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So, we will now discuss memory models and finally, cap our discussion with data races. 

So, we will find the data races and memory models in a certain sense are quite intimately 

connected and this will be explored in this lecture. 
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So, first let us do a quick recap of what is it that we learnt. So, the memory model or the 

memory consistency model is essentially a specification of what kind of executions are 

allowed and for a piece of code what are the valid outcomes. So, it basically determines 

the rules. 



And the memory model is dependent on the processor architecture even though as we shall 

see it can we can also define memory models for virtual machines, for software, for 

compilers and so on ah, but the way that we have been explaining up till now it is primarily 

being defined in the context of a processor architecture. 

So, we can have very aggressive optimizations. So, then the memory model becomes rather 

weak. And so, the goal standard and the strongest memory model is sequential consistency. 

So, PLSC requires the w s and f r orders to be global. So, this was a direct consequence of 

PLSC and all popular architectures follow PLSC and they implement coherence which 

ensures PLSC. 

And many also disallow thin air reads which as we saw can happen if we have value 

prediction along with a couple of more pipeline optimizations. So, the only orders that we 

can actually change which are not global which are local are r f and p o primarily.  

So, r f well as we saw, we can have 2 r f i and r f e; r f i is read your own write early and r 

f e is read others write early. So, reading others write early is same as non atomic writes 

and all kinds of program order relationships can be relaxed that is what we saw, relax 

means not followed. 
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So, let us now look at a series of execution witnesses and let us see how observing 

something and not observing something? how it actually allows or disallows an outcome? 



So, we will discuss a couple of execution witnesses here, but my advice to the readers and 

viewer would be to look at this in detail in the book and actually go through these examples 

in great detail. 

So, let us first look at the order which is relaxed almost all the time the write to read order 

and this is a direct consequence of having an out of order pipeline load store queues 

forwarding write buffers and so on, where essentially if there is a write and then a read 

comes after that well the write of course, executes at the end, at commit time the read 

executes earlier. So, the read in a sense is visible to other processors earlier than a write. 

So, this is a direct consequence of out of order processing as well as other kinds of 

optimizations. 

So, typically many architectural structures can kind of relax and order. So, let us look at 

one example and let us try to study it. So, we set first set x = 1 then there is a read 

instruction after this. So, the read instruction in a sense reads it early, but let us assume it 

does not do that. So, we will see what will happen if it does not do that. 

So, let us just look at these three instructions a b and c where we write 1 = x we read 1 

from x because this anyway we will have to read because it is the same thread and then we 

write 1 = y. So, till this point it is fine after that what happens is that instruction d reads 1 

form y which is also fine and then we have to read operations. So, let us assume the 

program order between them holds. 

So, then what are we going to read? So, well we have two options either we can read 0 or 

we can read 1’s if you see the outcomes we have read t 1 = x = 1, t 2 = 1. So, now, the 

question is what do we read t 3 to be? So, in a lot of architectures what you will practically 

see is that the core will read its own write early before the write is actually visible to other 

cores or other threads it means the same thing in the context of our current discussion. 

So, what t 2 will actually do it when it tries to go and read the value of variable x, it will 

get an older value which is 0 and needless to say then the f r the form read order will hold 

between r x 0 and w x 1. 
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So, let us see out of this what is it we can relax. So, if you have atomic writes we cannot 

relax this. If we observe the read to write order, we cannot relax and most of the time we 

do and read to read also if we observe we cannot relax and f r is global anyway. 

So, this execution will not be valid because there is a cycle if the r f i order is global, but 

most often it is not most of the time it is not when we are using an out of order pipeline 

that is why this edge will not be there. Hence, in any architecture where the r f i order is 

not global, but the rest of the edges are global this execution will be allowed. So, this in a 

certain sense is a fair execution; because we should be allowed to read or own writes early. 

So, this LSQ forwarding will give us this write buffers will give us this. 

And then the write later on can be visible to the rest of the other course. So, this is the 

classic out of order pipeline optimization where we finish the loads early, primarily 

because loads are on the critical path and we would like to finish them early. So, that is a 

vital feature for a speed up. So, that is why this execution is built by and large we 

acceptable in almost all architectures so with any semblance of out of order execution. So, 

this is kind of the implication of the r f i order being global. 
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So, now, let us look at the r f e order. So, here of course, we look at non atomic writes. So, 

we have already seen something of this nature earlier also when we introduced the idea of 

non-atomic writes. So, here what we do is that. So, as we were discussing non atomic 

writes can come about in an architecture if we have a local tile of let say caches in the 

sense we divide our entire chip into tiles of core cache bank complexes. 

So, it is possible for another core in the same tile to read the write of the sister core before 

other cores have seen it. So, this can happen particularly if the share is snoopy bus between 

them and the so, this is definitely a possibility. So, of reading others writes early and also 

what can happen is if the share some other structure like an a MSHR or something then 

also this can happen that before others have seen it one core will see the right and then 

take decisions on the basis of it. 

So, let us do a quick recap of the execution that we had seen earlier, we set x = 1 then we 

read the value of x we read it to be 1, then we set the value of y = 1 we read the value of y 

to be 1. We assume program model over here and then we read the value of x. So, if this 

write would have been atomic we would have read 1 as you can see clearly from this 

sequence, but we actually read 0. Consequently, there is a cycle in the execution witness 

because we need to add an f r h between R x 0 and W x 1. 

And needless to say if the write would have been atomic this behavior would not have 

been allowed, but given that writes are not atomic we will not have this edge, if you do not 



have this edge you see that there is no cycle and this execution is allowed. So, basically 

what we are doing is that we are essentially seeing writes to different locations in different 

orders. So, t 2 sees x, so, x is written x = 1 first and then y = 1 whereas, t 3 sees that y = 1 

first and then x = 1. 

