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Let us now discuss some advanced aspects of cache design. So, these will definitely be 

deeper design choices as compared to some of the design choices that we have seen 

particularly in the first section. Where we discussed methods to improve the performance 

and efficiency of a cache such as critical word fetch early we start and others like a victim 

cache, but these ideas are slightly more advanced. 
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So, let us start with asking a question let us say that a cache access takes 5 cycles which 

can be the case particularly if we have a large L 1 cache and we have a reasonably 

aggressive clock cycle time. So, in that case it is very much possible that we can have a 

cache that takes 3, 4, 5 cycles to access and definitely a larger cache such as L 2 cache can 

take even more time. So, the critical question over here is that do we wait for 5 cycles for 

the next access, so the answer is no. 

So, we have already answered this question when we discussed in order pipelines and 

clearly the answer here is no it is not going to be the case. what we will instead do is we 

will pipeline the cache, which means that at least we can accept a new request if not every 

cycle then once every 1 or 2 cycles the latency can be high as we have seen, but what 

pipelining gives us is the is that it gives us high throughput. 

So, this is an important point to bear in mind that even if the latency is high that is not 

desirable, but nevertheless if we pipeline the cache at least we can ensure that our 



throughput is high and so many applications that are throughput dependent will at least be 

benefited from this design. 
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So, let us look at a simple idea of how to pipeline, look at the tasks that are involved in a 

read operation. So, in a read operation what happens that we have a parallel tag and data 

array access.  

So, we have already discussed this and this was a very beneficial design choice the reason 

being that of course, we do waste a little bit of power, but at least we get the k data blocks 

in a k way set associative cache in the same cycle and once we know which tag matches 

we can then choose the appropriate data block. So, this is of course, the first part let us call 

it stage I then stage II is when we compare the tax. 

So, the comparison is also slow process because in comparing what do we do? We 

basically take two tags and we subtract one from the other. So, that is one way of 

comparing the other is that we just compare the bits and then we compute an XOR and if 

let us say any bit pair differs then the values are not the same.  

So, regardless of how we do it this will take one full sub stage and finally, once if there is 

a match if we find a match then we select the data block. So, what we can do is we can 

take the simple design and we can pipeline it. So, pipelining does not require any additional 



circuitry all that we need to do is we need to insert a pipeline latch between adjacent stages 

a tag array data array access tag comparison and data block.  
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So, something similar can be done for a right operation. So, what we would do is that for 

a write operation we will access the tag array then we compare the tags and we affect the 

right in the data array. So, of course, if we have a read and write to the same address some 

forwarding will be required.  

So, that forwarding logic needs to be added. So, let us now see what else I have on this 

slide. So, what we can do is that we can further add more pipeline stages. So, one where 

the idea in this spaces to pipeline the SRAM access? So, if you would recall in the SRAM 

access we have this huge row decoder input is the address and then of course, this sets the 

appropriate word line then we go to the SRAM array. 

We read whatever the is that needs to be read and by that time we are expected to have 

configured the column mux de mux. finally, the sense amplifiers sense amplifiers read the 

data and the data comes out. So, we can in principle pipeline the decode process in the 

sense that we can add a huge pipeline latch over here where the decoded address. So, the 

decode lines would be sort of temporarily stored in that latch for one cycle. 

So, of course, here the latch has to be very large write roughly the size of the decoder 

because storing one bit is not easy if let us say we want fast access. So, it will be it will 



have to be one d flip d flip flop per bit and this does cause issues in terms of a high area 

foot print and also it adds to the capacitive delays of the word lines and so on. So, because 

of that pipelining the SRAM access any further is not advisable. 
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So, what do we do then? What we do then is that we look at other kinds of optimizations 

which brings us to a second optimization this is another idea which is called a non blocking 

cache. So, let us say that we have a cache miss for a certain block B see if there are later 

cache accesses, what happens? 

