander sends 

different values to different people, it should just take a single round. 

So if it has sent, let us say five different values to different people, it should just take a 

single round where all of them just sent all the values that they have gotten to everybody, 

and then they can compute a choice on the values. However, it is not that simple. The 

reason is that we might have, maybe V 2 was sent to a lieutenantet, which is actually a 

traitor. 

So what the traitor would actually do is that it will actually keep quiet and it is not going 

to send the value to everybody. So this value will not circulate. And since this value will 

not circulate, it requires many more rounds to ensure that all of these values that have been 

sent, all of them are in circulation till the point of termination is achieved. 
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So let us now prove algorithm. The proof is reasonably simple. So we will first prove IC2. 

So if IC2 says if the commander is loyal, then what happens? Well, then only a single 

message of the form v 0 will be sent to every lieutenant. This eases up our job significantly. 

Since v cannot be forged, all the lieutenants will get v. They will only pass v. 

So regardless of the number of rounds, the only value that will be in circulation will be v. 

So all the sets, set of values with each node V I, all of them will only contain a single 

element v. So the choice functions will only return v, and hence Byzantine consensus is 

achieved. So this was an easy case. 

Now, consider the more difficult case for the commander is a traitor. So this is exactly what 

this algorithm was designed for. So we need to prove that for two loyal lieutenants, V i and 

V j, they actually get the same set. So consider an element v element of V i. So what is it 

that happened when i actually added v? 

So when i added v, either, this is the first message, which is round number 0. If this is the 

first message, then i would have sent the value of V to j. So then we would have definitely 

been in V j. If not, then I must have gotten a message of the form v 0 j 1 to j k. If j is one 

of j 1, to j k, this means that j has put its valid signature on the message. So it must have 

gotten an order with v, and v thus must be there in J set also. 



Now assume that j is not one of them. If j is not one of them, well, that is also simple. This 

means that j is not in j 1 to j k. So, i, in any case, if you see the steps in our algorithm. So 

if we just look at step 2b, if k < m, then what i does is it sends this message to every other 

lieutenant other than, of course, the signatories of the message. 

So in this case, we are assuming that j is not part of the original list of signatories. So i will 

send v to j. So j will anyway have it. So if j is not one of them, i will send it, which is step 

2b. The only case that we need to consider when an element v that is there in capital VI is 

not there in j's set is actually when i get the message and its last round, when k = m, and 

this value is not there in V j’s set. So what do we do now? 
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So what we do now is what we need to prove. So since k = m and the commander is a 

traitor, what can we assume? At most m - 1 lieutenant are traitors. So we are assuming a 

total of m traitors. One of them is the commander who is the traitors. So we have m - 1 

lieutenants are traitors. This means one left end out of j 1 to j k. So, so what is the crucial 

point. Before it is asked, let me explain. 

So in the last round, which is the mth round, every single message needs to have m 

signatures. So every single message has to have m signatures. So it is not possible for one 

of the traitor nodes to actually wake up in the last round and start sending messages. That 



is because it is not going to be able to actually get m signatures. So the message is going 

to be rejected. All the loyal lieutenants are going to reject the message. 

What that traitor can actually do is it can try to play mischief. And instead of sending 

messages to everybody, just send it to a small set and try to exclude one of the nodes, which 

in this case General j, the node corresponding to General j, which will not receive the 

message. So we want to claim that this is not possible. The way we will do it is if we 

consider the set of all the signatories in the last round, which is j 1 to j m, m - 1 of these 

are traitors. 

Not m, because the commander is a traitor, which means one of them is actually honest. If 

one of these signatories is honest, what this signatory would have done is that when it got 

the value v, it would have sent the value to all the nodes who actually do not have that 

value. And since j is not there in the set, j x must have sent a message to j. So this is very 

important. 

And let me repeat, since there are m signatories in the last round with at most m - 1 traitors, 

one of them must have been honest, and that node must have sent v to j. So this proves that 

if v is element of V i, then v is also an element of V j, and we can also prove the reverse 

also. So, so this basically means that the set V i is essentially as subset of V j. But then also 

we can use the same argument to prove that V j is also subset of V i. So essentially, these 

are equal. 

So for any two loyal nodes, their sets are actually equal. So then what we say is that m 

rounds. So this further proofs that m rounds are sufficient, mainly because we will have a 

minus 1 traitors. So one of those signatories has to be honest, and that will ensure that all 

the rest of the nodes get the value. So all the values that the commander would have sent 

in the first, in the 0th round will all become visible, all get stored. 

And the choice function on the same sets, same set of V i or V j will return the, exactly the 

same value, whatever is the value, we do not really care, but it will be the same value. And 

this pretty much establishes Byzantine agreement. So this completes the proof for our 

Byzantine consensus algorithm, which is a form of a command consensus. 



And, we looked at a very expensive solution, but we also looked at a better solution where 

even if we have m traitors, as long as we have more than m nodes, well, that we will have 

otherwise it will become aqueous problem. So even if we have m + 1 nodes, then of course 

it is trivial, but anything ≥ n + 2 is when the problem is interesting.  

And we can, using signed messages of this type, we can solve the consensus problem, 

where of course the signatures can be appended. So we will see something very similar in 

principle when we discuss blockchains. 
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