So, we are essentially seeing writes to different flow locations in different orders which is 

a hallmark property of non-atomic writes, but even in with non-atomic writes we still have 

PLSC. So, we see the writes to the same location in the same order, but for different 

locations that is where there is a little bit of mix up primarily because this edge is not 

global that is the main reason and that is why we do not have a cycle in this graph. 
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So, let us now look at the next stage which is typically relaxed which is the write to write 

order. So, this can happen in a non-blocking cache where what will happen is that the first 

write will kind of get stuck in the MSHR, but the second write for many reasons well the 

second write we might either directly affect the write or we might send it to the lower level 

by passing MSHR for a wide variety of reasons the first write might get stuck might get 

delayed. 

But, the second write might reach the rest of the course. So, we will see that even for the 

same thread as long as the addresses are different the write to write order is being violated. 

And typically in non-blocking caches where we would stop the write at an MSHR and we 

might let the other write go through that is where such problems can happen. So, here also 



a simple example would be we write 1 = x and 1 = y. So, we have W x 1 and W y 1 we 

have a program model edge between them which is exactly what we are contesting. 

Let us assume we have atomic writes. So, then we read R y 1 then let us assume we have 

a read to read order. So, this is not something that is being contested and then we read x = 

0. So, that is the so that is essentially the crux that we read y = 1. In the world of atomic 

writes with write to write order we would have read x = 1, but we read x = 0 that is why 

we need to add an f r h between R x 0 and W x 1.  

And we have a cycle. So, this execution is not possible, but if the write to write ordering 

would not have held then what would have happened is we would not have added this 

edge, then there would have been no cycle and this order would have held. So, this 

execution would have been fine. 

So, what again is the summary of our discussion that T 1 will see the write to x first and 

the write to y later, T 2 will actually see them in the reverse order it will see the write to y 

first and the write to x later. So, here also we see write to different locations in different 

orders and this is perfectly fine if you write our code in this manner and our write to write 

ordering is not respected this is exactly what we are going to see? 

So, that is why when multiple addresses are concerned unless we add fences others will 

not be able to see the data and this does have a lot of implications when you are writing 

for example, communicating values. So, what we might do is we might set. So, let us 

consider two threads write T 1 and T 2 we might set result is equal to let us say some value 

let us say whatever 57, set status = 1 which indicates the competition is done. 

Then we read the status if status is equal to 1 which is exactly what we are doing over here 

and then we read the result. So, we set some temporary is equal to result, but we are not 

guaranteed to see this result, the reason we are not guaranteed is that these writes might 

get flipped. So, because its ordering is not guaranteed this kind of a code pattern will not 

work it is not sequential consistency. So, we need to add a fence over here. If we add a 

fence over here then of course, we are guaranteed to see the correct behavior. 
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So, the next tricky one is the read to read order and this is very easy to violate because well 

we are talking of two different reads to two different addresses and this ordering is always 

relaxed in an out of order processor with an LSQ, where we might have two reads and then 

they are simply issued in different orders write as simple as that that 1 read is stuck for 

some reason. So, let us say we are using we have an LSQ and we have some sort of a 

predictor of whether we will have a dependence or not. 

So, we have two reads read to x and read to y. So, the read to x we predict that there will 

be a collision. So, it is kind of stuck. So, we do not let it read any data and we do not send 

it to the cache, but the read to y we predict there will be no collision. So, we send it to the 

cache.  

So, in a certain sense violating this read to read order with aggressive optimizations 

particularly a load store queue where we employ dependence prediction its actually very 

easy and we have seen that happening in chapter 5 where the read to read order got violated 

pretty easily. 

So, in that case, what we need to do? let us consider this example first where we read x 

and y. let us say we read x = 1 we read y = 0. So, from R x 1 to R y 0 then we set y = 1. 

So, we add an f r h then we read y =1. So, we add an r f h and then we have a program 

order edge over here. So, the program order edge is between R and W read and a 

subsequent write and W x 1 then provides the data to R x 1. 



So, in this case, it is a read to read ordering is relaxed, what will essentially happen is that 

we will essentially reorder the reads and that will cause us some trouble. So, the read to y 

if it goes earlier it would read an early value of y which is 0 and then of course, x will 

return 1 and as you can see there will be cycle in this graph.  

And any kind of an of a processor with an aggressive out of order load execution scheme 

with of course, an LSQ where we need not we are not bound to issue loads in the order in 

which they were fetched. And this can happen particularly when we predict dependencies 

and so, on this will happen this a definitely a possibility this will happen and if this happens 

then this execution will actually have a valid outcome.  

So, now, we can have two kinds of processors Intel processors for example, enforce a read 

to read order in this case this execution is not allowed this outcome is not allowed. But, in 

most other out of order processors this execution, this edge is not there. If this edge is not 

there you can easily see that this outcome will be allowed. 
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Now, let us come to a read to write order, so a read to write order is pretty hard to violate 

actually. So, what does this mean? This means there is a read and there is a write, to violate 

this order what will happen is that we need to execute this read after this write. 

So, we need to execute kind of this read over here. So, that is not really the way that this 

will actually happen because just look at when the write will execute, the write will execute 



when it reaches the head of the ROB and by that time the read would be gone and so read 

will not be in the pipeline. So, it must have finished its action it must have gotten its value 

and it must have gone. 

So, there is simply no way that we will actually in a sense overtake it, but it is possible in 

several scenarios. So, one of the scenarios in which it is possible is if let us say we have a 

speculative write in the sense that we have an aggressive optimization where we actually 

do a write before an instruction reaches the end of the pipeline. So, we kind of do an 

aggressive write. Another example could be where let us say these are two separate 

hardware threads and they share the same load store queues that is actually stores physical 

addresses. 