See if there are different if there are two different blocks well they can go through, but let 

us see if there are two different memory words within this block. So, what do we do to 

they actually stall. So, what we do is that accesses to other addresses need not be blocked 

that is the key idea. 

That accesses to other blocks need not be blocked, but let us say that for the missed block 

what we need is we need to simply store or record all the accesses that are being made to 

different words of the miss block such that when the miss araised on a lower level all of 

them can be serviced in one go. So, to do that what we do is we add a new data structure. 

So, this is not a data structure in a data structure since it is a hardware structure. So, let us 

call it a hardware data structure. 



So, let me define something, but this is of course, pure hardware its no software. so, but I 

love the word data structure because it uses similar concepts, but I do agree that this is 

kind of an abuse of the term. So, let us call it a hardware structure. So, even though I would 

have been internally motivated to say hardware data structure, but in the interest of keeping 

things consistent and simple let us call it a hardware structure. This is an MSHR miss status 

holding register which has the rather intricate structures which we will see next. 
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So, the MSHR is associated with a cache. So, it keeps track of the misses of the cache each 

entry of the MSHR has two fields if you look at it from the top level the first field is the 

address. So, this is the block address that is the first field and the second field is a miss 

queue.  

So, whenever we have a miss or let us say whenever we have a read or write access the 

MSHR is always checked. So, the block address is looked up very quickly and the MSHRs 

are typically very small structures. So, they have maybe 4, 8 or 16 entries. So, this structure 

can be very well fully associative as well it can be. 

There is no harm in that and further more each entry has a miss queue. So, the miss queue 

each entry of the miss queue is called a miss queue entry its fields are as follows, the first 

field is read or write. So, this field refers to whether the particular access is a read or write. 
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So, this will be a one-bit field next we have the word address this is the address of the 

specific word within the block which led to a miss. So, this is the word address the next is 

the tag. So, the tag is mostly useful for a load instruction. So, in a load instruction this tag 

and also this is useful for the L 1 cache.  

So, this is basically the tag of the instruction the tag of the register right the physical 

register idea of the register that caused a miss. Why is this needed? Well this is needed 

because when the value of the load comes back from the lower level we can immediately 

send the load value to the processor and along with this the tag will go because the tag will 

indicate which load it is. 

And the final field is a store value which is the value that needs to be stored. So, this again 

is useful for stores. So, for every address what we do? So, for every address meaning a 

block address we have an associated miss queue for all the miss queue entries are stored 

in first and first out order in FIFO order and so that is applied one after the other in FIFO 

order after the block comes from the lower level. 
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So, a little bit of detail about the operation of an MSHR. So, when there is a miss in a 

cache an entry is created in its corresponding MSHR see if there are no free entries. So, 

assume that the MSHR is full and we cannot create a new entry then of course, the request 

blocks and so then from a non blocking cache the cache becomes the blocking cache, but 

of course, the MSHR should be large enough such that this particular scenario does not 

happen or let us say it does not happen frequently. 

So, what we also do is we also create an entry in the miss queue which will be the first 

entry, this is known as a primary miss. So, once a primary miss is there in the miss queue 

what we need to do is that we need to add additional entries if there are subsequent misses 

before the data actually arrives. So, these misses will be known as secondary misses. So, 

if a secondary miss is the right what we do is we just append it to the tail of the miss queue. 

So, basically what we do is that if we assume its a queue. So, then we just add a new entry 

to the tail of the miss queue and the write is remains there. If it is a read similar to a load 

store queue is search for all earlier writes in the miss queue to the same set of bytes if we 

find an entry then there is no reason for us to queue the read what we can do is we can just 

forward the value exactly the same way we would do it in a load store queue and the 

processor can resume. 

