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Welcome to the lecture on Distributed Minimum Spanning Trees and Distributed Snapshots. 

So, what we had seen in the earlier lecture on leader election that if we are able to somehow 

overlay a tree on top of a network, on top of distributed nodes if you can somehow overlay a 

tree instead of a ring which we have been traditionally used to we doing. So, then what we can 

do is many distributed algorithms becomes simpler. For example, electing a leader, finding the 

smallest element in the minimum finding all of that becomes much easier.  

So, in this lecture as well we will discuss one way of taking a snapshot of a network that also 

becomes easier if we have a tree. So, which tree should we choose? Well, a good tree is a 

minimum spanning tree the reason being it minimizes the length of the edges so it kind of keeps 

things close by. 

(Refer Slide Time: 01:22) 

 

So, we will discuss the Gallager Humblet Spira Algorithm the GHS Algorithm. We will discuss 

the overview the algorithm and the analysis and then everything about distributed snapshots.  
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So, let us first look at some basic properties of an MST. So, it is important that before the MST 

is understood the following algorithms the Kruskal's algorithm and the Prim’s algorithm both 

of these are understood quite thoroughly including the groups. It is very important to go through 

both of these algorithms. The Prim’s algorithm and a Kruskal's algorithm for sequential MST 

finding and the proof of the Prim’s algorithm particularly is very important. 

So, the inductive proof of the Prim’s algorithm you should go through it. So, now I will have 

suggested a few, well so I have already suggested algorithms, but you can look at it from a 

popular text on algorithms first and the proofs are important.  



So, now without proving, without going in a depth I will list a few properties of an MST that 

we shall use. The first is the property of uniqueness which says that if each edge of the graph 

has a unique weight then the MST is unique. So, this goes without saying this is easy to proof. 

So, this is our first point that in each edge of the graph is unique then the MST on a whole is 

unique. 

So, you will not have two MST. Of course, if you have edges with same weights then you could 

have a non-unique MST in a sense two MST with a same weight otherwise it will not happen. 

Furthermore, here is one more theorem that is a direct outcrop of the proof of the Prim’s 

algorithm which says that since call construction based on the least weight edge. So, let us 

consider a fragment as a sub tree of a MST.  

So, if we take a minimum spanning tree so let us say that this is the tree. So, let us take a sub 

tree of the minimum spanning tree and let us call this a fragment. So, let us refer to this as a 

fragment. So, then an outgoing edge of a fragment has one endpoint in the fragment and one 

node outside the fragment. As you can see over here this is the outgoing edge. So, this has one 

node within the fragment and one node outside the fragment.  

So, we basically have a sub tree then we have the rest of the tree over here and there is one 

edge that connects this fragment with the rest of the tree and so basically we now are looking 

at some property of this edge. So, for anybody who knows the proof of the Prim’s algorithm 

this theorem will be rather obvious that if F is a fragment and e is the least weight outgoing 

edge then F union e is also a fragment.  

What does this mean? That F is a fragment and this is the edge e. so if I consider this to be the 

fragment and this to be rest of the world and then I draw a line over here. So, there might be 

multiple edges that go from an edge of the fragment to the rest of the tree. So, this could be one 

edge, this could be one more this could be one more. So, let them be e, e’, e’’. 

So, what the theorem is saying just look at it if e is the least weight outgoing edge which means 

that out of all the edges that connects this fragment to the rest of the tree, if e is the one which 

has the least weight then the claim is that F union e which basically means that I can create a 

new fragment like this and this will also be a fragment of the MST in the sense that e will be 

an edge which is the part of MST that makes F union e also a fragment of the tree. So, this of 

course is easy to prove. So, let us look at this once again.  
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So, let us say that this is a sub tree, this is a fragment and we have one edge e to the rest of the 

nodes. And so then currently it is a tree we claim that this is the MST. Let us assume this is not 

the case well if this is not the case then what would happen then it would mean that there is 

some other edge e’ which is a part of the MST and e is not a part of it. Well, but what you 

would see is that if let us say now I add e’ this will clearly create a cycle.  

In this cycle, we know that the W(e’) > W(e) and let us say I remove e, we are claiming that 

this is the MST, but I claim that there is a contradiction the reason is that if add edge e. So, let 

us assume that the rest of the tree remains the same and its weight is fixed. So, then if I add 

edge e so let us maybe say that the weight of the fragment is W(F) and weight of the rest of is 

W(R).  



So, let us consider two trees one that has e and one that e’. So, the tree that has e its weight is 

W(F) + W(e) + W(R), rest of the tree and the tree that has e’ its weight will be again the weight 

of the fragment plus its own weight because at that point edge e will not be there plus the weight 

of the rest of the tree.  

So, clearly these parts are common and we claim that this is the MST, but this cannot be the 

case because for this to happen W(e’ ) < W(e) which we clearly know it is not correct because 

W(e’) > and so we clearly know that this is not correct. Hence any out of all the outgoing edges 

the least weight outgoing edge which is edge e in this case has to be a part of a MST.  

And F ∪ e will thus become a fragment. So, this is exactly the intuition that is used in the Prim’s 

algorithm to iteratively or I should say recursively increase the size of the tree. So, what we do 

is we first consider the starting node as a single node then we look at all of its neighbors, take 

the least weight edge. So, this becomes a new fragment then again we draw another boundary 

around it then we pick the least weight edge.  

Again we draw another boundary around it again we pick the least weight edge maybe this is 

the one. So, we gradually keep on expanding the boundary and we keep on adding edges, but 

our criterion always is that for the boundary around the fragment that we have created we just 

pick the least weight edges and we just keep on adding them and given the fact that we have 

proved this theorem now the F ∪ e maybe I will write it in a slightly better form.  

F ∪ e is a fragment we are always sure that the edge that we are adding is a part of MST. So, 

if we continue to grow the tree ultimately we will encompass all the nodes and any N node tree 

will have N - 1 edges. So, when we have N - edges we will know we are done and the proof is 

by induction. Given the fact that at every step we start from an MST for that fragment and 

adding a new edge still maintains the MST property.  