In this case writes can be visible early. So, they can be kind of speculatively visible so in 

that case, you will have such outcomes where let us say we read first. So, essentially our 

problem is with the outcome t 1 = 1, t 2 = 1 that is because in both the cases the write 

instructions the write operations are the later operations. So, both the reads cannot be 1, 

otherwise, will have two program order edges write over here, two r f edges which we 

presume to be global because writes are atomic and we have a cycle. 

So, in a lot of processors where the read to write ordering will hold in lot of simple 

processors you will not see this execution actually because in then the read to write 

ordering will hold, but this will be visible in many aggressive implementations where the 

write is visible early because of some of the reasons that I mentioned, in that case, this 

outcome will be allowed because we will not have these edges. So, there will be no cycle 

in the execution witness. 

So, given that in this case this order will not hold we will find this outcome to be legal, but 

as I said this is the most difficult order to violate because this lies in the phase of whatever 

we have been teaching in on the out of order water pipeline. So, unless we have extremely 

aggressive optimization it is rather unlikely that this order will get violate. 
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So, let us now look at an important corner case. So, the corner case is like this that we have 

up till now been maintaining that in sequential consistency all the relations are global. 

But, now I would like to ask a simple question that let say we relax the r f i relation and 

everything else is global, which means that a code can; core can read its own right early. 

Will it break SC? Well, the answer is no. So, this relation can be relaxed in SC and the 

proof is there in the book. So, the broad contour. so, the proof is proof are like this that let 

us say we have a write and then we have a read. 

So, the read reads the value from the write. Then another core sees the effect of the read 

of course, via other instructions could be in the same thread as well and then it does a 

couple of other things and finally, there is a cycle that goes back to the write. So, this is 

how a cycle would form and then you would say that look this execution is not an SC, but 

what I am saying is that and this is something that is in argued in the book that this will 

actually not happen. 

The reason it will actually not happen is because there will be an ordering between let us 

say this instruction and instruction in the other thread and the write because either the 

dependency will go via this read in this case the only dependency from a read to another 

will be to the same address a read to a write. So, you will have one edge like this. 



So, we will not have a cycle or it will go via other instructions in all cases it is possible to 

prove that we will actually not have a cycle. So, this is an important aspect of sequential 

consistency that it does allow the r f i relation to be relaxed. The primary reason being that 

other course will not be able to make out that it actually has been relaxed because they will 

not see the effect.  

So, the execution will be indistinguishable from a situation where it is not relaxed and 

other course for them to see they will either see it via other instructions or via the read 

instruction. But, then again the write instruction will have to execute before them there 

will be happens before relationship between the write and those instructions those other 

instructions and that is why we will actually not see the effect, but I do not want to go very 

deep into it the proof is there in the book, but this should be kept in mind because we will 

use it in this next figure. 
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So, this actually shows a summary of memory models. So, sequential consistencies are at 

the very top whereas, you can see nothing is relaxed it has atomic writes this is for atomic 

writes and we have relaxed the r f i relation in sequential consistency because we just 

showed in the previous slide that is possible to do so and get away with it.  

Then we come to Intel’s memory model which is a total store order memory model in the 

sense the only two relationships that are relaxed is the write to read order. This of course, 

has to be relaxed because we are dealing with an out of order pipeline. 



And we also relax the r f i relationship which incidentally all models here do primarily 

because without that the benefits of an out of order pipeline are not going to be there. Next 

we have processor consistency which is also quite popular and distributed systems because 

you know a memory model is not just limited to a processor architecture we can extend it 

to a distributed system or a programming model. 

So, the additional advantage over here the additional relaxation over here is that writes are 

not atomic. So, in processor consistency it is the same as TSO the write to read order 

everybody is violating, but the writes are in addition the writes are not atomic, but the 

important thing is that write to write orders are maintained. So, one processor even with 

non-atomic writes it maintains its own write to write order and that is why that is where 

the term processor consistency comes from. 

Then we have PSO. So, PSO is kind of similar to what we call PC processor consistency 

it is just that it has atomic writes, but it does not obey the write to write ordering. So, that 

is the that is the swap over here that internal within the thread write to write ordering is 

not respected mainly because we will have non-blocking caches and so on and but writes 

are nevertheless atomic. Then we have weak ordering and release consistency. So, what is 

the difference? 

So, weak ordering we do not respect anything which means we do not respect any of the 

orders, but we still have atomic writes and in this case we have a fence you have a generic 

fence instruction, but as we have seen in release consistency we have a pair of fence 

instructions we have a release an and acquire sorry it should be in other order it should be 

an acquire and then the release. So, the idea of acquire and release is that we will have the 

just take an acquire a lock and release a lock. 

So, the instructions on a critical section are within it. So, the reason that we need a fence  

before and after a critical section or let us say in generic terms and acquire. So, the idea of 

an acquire is that first I acquire the lock and then I execute the instructions of the critical 

section or in other words no instruction or the critical section can execute before the lock 

has been acquired. 

Or let us say this particular instruction has executed the acquire instruction is executed. 

So, that is the idea. The release basically means that what we do is that we can after 



executing the release instruction it means that all the instructions in the critical section 

including the acquire have finished. 

So, release signals to the outside world that look all the instructions on a critical section 

have finished see you can go and read their data, unlike a traditional fence it does not 

prohibit instructions after it from completing before it. So, that much of out of orderness 

it allows as compared to a regular fence, but acquire and release essentially limit the 

behavior of the critical section that lies within them. 