So, in this case, the operation of the ls queue and the MSHR is the same else otherwise we 

enqueue the entry. So, we add the entry to a queue and again it remains in the queue until 



the entire block comes from the lower level. So, what was new in this slide the forwarding 

aspect was new in the sense that the MSHR has a forwarding capability similar to an ls 

queue. So, this aspect was made. 
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Now, let us come to the third idea. So, the third idea is a new kind of a cache design which 

again if you can see it again comes from a simple data structure concept. So, after all a 

cache, what is a cache? So, a cache a direct mapped cache is like an array. So, its data 

structure analogue will be an array.  

So, consider a direct map cache this the analogue for a direct map cache will be an array 

where we know the exact index we go there we see the value is there or not if it is there 

we access it else we declare a miss. Even a set associative cache is somewhat like an array, 

but a fully associative cache is like a hash table. So, in this case what we do is that well a 

given entry can be present anywhere. 

So, we use a CAM array a content addressable memory array where we can search which 

entry has the particular address and if you find it then at least from the top it does appear 

to work as a hash table in the sense that we use a baseline CAM array which again 

addresses it by its content.  

So, this so here again the broad big broad idea is rather different we have enqueue 

associative caches. So, this the direct competitor for a queue associative cache is a regular 



set associative cache. Which is a combination of an array and hash table or a hash table 

implemented on top of an array where essentially we are pointed towards a set of locations 

and in let us say it is a k by set associative cache then we are pointed to k locations we go 

there and we then see if the addresses there or not.  

And of course, conflict misses cause a problem in the sense that let us say if it is a 4 way 

set associative cache, but there are 5 blocks that map to those 4 ways and continuously one 

of them will get evicted and the there will be a timing penalty. So, what we do is instead 

of a regular hashing scheme for a regular hashing scheme is that we take an address we 

extract some bits out of it you might further mangle the bits and then we use it to access 

an array some location and then we do as we do in a set of associative case.  

So, this is kind of an extension of the basic hash table idea even though some of you may 

not entirely agree with me in the sense that you say that you might say. That look in a hash 

table we only search for a few locations search in a few locations. 

But in a fully associative cache we actually search all the locations I agree with you the 

comparison is not 100% accurate, but still a hash table searches on the basis of content this 

is something that a cam array does and that is why I have created this comparison even 

though there can be arguments against this comparison. But broadly speaking a set 

associative cache does embody the spirit of a hash table implemented on an array. 

There is another way of hashing which is known as cuckoo hashing. So, in cuckoo hashing 

what we do is that instead of using 1 hash function we actually use multiple hash functions. 

So, what we can do is we can divide a cache into 4 sub caches given an address we can 

compute 4 different functions on it 𝑓1, 𝑓2, 𝑓3 and 𝑓4. So, they would essentially produce 

different locations within the cache. So, if you can see all of these locations are all 

different. 
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So, there is a beautiful property which I will come to next. The beautiful properties 

considered two addresses again they are block addresses in the context of this discussion. 

So, let us say that they are colliding in sub cache 1 in the sense 𝑓1 (𝐴1) = 𝑓1 (𝐴2). So, this 

indicates a conflict miss with most likely or with a high probability in the second sub cache 

they will not collide in the sense they will map to different locations 𝑓2 (𝐴1)  ≠ 𝑓2 (𝐴2)  . 

So, they will map to different locations. 

So, the key important insight over here is that if they conflict in one sub cache most likely 

they will not conflict over there. So, what we do is that if already let us say block with 

address (𝐴1)  is there in one sub cache then what we do is we go to the other one and there 

will not have.  

So, there will have another location and we put our block over there. So, this really reduces 

the chances of conflict misses and this is an extension of the basic cuckoo hashing idea 

because as I said what is architecture it is essentially a hardware wrapper over what is 

fundamentally a data structure concept. So, the key important question over here is that 

we need to compute these functions 𝑓1, 𝑓2, 𝑓3 and 𝑓4. Such that of course, this property 

holds that if there is collision in 1 sub cache we can go somewhere else. 
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Replacements are tricky we will see in a second y. So, we need to do something called a 

cuckoo search. So, assume we want to add the block B at address A. So, we will first check 

the 4 locations 𝑓1(𝐴), 𝑓2(𝐴), 𝑓3(𝐴)  and 𝑓4(𝐴) to check if they are free. 