We can prove that when we reach the end which is when we cover all the N vertices with N - 

1 edges a tree continuous to remain an MST. Of course, if you are able to understand what I 

said then I would suggest that you do not go forward because you will not be able to understand 

the rest. You first take a look at the proof of the Prim’s algorithm that is the most important.  

So, you first take a look at the proof and then you try to understand this theorem over here if 

this theorem is understood then only you proceed otherwise you do not.  



(Refer Slide Time: 10:36) 

 

So, the overview of GHS is like this that we want to take Prim’s algorithm and create a 

distributed version of it. So, initially each node is a fragment so initially every single node is a 

fragment. Gradually what happens is nodes fuse together to make larger and larger and larger 

fragments something that we also saw in ring based leader election where the windows kind of 

grow larger, larger, larger and larger.  

So, in this case, the fragments fuse together to make larger and larger fragments and the 

fragments of course joins another fragment why are the previous theorem which is this theorem 

which is by identifying the least weight outgoing edge. Furthermore, how to find the least 

weight outgoing edge? Well, all the nodes within a fragment run a distributed algorithm to find 

the least weight outgoing edge.  

Gradually what happens is that the number of fragments this number itself decreases ultimately 

only one fragments remains which covers the entire set of nodes and of course in this case we 

are assuming that the graph is connected and then that is the MST. So, one assumption we 

make is that of course we have unique edge weights that gives us a unique MST that is one. 

And the other is that the graph is connected. So, these are the two assumptions, but this 

assumption is made by other algorithms as well nothing special over here.  
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So, what are the properties of a fragment? So, now we are getting into our distributed algorithm 

not completely, but we are kind of looking at it from the outside. So, let us give each fragment 

a unique name, unique ID. So, when two fragments combine then all the nodes in one fragment 

will change their name to a new name. So, what you see is that if two fragments are combining 

to create a bigger fragment then of course a new name has to be an assigned the same way the 

two company is merged.  

So, what happens is that typically if a large company gobbles up a small company then no name 

is changed, but if two equal size companies kind of merge then the name kind of reflects both. 

We will see something similar happening with fragments that assume that fragment F1 is 

combining with fragment F2. We will see it can only do so if level of F1 ≤ F2.  

What this means is that if one fragment F1 is joining fragment F 2 it can only do that if F 1 is 

the smaller guy is smaller or is equal. So, which basically means a bigger fragment cannot 

gobble up a smaller one, but a smaller one can always approach a bigger one or one of same 

size asking it to join. If level of F 1 < level of F 2. So, level is somehow indicative of its size 

we will see how.  

If level of F 1 < level of F 2 then all the nodes in F 1 take on the name of level of F 2. So, which 

basically means if a smaller company joins a big company like a multinational then all the 

nodes in the smaller company F 1 will take on both the name and the level. So, every fragment 

has a name and a level and the level is somewhat indicative of its size. So, if level F 1 is less 

than that then F 1 loses its identity. 



So then the nodes of F 1 will take on the names and levels of nodes in F 2. If however is an 

important point if you can mind if however level F 1 = level F 2 then the level of both the 

fragments gets incremented by 1. So, this is important that if two fragments with an equal level 

are merging then what happens is that the level of the combined fragment increases by 1 gets 

incremented by 1 that is how the level increases.  

Furthermore, we will see what happens with a name so that is also interesting they get a new 

name and the new name is basically something that kind of combines the names of both. So, 

we will see in a couple of slides how that happens, but pretty much the levels are equal it is 

more complicated than when the levels are not equal. The nodes of F1 ∪ F2 get assigned to 

higher level which is the old level plus, plus.  
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So, what we are saying is that look we have a small fragment, we have a big one and we are 

combining them, the combining edge is here. So, if let us say F 1 < F 2 in terms of levels then 

of course the name and level of F 2 gets transferred over here, but if they has the same level 

then the levels of both is incremental and a new name is given to both. So, it is not that it 

becomes one big homogenous fragment. 
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So, we will now define two important combining rules and one waiting rule. So, let F 1, L 1. F 

1 is fragment F 1 with level L 1 be desirous of combining with F 2, L 2 where 𝑒𝐹1 is the least 

weight outgoing edge of F 1 and it terminates in F 2. So, between F 1 and F 2, 𝑒𝐹1 is the least 

weight outgoing edge from F 1. So, in consonance with what we have said there are two 

combining rules one is the less than rule LT rule.  

If L 1 < L 2 then we combine the fragments all the nodes in a new fragment will have name F 

2 and level F 2. It is like a smaller guy merging with the bigger one which we have discussed 

in this slide as well. If L 1 < L 2 that is what we do that nodes in a new fragment will have the 

name F 2 and the level L 2, but if they are equal that is where we said that there is a catch. 



If the levels are equal, then we check if the least weight outgoing edges are the same or not. 

So, this is the catch over here. So, in this case we will combine when we have the same levels 

subject to the fact that our outgoing edges are the same. If they are not we will not because the 

two fragments combine with all the nodes subject to this. So, then it is important even if their 

levels are equal they just do not combine like that only the LT rule if the levels are not equal 

then only L 1 will combine L 2. 

Otherwise, we will see that their outgoing edges have to be same least weight outgoing edges 

only then we combine and then as we have discussed the final level is L 1 + 1 and we also 

discuss that we will give both the fragments and the nodes within them a new common name 

and a new common name is basically the name of the edge. So, let us assume that every edge 

has a unique weight and unique name also and the name could be just a combination of the two 

node IDs of the edge.  

So, it could be that does not matter howsoever the name is derived, but we will essentially the 

edge will be the common name for the nodes of both the fragments F1 ∪ F2 and if any of these 

above rules do not apply we just wait, we wait for them to apply. So, this is basically telling us 

that what we are doing is that small fragments will always go and merge with bigger ones. 

But equal size fragments will have a key condition which is that their least weight outgoing 

edges need to be the same only then they will actually merge so they will increment their level 

and the new name will be equal to the edge that connects them the least weight outgoing edge.  
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So, now we will discuss an algorithm it is a fairly long algorithm. So, we will have to discuss 

the state that we maintain. So, we have three states sleep, find and found. Sleep means the 

nodes has not been initiated. Find means the node is currently helping its fragment search for 

𝑒𝐹, 𝑒𝐹 is the least weight outgoing edge. Found means 𝑒𝐹 has been found or the least weight 

outgoing edge has been found. So, that is what this means.  