So, even release consistency it does not obey any of these program orders nevertheless has 

atomic writes and no programming, no memory model actually respects r f i. The IBM and 

ARM models are outliers in the sense in the sense they do not respect anything. So, they 

are non-atomic writes and additionally they also do not respect any of the program orders. 

So, none of the PO’s they respect, but they do have fences though. So, the reason we can 

write correct code in the IBM and ARM memory models is because they have elaborate 

support for fences. 

And not just regular fences, but all kinds of fences between stores between loads and so 

on which allows us to write fairly efficient code. So, who needs to know about memory 

models? Well the answer is pretty much everybody who works with multi-threaded code 

otherwise they will make mistakes because they will assume that the system operates in a 

certain way, but it will actually not operate in that way mainly because internally the 

processor can reorder instructions and you will see different outcomes. 

Furthermore, what can happen is that maybe a certain piece of code which is actually 

buggy will work correctly on a certain machine, but on another day it might not work 

correctly. 
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So, we might have this parallel code which on one-day works fine, but on the other day it 

produces a non-intuitive outcome which the programmer will not be able to explain. 

So, most library writers and people who deal with low level code. So, library writers, OS 

writers, compiler writers all lot of people who deal with low level code they need to 

understand the intricacies of the memory model in great detail because the main aim is to 

minimize the number of fences. 

So, minimizing the number of fences as such is an undecidable problem and it is actually 

very hard to solve, but there are variants of it there are tools that can suggest where to 

avoid a fence and so on. So, clearly minimizing the number of fences is a research problem 

in its own and there are many tools to help us minimize them, but also black belt 

programmers know where to have a fence and where not to have a fence because they 

understand the memory model in great detail. 
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So, now the question is that we have used the word a black belt programmer what that 

means? is it is the programmer who needs to understand the memory model in great detail 

to actually write correct parallel code, but the question is that do we expect most 

programmers to be at the black belt level? The answer is no. So, we need to design 

something far simpler for the average programmer such that he or she can write correct 

code which will run regardless of the memory model and which will also run on all 

machines regardless of their memory models. 
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So, what is the solution? So, let us go back to the drawing board and say that look the 

memory model is great I totally understand it, coherence is great I totally understand it and 

I totally understand SC RC PC and everything else you have thrown at me, but at the end 

of the day I do not care.  

I want to write a piece of parallel code which will run on all machines regardless of their 

memory model it will just simply run and it should be simple to program and I do not want 

to learn a memory model I am not interested. So, and I am not a black belt programmer I 

do not care that much about performance. So, I am willing to tolerate a little bit of slow 

down you kindly give me something which is slow, but reduces my headache and runs 

everywhere. 
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So, basically performance for me is not that become a concern. So, I am ok if it is slow or 

I am ok if it has a lot of fences, but I just need simplicity and portability. It has to be simple 

and it has to portable in the sense I write it on an ARM machine the same code should run 

on an Intel machine and vice versa. 

So, let us look at the same logic or same code counter + +, see if I were to break it down 

into three assembly statements and I am just writing it in the three analog of assembly I 

am not writing the assembly. I will read counter put it into a register, increment the register 

and then write the register back to the counter variable. So, this is how risk I say would do 



it by breaking into three instructions and if I cannot run multiple copies of this code in 

parallel because the output will be wrong and we have already seen this. 

So, what I can do is? I can use an atomic instruction like fetch and increment. So, this is 

guaranteed to work it will take counter replace it with counter + + and the entire thing 

happens appears to happen instantaneously. So, this is atomic. So, I have no problem at all 

instead of using that heavy piece of code I will just use this. I could do this because this is 

simple. 
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But, if I had a piece of large elaborate logic I actually could not have done this, then you 

would have argued that I need to have lock and lock and then unlock mechanism to ensure 

that this piece of code executes correctly which is something that I will show in the next 

slide. 



(Refer Slide Time: 35:31) 

 

Say if we do not want to write code using atomic instruction that in many cases will not 

be able to do the logic might be very complicated. We can encapsulate them in what is 

called a critical section which will begin with a lock we have seen how it works which will 

end with an unlock we have seen how that works and then we will just execute will have 

a lock and an unlock and the code in between is called a critical section and every lock has 

a lock variable associated with it. 

So, as long as we lock the lock variable nobody else can get in and further more if any 

other place counter is being used in some other context, if that is also locked with the same 

variable then that will also ensure that nobody can get in and update the value of counter 

and cause an error basically. 
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So, what are we doing? So, what we are doing for this critical section is if you have two 

threads T 1 and T 2; T 1 locks T 2 tries to acquire the lock it is not able to acquire, T 1 

does not unlock. 

So, T 2 keep spinning as we have seen, then T 2 gets the lock it executes for some time 

and finally, T 2 releases. So, this is the typical way that we work where one thread acquires 

the lock executes the critical section other threads keeps spinning. Once a thread 

relinquishes the lock some other thread gets it; it gets exclusive control of the critical 

section executes it again unlocks so on and so forth. 
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So, now the question is why do we need to use locks? Well so, let us start with two 

philosophical questions. So, assume that we have a large piece of multithreaded code, but 

there are no shared variables. If there are no shared variables do we still need to use locks, 

the answer is no. The reason is that if there are no shared variables so, we will not have 

the kind of concurrency bugs that we have actually seen. 

So, why were the concurrency bugs happening? They were happening because we wanted 

this piece of code to execute atomically, but it was not. So, let us say we will read two 

threads will read counter to be 100, then they will set it to be 101, but 101 should not be 

the final state; the final state should be 102. So, this is happening only because the counter 

variable is shared, if it was not shared there would have been no issue. 