If none of them is free will find we put the block over there and in this case accessing in 

this case accessing the skewed associative cache does require more power in the sense the 

4 functions need to be computed and then we need to access the different sub caches to 

see where exactly is the block because it could be in it could be there in any sub cache. So 

in this case while inserting an entry if any of these entries is free then we insert the block 

over there. 

But let us assume the worst case that none of these entries are free. So, what we do is we 

evict the block B’ with address A’ that is let us say stored at 𝑓1(𝐴). So, then we insert the 

block B in the first sub cache at 𝑓1(𝐴). So, now, the idea is that since B and B’ had a 

conflict miss in sub cache 1 they will not have conflict misses in other sub cashes which 

means that even the likelihood of you know have we not use this what would have 

happened is that pretty much all 4 of them would have been like the same set. So, there 

would have been conflict misses for B’ and the other sub caches as well. 

But because we use different mapping functions what we can do is we can try to 

accommodate B’ at these locations recall that block B’ the address of block B’ is address 

A’. So, we can try to accommodate it at these locations 𝑓1(𝐴′), 𝑓3(𝐴′) or 𝑓4(𝐴′).  



So, what did we do? Well since we did not find a free location we essentially tossed block 

B’ out from sub cache 1 and we put in block B. Now the question is what do we do with 

B’? So, B dash again will map to 3 other locations in the 3 sub caches. 

Which are 𝑓2(𝐴′) I mean it might be better to 𝑓2(𝐴′), 𝑓3(𝐴′)and 𝑓4(𝐴′) these locations are 

most likely not same as 𝑓2(𝐴) which we know to be full, 𝑓3(𝐴′)is most likely not the same 

as 𝑓3(𝐴) which we again know to be full which is and 𝑓4(𝐴′)is again not the same as 𝑓4(𝐴) 

again with high likelihood and 𝑓4(𝐴) is something we known to be full. So, these locations 

are other locations and it is very much possible that one of these locations may be free. 

Or we can randomly choose one if that is not free we can look at the other two, but is very 

much possible that one of these locations may be free and block B’ can be put there. So, 

let us assume again the worst case that these locations are not free well we can do the same 

we can put in B’ in one of these locations toss out the block B” which was over there and 

try repeating the process because B” will again with high likelihood map to another set of 

different locations. 

And once it maps to another set of different locations ultimately after may be a few rounds 

we will find some free locations. So, this method is called cuckoo search. So, what I would 

advise all of you is that you read up regular hashing. So, regular hashing again has two 

variants one is called chaining and the other is called linear probing.  

So, we are not really doing changing over here. What we are doing is more like linear 

probing which is similar to a set associative kind of access scheme, but the other access 

scheme which is a slightly different paradigm in the world of algorithms and data 

structures is cuckoo search which is exactly something that I describe. 

If you are not able to understand what I describe what I would like to advise you is kindly 

take a look at the cuckoo hashing and cuckoo search algorithms and then you come back. 

So, its an interesting thing of why do we say why do we say it is a cuckoo search and why 

not some other bird?  

So, the interesting story is that the cuckoo is actually a very clever bird. So, what the 

cuckoo does is that it lays its eggs in a crows nest and a crows eggs and a cuckoo’s eggs 

look more or less the same. So, the unbelongs to the crow actually helps it incubate and 



hatch the eggs of the cuckoo and once the baby cuckoos are born then their mother comes 

and they are collected and they fly away. 