So, here also I am P and the other node is q. So, every node maintains an array called status q. 

So, status q is basically the status of the edge from p to q. So, status q where I am P and other 

nodes are q. So, for every q which is my neighbor I will have a status array with a qth entry. 

So, then it will have three values basic, branch and reject. Basic means the edge is unused, 

branch means edge is part of MST. 

Reject means the edge is definitely not a part of MST basic, branch and reject. Basic means as 

of now we do not know its status, branch means we know its status and we know it is a part of 

a MST. Reject means we know it is status and we know for sure that is not a part of MST then 

we have discussed name and level, name of the fragment, level of the fragment, parent so the 

parent basically says the following that let us say two nodes for the same level combine or let 

us say even a smaller node combines with a bigger node.  

So, there will always be a combining edge. So, let us consider its first combination with the LT 

rule. So, let us say that this is a small fragment and this is a much bigger fragment. So, in this 

case if this is the much bigger fragment. Every node over here will basically point to some 



other node which points to some other node which will ultimately take it towards the combining 

edge. So, every node will point towards the combining edge.  

So, these are essentially parent pointers which take us towards what is called the combining 

edge and similarly if we have a combination of two fragments where the level was the same. 

So, every node here will also have parent pointers towards this combining edge, the common 

combining edge and every node here also will have a parent pointer that goes towards the 

common combining edge.  

So, we will see why this is the case, but this is how the parent pointers actually work and then 

of course we have a bunch of temporary variables like best weight, best node, best node and so 

on which are purely temporary variables.  
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So, now let us discuss the algorithms. So, the algorithms we have many algorithms 8 or 9. So, 

always the assumption is that the current node is p and the neighbor is q.  

So, let us look at the initialization. So, let us say that initialization is when things are starting. 

So, let us say I am node p and from node p p, q is the least weight branch. So, clearly if this is 

the initiative I can draw a circle around it p, q intersects this circle and this needless to say is 

the least weight edge. So, I set the status of this edge as a branch status q as branch. I start from 

level 0 and my state is found I found a least weight edge.  

Rec ← 0 means we will see what rec means, but at the moment for this case it is 0 and I send 

a connect message to q the p will send the connect message to q and this is when I am 

initializing. So, this is when I am starting I know that the level of q will at least be my level or 

we will see essentially as far as least weight edge let me send a connect message and let us see 

what q does.  

If q response, I connect otherwise I do not. So, what I send is like I send a connect 0 message 

we will see in a second what does 0 stands for, but essentially as far as I am concerned if q is 

my least weight edge I request you to kindly connect with you and I do that by sending a 

connect message and you can clearly see that in this case p, q will be a branch of MST. So, 

there is no reason why it should not be.  
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Now, coming to algorithm 2 which is the processing of the connect message. So, when I receive 

a connect message the message type is connect and L is the level of the sender. So, in this case 

the level of the sender is 0. So, when a node receives a connect message of course you can say 

p sent it to q, but what is our convention. Our convention is that I am always node p and the 

other node is q.  

So, as far as I am concerned I am node p, I am getting a connect message from another node 

which is q. So, this is the convention that we adopt might be confusing, but this is what we do. 

So, now what I do is that look I have gotten a connect message so I will look at my level and 

the level of the connector. So, if L > level which means that the level that is coming along with 

the message if that is less my level.  



No problem this means that a smaller fragment wants to combine with a larger fragment. So, I 

can happily combine with the rule LT so absolutely no issues. So, I will set the status q to 

branch and then I will send an initiate message to the smaller fragment this is a large fragment 

I will send initiate message to the smaller fragment saying that look I have accepted your 

connect message you as of now you are initiated. 

This is your new level, this is your new name, this is your new state and a state is whatever is 

my state. If currently I am searching for my least weight edge now you are a fragment and you 

join me so you need to help. So, whatever is my state that is currently your states you take it 

and you initialize yourself. No problem so this is sent to q. So, just a quick disclaimer before 

this point.  

This p and q business can be confusing because you will argue that look in the previous slide 

p sent a connect message to q. Now you are saying that I am p and I received a connect message 

from q how is this possible? Well, in a distributed algorithm you are looking at distributed state 

machines where every node is an independent computing entity. This is a node it gets a message 

based on that it updates it state table. 

And then it sends messages to other nodes including the one that send the message to you. So, 

that is the reason when distributed algorithm are written this might sound tricky and confusing, 

but I am always node p whoever is doing the action and whoever is sending or receiving a 

message the entire world outside is always node q. So, this of course is complicated, but if you 

can appreciate this complexity then appreciating such algorithms will become much, much 

easier.  

So, let us come back to our discussion I will clean the slide. So, the idea here was that I am 

combining with rule LT primarily because here I have a case where I have a small fragment 

that is requesting a bigger fragment to connect and the bigger fragment has no issues at all. So, 

it set status q to branch and sends and initiate message back to the smaller fragment saying that 

okay look this is my name, level and state.  

Henceforth, this is your name, level and state as well, else if this condition is not holding and 

the status of the node is basic. So, the status of the node basically has not been as far as I am 

concerned this node has not been explored so the status[q] = basic. So, then what I will do is I 

will combine with rule EQ.  



So, why will rule EQ be useful over here and why not you know so we are automatically seeing 

that a status of the node is basic. Does it automatically mean that L > level and do the conditions 

for rule EQ actually holds. Well, you will see that they actually hold and so you will see that 

they actually hold and there is no error over here, but it is important to remember this we might 

come back to this point. So, what we do is that we combine with rule EQ. So, for this we send 

the initiate message.  

So, why EQ will come here at the moment in leap of faith, but we will break that. When we 

send a initiate message. So, we are saying that they are at the same level. So, well no problem 

so your new level is level + 1 and your new name is the edge why of which this message is 

coming the joining edge which is pq, so p on one side and q on the other side and this is how 

we are joining.  