So, this is number 1 if there are no shared variables we do not need to use locks. So, when 

do we need locks then? We need locks when two blocks of code make conflicting and 

concurrent accesses to the same address the same address is the same variable. So, what 

are conflicting accesses? They are a pair of accesses where at least one of them is the write 

because if there are two read operations we do not really care in which order they are 

happening and they will not cause any correctness issues. So, we do not really need to 

care. 

The problem comes when one of them is a write, if you go back the problem is only coming 

because we are updating the state of counter. If we did not update the state of the counter, 



there would have been no issue in just reading the value of the counter we did not need a 

lock and unlock function. 

The problem is coming because we are updating the value of counter of the counter 

variable and that is where we need this mutual exclusivity of the critical section. So, 

basically the codes of course, have to access the same address and make conflicting 

accesses which means at least one of them is the write, if both are a read there is no problem 

at all, one of them is the write like it is like this or both of them are writes. 

So, in that case, it is a clearly conflicting access because the final state is dependent on 

their order and also it is a large block of codes. So, we might have many reads and writes 

the entire thing will not be correct unless we have a critical section. 
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What is concurrent? Concurrent means at the same time so you go back and let us look at 

informally; informally what concurrent meant over here. 
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Is that two threads execute at the same time both read counter at the same time in the sense 

they read both the values to be 100. 

Then ultimately they just write 101 since there is an overlap in their execution they in a 

certain sense are concurrent informally defined and that causes all the trouble. So, the 

common sense meaning is at the same time, but I think we can do better. So, let us look at 

the code for incrementing the counter. So, let us say that we read the counter to be 0, we 

read it to be 0 and we update it to 1. 

So, what are we doing R x 0 to W x 1 let us add a program order edge and R x 0 to W x 1. 

So, this is the execution witness over here we again add a program order edge ok and then 

what you see is that we have two f r edges like this and we have a write serialization edge 

because let us say this write happened after this write. So, this is pretty much the execution 

witness that you see over here and this does not really convey a lot of information. 

And all that it tells us is that look the execution witness is fine, but in spite of that the 

behavior is not satisfying us. So, there are no cycles in execution witness as you a see. And 

also the execution witness if we actually see it is sequentially consistent in a sense we can 

order the operations like this. So, it is an SC, but even if it is an SC we are still not happy 

because we do not want the final value of x = 1 we want it to be 2. 



So, clearly we need some tool or some additional rider on the execution witness to actually 

make it more expressive such that this particular case of this concurrent conflicting access 

this can be taken care of. So, let us now look at a slightly different kind of program such 

and this might give us an insight. Here we want to transfer the value of a variable from 

thread T 1 to thread T 2. So, what we do is we set x = 1 and then we set. So, let x = 1 be 

the result of our computation. 

Then we set y = 1 and then we read the value of y. So, as long as y ≠ 1 we just keep looping 

and when it is 1 we come down and then we read the value of x. So, if we have atomic 

writes then what will we actually see? So, what we will actually see is that we will see the 

value of this to be R x 1.  

But of course, we need a few program orders to hold as well and only then we are going 

to see. But, there is also an important point that I would like to mention here assume that 

y is a synch variable in the sense that y over here is updated only using atomic instructions 

the kind that we have seen before. 

Say in this case what you will actually see is that we will write 1 = x there will be a program 

order edge to W y 1. So, so let us for a time being say that this is for an arbitrary memory 

model I do not really care. So, then what we will see is because y is the synch operation in 

all memory models you will have the W x 1 to W y 1 edge then you will also have a 

synchronization edge and an s o edge this being the most important between W y 1 and R 

y 1. 

Because we are reading so, recall that all the synchronization operations between them are 

sequentially consistent. So, we will have an s o edge between them and then we will have 

a program order edge between R y 1 and R x 1 and given that there is a synchronization 

edge so, W y 1 would have expected there is a fence also inside it the W x 1 would have 

completed. 

So, regardless of whether r f is global or not we are guaranteed to read R x 1 at this point 

of time. So, what we see is that in this execution witness we are able to see some patterns 

if we look hard enough there is some pattern that guarantees that look regardless of the 

memory model if x = 1 here x will be read as 1 over here and our exact memory model 

does not work that is not important and the reason is that y is a synchronization variable. 



So, there is a program strict program order edge here there is a synchronization edge here 

and a strict program order edge over here. So, we are guaranteed to see the effect of this 

write. So, what we can say this is an execution witness and the magic s o is that we have 

two of these synchronization operations with an s o edge. So, there is a path from W x 1 

to R x 1 that has an s o edge which is what guarantees the correctness or guarantees our 

original intent. And so, the s o edge must be having something to do with capturing the 

original intent of our program. 
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So, let us now take our discussion a little bit further. So, what we are trying to say is that 

let us say that two accesses are concurrent when there is no path between them in the 

execution witness that contains an s o edge. So, what is so great about an s o edge and why 

are we making a big deal out of it? Well, let us look at this execution witness once again. 

So, what an s o edge is essentially capturing is, it is capturing the synchronization from 

the view point of a programmer. 

So, the programmer wants that before an access to this synchronizing variable y all 

previous accesses are done. Then another synchronizing access is made over here and this 

has to strictly be after setting y = 1 and all subsequent actions are after that. So, this is what 

the programmer wants and the way that the programmer is enforcing this wish of her is 

basically via having these synchronization instructions and these synch edges these s o 

edges. 



So, the important point over here is that if let us say between any two conflicting accesses 

to the same variable we have an s o edge it basically means that the programmer’s intent 

is being captured that we make one access then we pass through a synchronization and 

make the second conflicting access. 

So, this means that the conflicting accesses in a sense are controlled and controlled by 

whom control by the instructions inserted by the programmer and this means that this 

execution is going according to the wishes of the programmer that is broadly speaking an 

informal representation often of the situation. 