So, we are in a sense playing a similar trick over here where we are having different 

hashing functions and we toss around blocks and so on. So, this is pretty much the history 

of this algorithm which of course is found an implementation in the skewed associative 

cache scheme. So, as I said we can do this tossing around several times, but of course, if 

the entire cache is full will never find space, but we can do it a few times and if we do not 

find free space then we can evict the block to the lower level. So, that option always exists. 
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Now, we come to our fourth mechanism called way prediction. So, way prediction is rather 

interesting in the sense it takes us very close to the actual implementation very close to a 

designer’s point of view. So, what is the default mechanism in let us say set associative 

caches? We read all the tags and blocks in the set simultaneously. Again why do we do 

that? We do it for performance reasons we compare the tag part of the address with each 

of the tags.  

So, you pretty much do more work than what is required, whenever that is the case we end 

up burning more power and what is required. So, let us propose a brilliant idea over here 

the idea is that we predict the way in which the tag will be found see if there are k ways in 

a set we try to predict we say that look maybe in the second way the tag will be found we 

access that way first.  



So, bear in mind that we do not read all the tags at the same time we do not do that we 

predict in which way we will find we access that way first. If the tags do not match we 

access the rest of the ways and then we declare a regular hit or miss. So, the advantage 

over here is that the additional energy that is spent in reading all the tags and blocks in a 

set and that to simultaneously that energy is not spent. So, we can save on energy subject 

to the fact that our predictor is accurate enough.  

So, that is an important insight over here that if a predictor is accurate then what we can 

do is that we can have a more power efficient version of a set associative cache. So, the 

key important point here is to design an accurate predictor to tell us in which way we will 

have a hit. 

(Refer Slide Time: 29:54) 

 

Let us now discuss the methods of way prediction. So, the basic idea is that if the memory 

address is available then we use it because after all the memory address will be the best 

predictor on in almost all cases for the way that you would expect to find it in. However, 

there are pipelines where the memory address may not be available when we initiate way 

prediction at that point we need to proceed on the basis of some other information, some 

other piece of information we need to proceed on the basis of that. 

So, I outlying 2 approaches. So, in 1 approach we predict based on the program counter. 

So, we use a mechanism that is very similar to branch predictors that uses the PC address 

to make a prediction. So, in this case, we have a predictor which is extremely similar and 



we provided the PC it predicts and what we get out is the way, a major shortcoming of this 

approach is that for the same program counter the addresses keep on changing.  

So, the addresses are a memory addresses keep on changing the ways will also keep on 

changing and the predictability of this source is kind of low. So, what we do is when we 

do not have the address we use an estimate of the memory address the estimate is computed 

using a different mechanism. 
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The mechanism is as follows let me explain with an example. So, let us assume the load 

instruction is of this type load into register r2, 12 (r1). So, then what we do is that we can 

divide this into 4 stages. So, let me first look at the stages of the regular pipeline and then 

I will talk about the additional stages. 

So, one stage is where we read the registers. So, in this case we read the registers r1 and 

r2. So, these are the source registers we read them then the next stage we compute the 

address. So, in this case we add 12 to the contents of r1, now we have the memory address 

with us. So, in this case we check for low store queue forwarding we can additionally have 

another stage to convert it from convert the virtual address to the physical address. So, this 

depends upon what we store in a load store queue. 

So, if within the same thread different virtual addresses can map to the same physical 

address then we need to store physical addresses in a load store queue, but otherwise, if 



we are guaranteed that different virtual addresses will point to different physical addresses. 

We can use the virtual address to address the load store queue and in parallel we can do 

the translation.  

So, I am not showing that because I will show an optimization to this process few slides 

later, but in any case one cycle is definitely needed for load store queue forwarding and 

then we access the d cache. And this accessing the d cache itself can take multiple cycles. 

So, let us now look at an alternative timing where our way prediction a time it takes to do 

way prediction is actually closer to 2 cycles than to 1 cycle. So, there what we will see is 

that if we have the address at this point of time we cannot afford 2 cycles to do the way 

prediction and then access the d cache. So, that will not be possible.  