And so, the name of the edge is p q and furthermore, given that we have joined our new state 

should be equal to find. Find basically because now we have bigger a bigger fragment. So, we 

further need to expand our fragment which means that we need to find our least weight outgoing 

edge and grow. So, your state is fine as well as my state also has to become fine. So, this is 

basically what we do that we send an initiate message to the new fragment. The new fragments 

start the process of finding.  

So, we did make certain assumptions here we have not proven, but let us continue. So, the 

application of rule LT and rule EQ would be very clear over here. If you want, you can just go 

back to this slide where we define the EQ and LT rules and as you can see it was not all that 

complicated. So, here we basically LT was the smaller fragment to the larger fragment and EQ 

was both the fragments of the same size and they have the same least weight outgoing edge. 

So, the question that we have kept open is why will the rule EQ be useful over here which we 

will gradually see why.  
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Now how do you process the initiate message. So, let us say that again node p it is always node 

p gets an initiate message from node q. So, the message type is initiate we get a level dash, 

name dash and state dash. So, we set the state no problem, we set our level name and state so 

level dash, name dash and state dash. So, my level is now level dash, my name is name dash 

and state is state dash.  

Furthermore, given the fact that this is the combining edge I set my parent equal to q. So, if 

this is p q I set my parent ← q then what I do is I propagate the update. So, I defined a few 

local variables best node, best weight and test node we will see what these are. So, for each of 

my neighbors for each r ϵ neigh (p). So, basically for each of my neighbors as long as the 

status[r] = branch.  

So, essentially I propagate this along the small MST that I have created. So, along with the 

small little MST within my fragment I forward this message which means that the status has to 

be branch this means it is part of this MST fragment and furthermore, ˄ r ≠ q which means I 

do not send the message back to my parent I have only sent it to my children. So, this indicates 

that I am only sending the message to my children and I am sending the initiate message which 

means that look now your fragment has combined with some other fragment.  

So, now we are under the rule of a new fragment or let us say we all have changed our name 

and level. So, I have already done that now you do it. So, that is the reason we just send an 

initiate message with a new level name and state to let us say a child r. No problem the child r 

also does the same thing so on and so forth. What you can clearly see is that all of them 



ultimately end up pointing indirectly of course towards the combining edge. Indirectly means 

by a parents no problem.  

Now, what we do is we see what is the state? if the state is equal to find then it means that I am 

supposed to play my job as a good member of a fragment by finding the least weight outgoing 

edge. So, I set the rec variable to 0 again an internal state variable and I call the function find 

min such that we all members of the new fragment can find the least weight outgoing edge. 
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Now, problem find min, find min is not hard at all. So, find min by the way is not a message 

as you can see it is an internal function. So, the internal function is being called over here find 

min. Find min this is what it says. So, again I am p the other node is q as long as there is Ǝq ϵ 

neigh(p) which means I look at all the neighbors of p as long as there is some q which is a 

neighbor such that status[q] = basic which means that as far as p is concerned is an unexplored 

edge and out of all of its outgoing edges.  

So, out of all of its outgoing edges that are basic w(pq) is minimal which means that all of his 

candidate outgoing edges. So, clearly if the status of an edge is branch or reject it cannot be a 

candidate outgoing edge. It can only be a candidate outgoing edge if its status is basic which 

means it is unexplored. So, if it is unexplored out of all of them I find the node q such that p q 

out of this set is minimal no problem.  

Then I say that q → test node so then I try to check if it is possible to add q to my fragment and 

kind of grow q I mean grow the fragment via this pq edge. So, what has happened is that look 



two fragments are merged. There has been a common merging edge then initiate messages have 

been send. So, now let us say every node in at least the new fragment is aware that its boss has 

change.  

If let us say the boss was in the find state then all the nodes in the joint fragment will also be 

in a find state, so boss means the larger fragment. If both the fragments at the same level then 

what we will see in a few future algorithms is algorithm 4 in like algorithm 6, 7, 8, 9 is that the 

same level they will both of them will actually send initiate message to each other and then 

they will increment the levels in both the fragments and then they will also shift to the find 

state which means that they will start to find the least weight outgoing edge.  

So, every node will try to do its part. So, every node what it will do is it will scan all of its basic 

edges, neighbors whose status is basic find the minimum one and try to see if a connection can 

be initiated with it. So, it will do a test, so it will send a test message indicating its level and its 

name. So, name of course is the name of the fragment not its name the name of the fragment 

that it belongs to test node, test node in this case is q.  

If of course such a q is not found, then it will send test node ← ϕ and report this back that look 

I did not find any. So, now there are two possible outcomes of find min. One is that you send 

a test message the other is that you report that look that I did not find any. So, let us see what 

happens to both. So, how did we reach here. The big picture is that look after fragments merged 

you cannot stop the process of merging.  

So, you cannot stop the process of a fragment growing. So, after you are merged to fragments 

it is a job of every single node in the merged fragment to look for further expansion that is 

where we enter the find state. In the find state every node needs to do its part which means find 

all of its neighbor with a basic status, find the minimal weight neighbor in this set and see if a 

connection with it can be initiated by sending a test message. If it does not find of course it 

should report.  
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So, receiving a test message again same convention I am node p I receive a test message from 

node q. So, this p, q stuff can be quite confusing in fact the first time that I read it I thought it 

was pretty challenging, but that said and done now I have gotten used to it you also will be. So, 

this is basically that I am getting a test message I am p from q and level’ and name’ is q’s name 

and level.  

So, if q’s level > my level then by the EQ rule and LT rule anyway you cannot combine it. So, 

we just wait I just keep the message in an internal buffer and I do not do anything I just sleep 

on it else if name = name’ which means my name and q name is the same which basically 

means that a message has been send to another node of the same fragment.  



Well, then if the status is basic what I do is I mark the status to be reject. So, this clearly cannot 

be an MST because you cannot have an edge to a node in the same fragment that is now 

allowed. So, that will create a cycle in a tree. So, we know for sure that look this cannot be a 

valid tree edge. So, then what do I do this has to be a reject we need to reject this edge because 

it is to an internal node so I just reject no problem.  

Then let us say that if q is not equal to test node which means that as far as I am concerned I 

might have sent a test message to q and I would have set test node. We just look at this and 

clearing of the ink. So, whenever I sent a test message to some other node I set that node to the 

test node as the test node. So, if q ≠ test node which means that I have not sent a message to q 

saying that would you want to join me because the status of this edge was unexplored.  