So, we are trying to slightly formalize it. So, we say let us consider an execution witness 

and let us say within the execution witness two accesses are concurrent which essentially 

means that there is no synchronizing access between them. So, consider a write and a read 

to the same address. So, let us say there is an r f edge between them. So, we say that it is 

concurrent because primarily it is not passing through any programmer specified structure 

it is not passing through any kind of a synchronizing access like a lock or unlock. 

So, as far as we are concerned we can have another execution where we could very well 

have this and because it is not controlled and let us say if other variables are dependent 

upon this order they also need to reflect this order and that might not happen. And this is 

exactly why we want all such interactions between accesses to the same variable one of 

which being a write passed through the synchronization edges which essentially are put to 

capture the intention of the programmer. 

So, a critical section is one example of such a synchronization edge, but it is not the only 

example. Here we have a critical section we unlock and then another thread enters the 

critical section and there is an s o edge. So, all of the accesses over here are strictly before 

all of the accesses over here and they happen before just because of the s o edge and this 

ensures that let us say for example, we are setting x =1 and we are setting y = 1 and then 

here we are setting x = 2 and we are setting y = 2. 

So, it is never the case that we observe some kind of a partial state in the sense that for all 

other threads they will either observe they will observe x = y all the time and because they 

cannot make any other access they cannot access x and y without acquiring the locks and 

once you acquire them we will always see x = y. 



So, this is how the synchronization edge and critical sections capture the programmer’s 

intent? However, it is possible that while writing the program the programmer might make 

a mistake and there might be a pair of conflicting and concurrent accesses to the same 

regular variable it is a non-synch variable. There will be conflicting accesses which are 

also concurrent by this definition. 

They are set to constitute a data race and the execution over here is actually a data race 

because we see concurrent conflicting accesses to this to the variable x and there is no 

programmer intent anywhere. So, there is no effort to synchronize them and so, that is 

exactly why we are not seeing? So, we are trying to increment a counter but the final result 

is wrong because the program has not added any synchronization. So, what we should see 

is the final value should be 2, but in this case, it is 1 which is not correct. 
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That is primarily because there are no s o edges in the picture. So, data races are bad things 

they are essentially bugs and they prevent the successful execution of a program. So, now 

let us look take a deeper look at data races and see what they actually mean. So, here I 

would like to slightly specialize this definition. 

Because there are several things and this is a very very theoretically deep area. A lot of the 

proofs are there in the book, but I am deliberately going to gloss over them and present 

them in very 20000-foot level informal fashion. Primarily, because I do not want to bore 



you or bog you down with all the theory. So, the book is there for it and I would request 

all of you to read these sections petty thoroughly. 
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But, I will explain the broad idea. So, now, I want to differentiate here between two 

concepts; one is the data race in an execution other is the data race in a program. They 

actually mean different things, but we will see that they are beautifully connected. So, that 

is the beauty of this entire theory over here. One is the first concept is the data race in a 

given execution. So, what we do is we create an execution witness for it and we look at all 

pairs of conflicting accesses to the same regular variable. 

If they are concurrent we say that look this execution witness has a data race and the other 

is so, this is where a data race is the function of an execution. So, for a given program we 

can have a lot of execution some might display data races some might not. So, that is why 

we have a lot of data race detection tools and some sometimes some executions have data 

races, sometimes the executions do not have data races as we saw in the in this example 

with sorry we will see one example later that shows this. 

The other is that we will try to determine what actually is a data race preprogram and there 

we will need some theoretical tool. So, this is not very clear because the execution witness 

by definition has adjust that belong to a certain memory model. So, the data races we will 

be you will be tempted to think that they have something to do with the memory model, 

but actually they do not. But, I would like to go slow. So, I would like to introduce theorem 



after theorem and I will only explain the main result not the proof because as I said this 

entire stuff is quite deep. 
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So, let us now try to answer some basic questions. So, where are we here we said that look 

data races are a bad thing. Why are they bad? Because a conflicting concurrent access in 

a certain sense is not appearing to capture the programmer’s intent because whenever 

parallel code is being written and we have a conflicting concurrent access it basically 

means that it you can read write variables in the same variable in any order. 

So, then the final outcome is questionable. So, that is why the programmer’s like to 

regulate any conflicting access to the same regular variable that they will say that you want 

to modify x no problem go ahead and modify, but then before doing this do something like 

acquire a lock, after I do something like release the lock next time you want to access again 

go via this mechanism. 

So, this will ensure that at least a set of variables or maybe if you have read or written it. 

So, a set of accesses and a set of accesses here they internally make sense the program on 

a whole makes sense. So, that is why we define data races because we thought that they 

are a good tool that captures the programmer’s intent as far as a parallel program is 

concerned. Otherwise, we saw that if with had data races even a simple counter update by 

multiple threads that was turning out to be wrong, but the moment we introduce 

synchronization variables it turned out to be correct. 



And so, now, let us take it further. So, let us answer a few questions does sequential 

consistency imply data race freedom in the sense let us take a program and let us say that 

we run it on an SC machine will that imply that there are no data races, but take a look at 

this piece of code. Since this piece of code we have R x 0, S 1, S 2 and W x 1. So, this is 

sequentially consistent and as you can see there is an s o edge between these two accesses. 

So, this execution is data race. 

Now, let us consider one more. So, we have not assigned a meaning to the synchronization 

accesses S 1 and S 2, but if let us say they happen to execute like this where S 2, W x 1, R 

x 1. So, I write and then i read and then I have the second synchronization access. So, here 

we have a data race. Why do we have a data race over here? Well the reason we have 1 is 

because there is no synchronizing edge between this write and this read and this to us 

represents a data race which is something we wanted to avoid. 