So, what we should instead do is that we should compute an approximation of the memory 

address. So, the approximation can be computed like this that we take the contents of the 

base registers which in this case is r1 this is the base address. And we compute an exclusive 

or with offset which is 12.  

So, this can be done quickly I mean this is much faster than addition and so this can be 

done independently bit wise. So, after that the rest of the time can be spent on doing way 

prediction and the way prediction will use similar tables as we use branch predictors. So, 

the rest of the time which will be roughly 2 cycles. So, we are treating this as a composite 

2 cycle stage. So, this can be used to come up with the way when we access the d cache. 

So, of course alternative organizations are also possible. So, there will be some questions 

at the back of the chapter which also looks at different ways of organizing the timing, but 

if we take a look at this particular example what we can immediately conclude is that we 

do not have enough time after the address to do the way prediction.  

So, it needs to happen in parallel that is why we need an estimate where we use the XOR 

function like the g share predictor to provide us an estimate of the address. So, let us say 

if from the l s q forwarding stage we decide that we need to access the d cache then the 

way can come from here we first access the predicted way which is fast if let us say we do 

not find the data there then we access the rest of the ways. 
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Now, let us come to a next optimization after way prediction which is loop tiling. So, loops 

are very important in code primarily because the program spends most of its time executing 

loops. So, most of the time of a program is spent in loops and particularly if we have large 

loops that access large arrays on that are stored in memory on a system with caches running 

such large loops becomes a problem. 

So, we need to first answer a question how is a 2D array stored. So, there are two ways of 

storing a 2D array one is a row major order and other is a column major order well after 

all an array can be 2D, but the memory the way that we see it is basically a 1D array of 

bytes with increasing addresses.  

So, for a 2D array what we can do is we can store the first row then the second row third 

row and so on. So, many programming languages use the row major order, but what is 

kind of more common I would say slightly more common is a column major order in this 

case we store the first column second column third column and so on. 

So, that is primarily the way that data is stored and so, what happens is that if let us say an 

array stored in row major order and then we rewrite it column wise, it will cause a lot of 

cache misses because essentially there is no locality. So, locality is spatial locality is not 

there, but if an array is stored in column major order we access it in column major order. 

Then of course, we will have good performance because we can leverage the effects of 

spatial locality. 
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So, let us consider matrix multiplication for example, so this is a standard code for matrix 

multiplication where we are multiplying 2 N X N matrices the final matrix is also N X N. 

So, is A X B = C. So, the final as you can see the final result is being written here and this 

loop over here basically computes does the multiply step.  

So, what we do in a matrix multiply step is we take a row multiply it with the corresponding 

column. So, we take the ith throw here multiply it with the jth column it is a pair wise 

multiplication and addition that is the reason we have the + = over here. And finally, after 

the pair wise multiplications and additions the final sum is stored over here.  

So, when arrays are large let us say they are very large they are much larger than the size 

of the cache. So, this will actually lead to a very inefficient traversal. So, to speak because 

just take a look at this array. So, in this array we are essentially traversing the array in row 

major order array A in row major order, but here what we are doing is we are choosing a 

column and we are traversing that array in column major order. 

So, we are clearly not taking advantage of spatial locality of course some programming 

languages can be smart and some compilers can be smart. In the sense that they will store 

this array in row major in this array in column major, but typically that is not the case and 

the second is that even if they were it is possible that is single row is much larger than the 

size of the cache which can be the case with large data sets. So, there is a need to convert 



this code into a more cache friendly version. So, the method to do that is called loop tiling 

which we will discuss. 
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So, this is also called blocking. So, we will see why it is called blocks, but let us look at 

the idea. So, what is the idea well the idea here is that let us first look at the default scheme. 

In a default scheme we take the ith row and a jth column we multiply the elements pair 

wise and then we add them and the final result is stored over here. 