Then clearly a reject message needs to be sent to q telling you that look we cannot join because 

we are actually a part of the same fragment, but if let us say q = test node which means that 

already a test message has been sent then I should call find min again and then move to some 

other node because clearly q is not the candidate and q will also mark this edge to me as a 

rejected edge because it would get my test message.  

So, recall that when is the test node set? It is set when a test message is sent. So, the fact that q 

is a test node it basically means that a test message which is this case. So, this is not equal to 

and this is equal to. So, in this case that the fact that q is a test node basically means that a test 

message has been sent to q which means that over due course of time q will mark the edge to 

me as reject so I did not bother.  

As far as we are concerned I know that q is a part of my fragment q knows that I am a part of 

his fragment. We mutually know each other if it is this case. If we mutually do not know that I 

should make you explicitly aware of the fact that look q you should not have sent me a test 

message in the first place because you and me are a part of the same fragment. So, we can never 

have a connecting edge between us.  

Hence, I am rejecting this message. So, as I said regardless of how the message is sent either 

as a test message or as a reject q will ultimately get to know that it is a part of the same fragment 

as p which is myself and it will pretty much mark me as invalid. So, given the fact that q is now 

a rejected node what I need to do is I need to again call find min and if I again call find min 

what would happen is that in this case the status of q will not be basic anymore.  



The status of I mean the other q, the q that we have been talking about in this slide again p and 

q is slightly confusing, but the good thing about the video is that the same slide can be seen 

over and over again to get the basic idea. So, in this case since the status[q] = basic this thing 

does not hold anymore because we just rejected it then some other node has to be picked out 

of this set.  

So, we will have a new minimum again we do the same again we sent a new test message to 

the new minimum. If it happens to be in my fragment so which means that I am a part of this 

fragment I sent the message to q. If somehow q also happens to be a part of my fragment 

unbeknown to me either it would have sent me a test message. So, with that I will get to know 

that q is actually part of my fragment.  

So, I will mark it as invalid or q will sent me a reject message and then I will mark it as invalid 

and again I will come to this point where I will start testing with some other neighbor of mine 

that satisfies this criteria and if I do not find the neighbor I will report this fact.  
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So, the key point is that of course if this holds that q has a higher level I wait otherwise we are 

part of the same fragment then of course essentially what I do is I reject q the branch is rejected 

and I call find min again because I would like to explore some other neighbor of mine. 

Otherwise, if the names are unequal names are not the same if the names are not the same then 

what I do either I sent an accept message to q because there is no reason why I should not.  



So, there is absolutely no reason why I should not and the thing is that number one there is no 

issue with the less than or equality and furthermore it is the least weight edge between the two 

fragments.  
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So, after I receive an accept message from q which means that q does not have an objection I 

set so once let us say p gets an accept message from q which means that q does not have an 

objection then I set the test node to null and let us say if the W(pq) < bestWt that I have seen 

then I set the bestWt ← W(pq) and I set my best node ← q and I report this fact.  

So, what I report() is that look I have found something and as far as I am concerned my best 

neighbor = q and report mind you are not a message to another node it is just a function call. It 

is just an internal function call it is not a message and the internal function call we will be able 

to see these internal variables. If I receive and also what I do if I receive a reject from q, well 

then I change the status of the edge from basic to reject and I continue with other neighbors.  

So, no problem what is the idea the idea is that look my state is find so my job is to find neighbor 

I start contacting my neighbors. In an ascending order first I look at only the basic edges not 

branch or reject edges and in an ascending order of weight I start contacting them either they 

can just hang on to my message and not reply to me. So, that is one option that they have the 

other is that they can either accept or reject. If they accept it I record this fact if they reject it I 

move on to some other neighbor of mine let us say this rejects I move on to another neighbor 

of mine.  
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So, what does the report method do? It is a method it is not a message it is a method. So, what 

does the report method does is that number one it looks at the set, but this is the set of all q so 

again I am p and the other node is q any other node is q. So, I look at all my neighbors such 

that the status of the neighbor is branch and it is not a parent. So, it means it is a child. So, both 

of these things together it means that the other node q is a child because it is a neighbor of mine 

and it is not a parent. 

So, it can only be a child and if rec is equal to this so basically this expression over here the 

cardinality of this set is essentially the number of children. So, if (rec = │{q: status[q] = branch 

˄ q≠ parent}│) ˄ the number of children which basically means that similar if you go back to 

the leader election algorithm in that we have discussed leader election in trees where all the 

children send their values to their parent and then it kind of propagates up the tree. So, this is 

basically saying that look if I have received a message from all my children and a (test node = 

ϕ).  

So, when I do I set the test node to null? When I receive an accept message or when I find that 

none of my neighbors picked a criteria which basically means that no outstanding test message 

is there. So, let us just look at the test node there when I receive an accept I set it to a null and 

when else do I set it to null? I set it to null when I run out a neighbor so then also I set it to null 

otherwise I do not set it to null.  

If I have sent a test message and it is outstanding, then it is non null. So, the fact that here I am 

saying that test node = ϕ which basically means I have finished my job of testing. So, what it 

means if you go back to the tree based leader election algorithm that was in the previous lecture 



of the slide set. So, we had said that every parent essentially finds its own minimum and also 

aggregates all the minima sent by its children.  

Once it is done all once of his children have sent a message which is precisely being captured 

by this complicated looking mathematical formula over here which just simply puts means that 

all my children have responded to me and test node = ϕ which again in simple layman terms 

means that I am done with my job. So, together the if statement means that my children are 

done with their job and I am done with my job I set the state to found.  

And I report as an honest child to my parent that look I am sending you the report message this 

is the best weight edge that I found. The best weight edge means as far as I am concerned for 

my sub tree this is the least weight outgoing edge it is a valid least weight outgoing edge and 

furthermore the node on the other side agrees to connect with you. So, I have an upfront 

commitment from the other node that is now going to refuse.  
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So, then how do I process the report message? So, when I get a report message from q so again 

I am p and I am always p when I get a report message from q in this case q is my child. So, 

then similar to again the last slide of the leader election algorithm with trees we said that a 

parent with his own parent and own child so something similar to this is happening over here. 