So, SC does not imply data race freedom because as we can see this is SC machine, this is 

a legal sequential execution, but there are data races. So, data race is something which is 

most likely at least it appears at this point something stronger than SC. So, we will go into 

watch stronger and weaker means, but at least sequential consistency does not give us data 

race freedom. So, what does let us see. 
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Let us say that I have a program which is data race, we will see what this means in slight 

detail in next few slides, but let us say that all executions of the program are data race 



column does it imply that all of these executions are in s c. So, so let us say that we take a 

program and we just execute it without caring about the memory model. So, we will we 

will come up with a bunch of executions I claim that all of these executions are in SC. 

So, lowing we have all this actually happens to be correct. So, this is a fantastic result 

which is which I would say is arguably the most important theoretical result in all of 

computer architecture some might not agree with me, but at least as far as I am concerned 

this is the most important result important with a capital I result in computer architecture 

which says that look if all of your executions or data race free then data race freedom does 

imply SC.  

And of course, I am not all the bells and whistles I am not mentioning of what exactly the 

other constraints and so on, but they are all there in the book. 

But, we are looking at it broadly from an angle where you not interested in the corners. 

So, the salient point is that look if I if let us say all accesses conflicting accesses for the 

same variable across threads have an s o edge between them so at least one path with an s 

o edge between them. there will be an s o edge at least one path which means they will be 

ordered by a synchronization edge. 

Now, let us do something let us take an execution witness regardless of the memory model 

and add all the SC edges. So, what are they? So, the SC edges will be basically make r f e 

global and all the program order edges will be global and then let us see what happens to 

the execution witness, no problem. So, if the execution witness is acyclic it means that the 

execution is an SC. Let us assume just for the sake of assuming that there is a cycle then 

it is easy to prove that if there is a cycle then there will be a cycle of synch operations as 

well. 

So, there will be a cycle that contains synch operations which happens before relationship 

between them. So, this is a synch operation that will be happens before relationship a 

global happens before relationship S 1, S 2, S 3 so on and so forth and ultimately back to 

S 1.  

We claim that this is not possible this is not possible because that the claim is that synch 

operations by themselves follow sequential consistency and the reason that we say. so, is 



basically because sequential consistency is program order plus atomicity. Synchronization 

operations do follow program order because they have a fence within them. 

And atomicity because they are atomic operations. So, they follow atomicity that is 

obvious. So, they follow SC. So, they cannot have a cycle between them. So, there we 

have a contradiction. So, this is the broad outline of the proof. So, the proof basically says 

that look do not care about the memory model or even memory model as such is not 

important. If you are guaranteed not to exhibit any data races even in the most even with 

the most restrictive memory model which is SC it is guaranteed that you will not show any 

data races. 

Then this does imply that the execution will be sequentially consistent. So, what would 

this exactly mean? this would exactly mean that whenever there are two conflicting 

accesses to the same variable you do something in a sense you enclose them in a critical 

section where we have one synchronization operation at the beginning, one at the end again 

one at the beginning, one at the end such that any order between them is passing through 

an s o edge like this. 

If that is the case, let us not worry about the memory model any time we execute this 

regardless of the underlying model the execution will always be in SC. So, this is very 

very powerful this basically says that look the memory model should be designed by the 

architects it can be as weak as possible to enable performance. We simply need to add as 

many fences as is required fences and atomic instructions with this synchronization 

capability as is required even I did not like to minimize them because they are expensive. 

But, as long as we are avoiding data races we are good. So, we can reason about our 

program in terms of sequential consistency which we wanted to do originally we never 

liked parallel executions we always wanted a parallel execution to be somehow equivalent 

to a sequential execution one after the other, but we were not able to do that with our 

execution witness base method because our sequential execution was not legal. But, in this 

case, if let us say it is data race free we can equate it to a legal sequential execution and 

we can reason about it. 

So, it will become very easy to write parallel code because as human beings we love to 

think sequentially and we do not think in parallel. So, once it is an SC we our proofs and 

our tools everything start working and our reasoning becomes very very easy and simple, 



but this is not the only theorem. So, where are we? SC does not imply data race freedom, 

but data race freedom implies SC. 
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What else this is one, the other is that let us say I have a data race what would that imply. 

So, we are now in the previous slide we looked at the question that if I do not have a data 

race what happen if you do not have a data race well that is great you are sequentially 

consistent. But, now the question is if I have a data race then what? If I have a data race, 

then there is another theorem which is again a beautiful theorem and I would also rate this 

very highly in our computer architecture world because typically unlike the mathematical 

sciences we do not have a lot of theorems in computer architecture. 

And the number of theorems that we have are far and few, but a few that we have are 

reasonably powerful. So, this is one, this is the second one. So, it says that look if you have 

a data race in a program you can construct an SC execution that will also exhibit a data 

race, which means that under any memory model if let us say you have a data race in a 

sense it is possible to have two accesses conflicting accesses to the same variable without 

an s o edge between them. You can then create an SC execution that will also have a data 

race. 

So, proof again refer to the book this kind of an involved proof, but what does it actually 

imply. So, this implies something significant. It implies so let me write it down data race 



in a program implies that SC exec with a data race. So, I can kind of flip this around and 

consider the contra positive well let us say let us take a program and let us let us consider 

all of it sequentially consistent executions if let us say there are billions of them we cannot 

do it manually, but an automated tool can. 

So, it can construct all of these sequentially consistent executions, if none of them exhibit 

a data race we can say that the program does not have a data race. So, this is very important 

I do not mind repeating this twenty times because this is capturing a large part of our 

argument.  

So, hear this again. So, what do? we know that we say that look under some memory model 

if you are seeing a data race you can always construct an SC execution with a data race. 