So, if q ≠ parent in the sense if my child is not my parent which of course holds for the root 

node. If let us say omega < bestWt that I have seen that the bestWt ← omega and the best node 

← q it means that as far as I am concerned the child that is sending me the best weight is the 

best node. So, I will record this fact and furthermore given that my child is sending me a 

message I will just set rec = rec + 1 which means that one of my children is responding.  

And then I will call the report function, the report function is the same as this which given the 

fact that we have understood this and so this will basically in this case we will check whether 

all my children have replied or not and given the fact that the rec variable I just incremented. 

So, I am assuming all of these variables are global within the scope of a node.  

So, since I have just incremented this it is possible that the if condition becomes positive and I 

enter this. If I do not, then there is no problem I just come back and I just keep waiting. So, this 

part of the quote basically means that every parent waits for all of its children to report their 

best edges that they are finding. It computes the overall minimum report that to its parent. 

So, this is as I said what would happen in any tree that every sub tree will report its best again 

the parent will collect everything from its children which again is a root of its own sub tree and 

it will just propagate that up, up and up and up no problem until you reach the root what is the 



root? So, the root in this case is slightly complicated we will come to it. So, otherwise if q = 

parent in a sense I am receiving a message from my parent which means my parent is sending 

me the report message.  

It is kind of strange, but we will see when that happens. So, then we will see so in this case q 

= parent. If the state is find, if my state is find I am still finding then I wait. If omega < bestWt 

which means that my best weight is actually the best then I change the rule. Otherwise, if let 

us say omega = bestWt which means me and my parent both are reporting infinity.  

This means that we have actually reach the end there are no eligible edges. So, then the MST 

condition has been met and it is all done end terminal. So, now the structure of the parent is 

quite important and see if you go back to the connect message so then the parent thing is quite 

important, but I would like to discuss change root first before going to parent because they are 

connected.  
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So, let us now discuss the last algorithm which is the change root method. So, here what 

happens is that we have found out in the entire fragment which node is connected to the least 

weight edge. So, this has been found out why and how? Well, so basically every single node 

of the sub tree broadcasted its best values to the root and finally the root computed the minimum 

operation over here as you can see and updated the best weight and best node.  

The best node is of course one of its child nodes that has a part to the eventual best node which 

lies at the edge of his fragment. So, every node just keeps a pointer to its child and just by 

passing these child pointers we ultimately reach the edge where you have the edge that is the 

least weight edge of this entire fragment. So, now when you decide to change your root which 

basically means that you are basically rooted at.  

This node that is at the edge so what this essentially means is that if we consider all the nodes 

within this p regardless of how they were, so, this is of course similar to the Raymond’s tree 

algorithm for mutual exclusion which was there in our lecture set. So, there what happens is 

we do a change, the change root essentially means that every node updates its parent point to 

point to the node table.  

So, every node over here update its pointer along the path such that so if let us say this was the 

old root. So, all the nodes pointed to this and the old root over here point to the new root which 

is over here and this is of course the edge that is pointing to a different fragment this is F1 this 

is F2 and clearly why are these edges it is possible to reach this node for any node within the 

fragment because every node within the fragment in any case was pointing to the old root.  

So, what will happen is that it will now what we are doing is we are establishing a path from 

the old root to the new root just by flipping child parent pointers. So, what we are doing is we 

start from the root we just see the status [best node] ← branch then what we do is we sent 

change root to best node and so we just keep on doing that ultimately what will happen is we 

will arrive over here. 

Then what will happen is that the status of the best along the core edge what we will do is we 

will set the status [best node] ← branch in the sense that this point the status of edge e from 

basic will turn into branch which basically means that now I acknowledge the fact that e is the 

least weight outgoing edge out of the fragment. 



And furthermore, you will sent a connect message connect level to best node which means 

across the edge e to the other fragment. So, what did we do? The summary is that in the entire 

fragment each of the nodes looked at each of its children that are outside the fragment on 

undecided edges started from the minimum went up the ascending change if there were any 

rejects ultimately till the other side gave an acceptance that yes I am willing to join.  

And then all of this information was for the work coagulated all the way up to the root and after 

that point the decision has made what genuinely is the best then subsequently another decision 

was sent back of course the parent point are slipped and I am not showing that in the slide, but 

then after that the parent pointers were slipped. So, let us say this edge over here was found to 

be the minimum. 

So, then we set the status of this edge to the branch and then we send the connect message 

where the connect message will again take us back to algorithm 2.  

There what was happening in algorithm 2? What was happening is that we were processing the 

connect message and there of course if you found the LT condition we connected immediately. 

So, here if you would recall we have kept something open. So, we had said that the LT condition 

is not holding so what could happen. If this is not holding it means L ≥ level which is fine.  

This means that from the outside the level is coming which is greater than equal to my level. 

So, now what I do is that I look at a status of the edge. With the status of the edge is basic then 

I wait which means that so what does this mean? This means that I have not made any decision 

about this edge. So, even if I have sent a test message on this edge I have technically not made 

a decision because I have not gotten any accept or reject.  

And so, I have not made any decision one sided, but let us see if it is not basic then I come here 

this is where we have left a question open. What we had said is that what happens here. So 

what happens here now we know. So, this basically means you reach over here number one if 

L ≥ level. Number two with the status of the edge is either branch or reject.  

So, let us look at the reject case first I think reject eliminate. So, if the status of this edge is 

reject then there is no reason why a connect message should have been again sent by the same 

edge because the connect message is contingent on the fact that an accept was received, but 

since a reject has been receive there is no chance that a connect message will be sent on the 

same edge because it means that both the nodes are a part of the same fragment. 



So, reject is not possible. So, this means that the status of the edge has to be a branch which 

means that from the point of view of both fragments it is there least weight outgoing edge. 

Furthermore, L cannot be greater than level this is not possible for a simple reason that for any 

connect to happen it should have gotten an accept first and if I actually look at it if you just 

look at this line over here whenever a test message is sent in this case if L > level then it just 

waits.  

So, then what would have happened is that in this case if L > level then no prior communication 

would have been initiated in the sense an accept message would not have been sent. This means 

this branch would not have been chosen and definitely a connect message would not have been 

sent along this branch. So, even L > level will not happen. 

So, the only choice that we are left is that the status is a branch and furthermore L = level 

nothing else is possible. Given that nothing else is possible what we see is that the EQ rule 

holds in this case. We were not able to save the first time when we looked at this algorithm, 

but now we can clearly see that the equality rule holds, the status of the edge is a branch. 

And furthermore the levels are equal because nothing else is possible and that is how we 

initiate. So, what would happen is for two fragments of the same level if we let us say take a 

look at their joining edge. So, let us call this node p and p’ I do not want to use p and q anymore. 

So, what would have happened is that p would have sent a connect message to p’ and got 

initiate back and p’ would have done exactly the same given that it is a branch for both p’ 

would have sent a connect message to p and gotten initiate back. 

And then what you see is in this thing that you sent the parent you set the parent to the other 

node. So, you would have a parent relationship around this edge which is also called the core 

edge that would look something like this. So, this is why I said that as far as all of these nodes 

are concerned they will direct their parent pointers up here, but here you have this cyclicity 

around this core edge.  

So, we can think of this edge as a parent and the two nodes here pointing to each other in a 

special kind of manner and all the nodes within are pointing to basically the root and both the 

roots are connected to each other in this fashion. So, now what happens is that this becomes a 

bigger fragment, but let us say if this fragment now wants to joins to another fragment then 

what happens is that let us say it finds a least weight outgoing edge.  



So, the least weight outgoing edge can be over here. In this case this cycle over here will break. 

So, this edge will go away and what will instead remain if I want to draw it in a slightly bigger 

canvas.  
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So, what would essentially remain is something like this if let us say these are the two fragments 

initially what happened is if this is the core edge this is how they were pointed towards each 

other and if let us say this is the least weight outgoing edge then this parent pointer will break 

down and then a sequence of parent pointers will be used to come here.  



So, this basically means that now as you can see all the nodes in this fragment are pointing here 

as this is the new root, all the nodes of this fragment are also pointing here because they were 

pointing to the old roots so now they are pointing over here.  

Similarly, if this is joining with another fragment depending upon the levels, depending upon 

what exactly is the level. You will have a connection that is made and so let us say that this has 

a lower level than this then of course this pointer like this and you will have a core edge 

somewhere within this fragment otherwise this edge over here will become the core edge and 

you will see such kind of a cyclic relationship.  

So, this is kind of nice, interesting and elegant yet complex. So, what we have basically done 

now is that we have looked at these special cases and we have furthermore said that what 

happens at the end. So, what basically happens at the end is that we set the change root 

messages and finally a change root happens and so gradually that is the way that your fragments 

actually expand, your smaller fragments keep joining around core edges. And they keep 

growing, growing, growing, growing ultimately the entire graph becomes a single fragment.  
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So, now a little bit of an analysis so we claim that there are O(N log(N)) fragment name or 

level changes total. We further claim that the message complexity is 2 E + 5 N log (N), E is the 

number of edges, N is the number of nodes. So, what is the logic well every node is rejected 

only once correct cannot be rejected more times. One test message and one reject message.  

So, every node that is not a part of the tree that is rejected only once and that it is finished. So, 

this is limited to 2 E messages fair enough for easy number of edges. At every level a node 

sends, receives at most these many messages, how many messages. One initiate message to 

start, one accept message, one report message. So, it receives these two. So, it receives and 

initiates message and an accept message.  

So, initiate and accept is what is receives every node and it sent a report message a change root 

or connect message depending upon where it is in the tree and a successful test message. So, 

these are the five kinds of messages that it sends or receives. Furthermore, there is no 

intersection between the sending set and the receiving set. So, we can say that for every level 

these are the 5 messages that every nodes receives.  

So, let us say there are N nodes then per level we have an exchange of 5 N messages right here. 

You are welcome to verify this. So, this is just a question of simple book keeping that is all and 

so I have just one more thing to add so how many level changes will you have? So, what 

happens is that anytime a level changes anytime that a level changes we claim that the number 

of nodes it at least doubles. So, I would like to make a slightly tighter claim over here. So, let 

us go over here.  
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So, the claim that I am making is that any fragment with level L with let us say level L has at 

least 2𝐿 nodes. So, this is trivially true if L = 0 it is trivially true because why 20 = 1 and every 

node by itself has level 0 so this is trivially true. So, now let us consider a mathematical 

induction based proof. So, let us assume that till level L this holds.  

So, basically for all levels for all L or let us say 0 between 0 and L this holds. So, let us now 

consider level L + 1. So, how do you go to level L + 1? You go to level L + 1 only when two 

such fragments combine otherwise we remain at the same level and then only is smaller 

fragments come and keep on joining you which is fine. So, then this induction hypothesis will 

still hold. So, now if let us say two fragments of the same level are combining then this will 

have 2𝐿 nodes this will have 2𝐿  nodes.  



So, total we will have 2𝐿 + 1 nodes. So, that is the total. So, again as we can see in the bigger 

fragment whose level is L + 1 the number of nodes that it has again at least 2𝐿+1. So, the 

induction hypothesis does hold. So, this means that the base case holds and the induction 

hypothesis holds. Hence by induction every time I increase the level the number of nodes at 

least double.  

So, this further means that with N modes the maximum number of levels that we are going to 

have is 𝑙𝑜𝑔2𝑁. So, with armed with this information so let us go back. So, given the fact that 

we will at best have log N level changes and per level change 5 N messages are sent. So, the 

total number of messages are 5N X logN. So, it is basically 2E + 5N logN is the total number 

of messages that we are looking at.  