Consider the contra positive of this, in contra positive what we do is that we reverse the 

sign of the implication. 
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And then what we do is that we say that if. So, this stands for the not right see if there is 

no SC execution with a data race it implies that the program does not have a data race. So, 

in this case, data race becomes the property of a program and what it basically implies? or 

what it basically tells us is that if an automated tool cannot construct an SC execution with 

a data race. So, an automotive tool can always see billions of executions and see if those 

executions have data races or not. 



But, assume that it cannot construct an SC execution with a data race, then it means that 

the program is data race free. In other words, we are defining a data race as also a property 

of a program and it basically says that look consider all of its executions notably its SC 

execution, if there is no data race then the program itself is data race free.  

So, what you should do is that you should write programs that are data race free they will 

run on all memory models and that through in a sequentially consistent manner. So, 

basically the point is the underlying architecture is free to determine its memory model. 

You write your program do not care about the memory model and then just ensure it is 

data race free run it on the architecture it will run, but what happens is sometimes when 

we write large programs we can make bugs we can have bugs we can make mistakes these 

will be concurrency bugs notably we will have a data race. When we have a data race it is 

possible that maybe in 100 executions. we do not see a problem, but in 100 and first 

execution or the 1000 and first execution we might notice the problem that is where we 

need an automated tool. 

And there are many such tools available which will basically sequentially enumerate all 

the sequentially consistent executions search them for data races and finally, verify that a 

given piece of code is data race free. So, we will also look at other approaches other kind 

of semi-formal approaches later on, but the basic idea is that it is possible to verify with 

an automated tool whether a program has a data race or not it is very if it has one it will 

definitely show up in a sequentially consistent execution. 
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So, now it is time to summarize what all we have learnt? So, what we have learnt is that 

data race freedom is good because it helps us capture the intent of the programmer in. so, 

far as conflicting accesses to the same variable is concerned are concerned.  

SC as such does not imply data race freedom, but the brilliant result is the data race 

freedom regardless of the memory model implies SC which is great it allows us to write 

one program and run it everywhere. I can take the contra positive of this and say non SC 

execution implies data races right which would just be the same thing. 

And the next theorem is that if an automated tool cannot construct an SC execution that 

has a data race, then it means that the program is data race free or alternatively if the 

program has a data race then you will definitely see a data race in an SC execution. So, the 

moral of the story is that if there are no data races you are good you have essentially written 

a sequentially consistent program, but of course, you have added a lot of synchronizing 

instructions throughout the program which will reduce your performance you should 

minimize them. 

But, assuming that is done the memory model does not matter. So, what should be 

programming languages do; programming languages also define a memory model for 

example, C + + 11, C + + 17 do they do define a memory model and they also define these 

synchronization primitives and they tell the programmer how to write code which is data 

race free. 



So, almost all modern languages C + +, Java and so on have their memory models these 

are software memory models, where they tell the programmer? what they need to do to 

pretty much right code which is free of data races. So, we have provided these atomic 

synchronization operations and programmers are expected to use these primitives which 

the programming language provides to write what are called properly synchronized 

programs? And properly synchronized programs are one this is one method of 

implementing a data race free program. 

Here the idea is that whenever I access or share variable or a critical section it protected 

with a lock and then after executing the critical section I unlock it and of course, for the 

same variable I always protect it with the same set of locks even if it is accessed by some 

other thread it is never the case that two different locks are actually protecting the same 

variable. So, one variable is always associated with one set of locks that will ensure that I 

can access it only after acquiring those locks. 

So, this ensures a strict synchronization edge. So, if I write my code in such a way where 

all my shared variables are encapsulated in critical sections in the manner that I described 

the program is properly synchronized and consequently, data race free and this will further 

mean that all accesses to shared variables are protected and there are no concurrent 

conflicting accesses. 
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So, in a certain sense what we have done is that we have built a lot of theoretical 

foundations, this is primarily for the architecture. Furthermore, this is also for the OS writer 

and library writer who really care about low level performance and they and these people 

do not want to write code that has a lot of fences or synchronizing instructions. So, the 

after all somebody needs to write the code for the locks. 

So, if let us say we can omit a few synchronization instructions the performance of our 

locks will improve substantially. So, a lot of low level programmer’s need to be aware of 

the memory model because they cannot afford that many fences, but any high level 

programmer should use the idea of data races to essentially write properly synchronized 

code let us call it PS code where all shared variables are wrapped within critical sections 

and there are no conflicting concurrent accesses. 

So, that is how the code is structured? if that is the case regardless of the underlying 

memory model the code will work in a sequentially consistent manner everywhere as long 

as it is data race free, but of course, the downside is that the performance will be low 

because we will be adding a lot of these slow fence like instructions. So, performance will 

reduce. So, as oppose to these nice handcrafted libraries where we have few synchronizing 

instructions. 

Because we also use the features of the underlying memory model to establish 

dependencies. So, there is a trade of over here between simplicity, programmability and 

efficiency, but we did build up. So, efficiency is more important for the low level 

programmer’s, but for high level programmer’s they need not be bothered with the 

memory models they just need to ensure properly synchronized parallel code. 

So, we will take the argument a bit further and look at an even simpler method of parallel 

programming. So, a simpler than let us say what we have seen up till now which is critical 

sections and also this open MP code that we wrote that does embody all of these all the 

discussion regarding critical sections within open MP directives. 

So, programmer’s typically do not get to see that, but of course, your multiple threads will 

access the same variable they need to we do have a lock and unlock kind of mechanism. 

So, we will now make it even simpler and introduce an even simpler programming model 

which needless to say is data race free and it substantially eases the burden on 



programmer’s and shifts a large part of the burden to either system software or hardware 

we will call this transactional memory. That will be the topic of the next lecture. 