So, it is essentially two times the number of edges + 5N logN that the number of nodes so that 

is what we are looking at. So, in terms of complexity this is not that bad at all in the sense we 

are able to take a very large distributed network and create an MST with Nlog N message 

complexity which is quite good and in the space of distributed algorithms of course this 

algorithm is complex, but now I hope that most of it is well understood. 
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So, now we will discuss something called Chandy Lamport Algorithm in one or two slides. It 

is called a distributed snapshot. So, the idea is that fine I created a large distributed algorithm 

so what?  
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So, the idea is that in a large distributed system if let us say we have a large number of processes 

debugging this entire system is difficult because they are sending so many messages. So, let us 

say even if we give students a homework to implement the MST the minimum spanning tree 

algorithm. So, even then also debugging it is hard. So, what we do is that every process takes 

a local snapshot of its state.  

So, snapshot is basically I want to capture a photograph of the entire system such that if 

anything is wrong with it I can analyze the snapshot and find out what is wrong, but even taking 

a photograph of a distributed system where there is clock synchrony is hard. So, we are looking 

at one way of doing it. So, as I said the algorithm is that every process takes a local snapshot.  

Furthermore, the process does not process any message so of course these are different 

processes it does not act on any message while taking a snapshot. So, what we want is we want 

a consistent snapshot in the entire distributed system such that we can act on it. So, what this 

basically means is that if there is a sender and there is a receiver and let us say the sender sends 

a message. 

It should never be the case that the receiver is taking a snapshot of its state where it is recording 

the message received, but in the sender’s snapshot the message send is not there that should 

never be the case. So, if let us say the receive event is there the send event should be there that 

is the only requirement for consistency. There is no other requirement pursue. So, if let us say 

that in a distributed system we were to take such kind of a snapshot. 



It would at least give us some kind of a photograph which of course is not instantaneous, but 

might give us enough information to debug and find the source of a problem. So, let us do that 

so we will use the Chandy Lamport Algorithm which is very simple. The only assumption it 

makes is that we have FIFO channels FIFO is first in first out channel in the sense A sends a 

message to B the messages are not re-audit. 
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So, the algorithm is like this that we take a local snapshot set taken to true. For each of our 

neighbors we send a marker to each of the neighbors. So, then what does that happen when a 

marker is received if taken is equal to false if a snapshot has not been taken then the neighbor 

takes a local snapshot and it sets taken to true. Again for each of its neighbors it sends the 

marker. So, one thing that is clear is that let us say if I have a system like this.  

So, let us say I take a snapshot I send a marker to these three nodes, each of these nodes then 

take a snapshot and then they send a marker let us say the marker is send here, here and here, 

but let us say this marker finds that actually this node has taken a snapshot so the marker is 

ignored. So, you take a snapshot only once when you get the marker for the first time and after 

that after the snapshot marker is done you do not do anything. 

And you just record the state and that is it I mean either you can stop there or you can wait for 

another message to ask you to resume. So, that is a separate matter we will get into that slightly 

later.  
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So, the theorem 1 is the algorithm terminates in finite time why not because you are sending 

messages ultimately the message will reach everybody and since every node takes a snapshot 

when it receives the first marker message it will terminate. The most important is theorem 2 

that is regardless of the distributed system if I do this what I am saying is that the entire snapshot 

is consistent. 

What does the entire snapshot consist of? The entire snapshot consists of the individual 

snapshots of all the nodes whatever has been taken that is what the entire snapshot consists of 

and why do I say it is consistent I claim that if a receive has been logged in the snapshots its 

corresponding send has also been logged that is my only requirement no other requirement. So, 

the theorem is that if I message from p to q is sent after a local snapshot. 

Then it is not a part of the receivers snapshot. So, what I am saying is that let us say there is 

node p and there is q. So, let us say it takes a local snapshot and then it sends a message. So, in 

this case we do not stall after taking a snapshot, but we send a message. So, then what I claim 

is that so in this case the send has not been logged because I take a snapshot first and then I 

send so I did not logged the send.  

So, what I claim is that at the end of the receiver the receive will also not be logged and the 

answer is very simple, the proof is very, very simple. The proof is that when I take a snapshot 

I immediately sent a marker message to q. After the marker message I sent my other message 

this means that q either gets the marker from me or from somebody else before me and takes a 

local snapshot and only after that does it get the message m by that time q has taken its snapshot.  



And it has not recorded the receive consequently this is correct and consistent as per our 

definition. Given the fact that we did not log a send, we did not log the receive also this was 

our simple definition of consistency and as you can see this simple algorithm does provide our 

definition of consistently what is it? If a receive has been logged in the snapshot that is that 

implies the send has also been logged.  

So, what we were actually able to prove was the contra positive of this that if a send has not 

been logged then the receive has also not been logged which is what we were just able to prove 

over here and this is the same as this. So, anything contra positive is basically a implies b is 

essentially the same as not being implies not a. So, this is essentially proved by contra positive. 

So, this is what we have done and so we have one logarithm of at least recording a consistent 

snapshot in a distributed system. Why are we introducing this here?  
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Well, the reason we are introducing this is for a simple reason that the MST algorithm was 

complicated no doubt. Given that the MST algorithm was complicated when we actually coded 

on a distributed system you will have many corned cases and the core is not going to work and 

then this entire p, q business is going to confuse you. Furthermore, what happens so I will just 

show you one of the slides which makes our life tough actually.  

So, it is essentially slides like these. So, for example, this so where we wait the moment we 

have a wait if the code is not written correctly you might be waiting forever it might be infinite 

wait and so these wait messages are essentially what kind of make us quite jittery. So, these are 

things that we do not like. See here also there is one more wait, so we do not like these things.  



So, given the fact that we do not like these things what will happen is that in most cases the 

code will not complete because the processes will just end up waiting because of some bug 

somewhere. So, the debug such systems and find out what exactly has gone wrong we can 

create a nice summary of all the actions that a given node has taken. We will call it the snapshot 

of the node and use the Chandy Lamport Algorithm to record a consistent snapshot, consistent 

as per our definition. 

And then this snapshot can be written to maybe the disc by all the processes then subsequently 

this can be analyzed either manually or via script to find out what was the most likely cause of 

the error that is the reason why this lecture combines a complicated algorithm with a very short 

and small and cute algorithm to effectively debug a distributed system because debugging a 

distributed system is hard.  

Now coming to the references the book by Gerard Tel has many of these details and so there 

are many other distributed algorithms as well in this book including a lot of concepts, so you 

are most welcome to read it and also implement the MST algorithm to get a practical field.  