So, then the other thing is that instead of the other idea which is in our sense novel idea 

which is row tiling is that we do not consider an entire row or entire column instead what 

we do is we consider a small block of data. So, the small block of data can start at the 

coordinate ii, kk and then basically the size of the block might be B rows on this side and 

B columns on this side and we consider a similar block which again starts from here. So, 

what we do is that we take one small row over here we take one small column over here 

we multiply them. 

So, we will produce a set of partial sums and those set of partial sums can then be used to 

basically. So, those are anyway part of the matrix multiplication. So, those partial sums 

will be used to update the final sums, which is the final sum is being referred to as C[i][j]. 

So, they will be a use to update the values of C[i][j] in the final matrix.  



So, we will have to consider many many such small blocks in each block we perform a 

regular matrix multiplication which means we take a row take a column multiply them, 

but unlike the previous default approach where after one iteration we finally, have the 

value of C[i][j] in this case we will not have rather we will have partial values for all the 

cells within a block, but they are stored and this process is repeated until all the pairs that 

need to be multiplied or done. 

One small advantage of doing this is that if let us say the size of this block is small the 

entire block can fit in the cache. Similarly, this entire block can fit in the cache, so all of 

these traversals even if because of the block effect. So, even if let us say spatial locality is 

lower, but at least it is guaranteed that all of the accesses will hit in the cache and so, 

basically this will be a very fast access. 
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Now, let me show the code for tiling. So, the key idea is that we have 6 loops instead of 3 

loops the 3 loops at the top which is the iterators ii, jj and kk they traverse the arrays at 

units of the tile size. So, we are of course, making an assumption over here that  
𝑁 

𝐵
 

otherwise of course, we can add some dummy elements or we can do a little bit of algebra 

to take care of it, but let us assume for the sake of simplicity that 
𝑁 

𝐵
.  

So, we divide the matrices basically into small tiles as you have seen over here that they 

are being divided into small tiles and each tile each p x p tile is assumed to be small enough 



such that it fits within the cache. So, what we do is that we are multiplying 2 matrices over 

here and whenever we multiply we consider the ith row over here and the jth column over 

here where k is the iterator.  

So, in this case instead of the ith we consider a set of rows which is basically the tile size 

over here. So, we consider B rows and similarly for the other matrix what we do is we 

consider a set of columns. So, basically within each row we do not consider the entire row, 

but we consider a part of it. And similarly within the set of columns we do not consider 

the entire column, but we consider a part of it. So, that is given by this third parameter 

which is kk. So, this for us is the tile that we consider and we perform all the multiplications 

within the tile.  

So, to perform all the multiplications within the tile, what we do is that we iterate within 

the tile. So, we have 3 loops over here. So, we perform an iteration within the tile. So, we 

iterate from the locations ii to (ii + b). So, ii is considered the starting location of the tile. 
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So, this is also shown over here where the starting location of the first tile is ii kk and other 

one is kk jj. So, all that we need to do is we need to iterate within this tile and we need to 

perform the multiplication. So, just look at the 3 iterators we are iterating from ii to (ii + 

b) jj to (jj + b) and kk to (kk + b). So, once that is done what we do well once that is done 

we have the exact in indices ii and k we perform the multiplication. 



So, of course, not the + = sign. So, the multiplication over here is just adding to the partial 

sum such as C[i][j]. So, once all the additions are done you can see C[i][j] is complete and 

that would happen once we consider all the relevant tiles. So, it is in fact, quite easy to 

prove that this multiplication is doing exactly the same thing as matrix multiplication and. 

So, this is something that can be proven and its. So, if you think about it let us say that 
𝑁 

𝐵
.  

So, the number of iterations of the top 3 loops are essentially (𝑁)3 by (𝑏)3  and the number 

of iterations of the bottom 3 for one given combination of this is essentially (𝑏)3 b* b* b. 

So, if I multiply both we still have the (𝑁)3 multiplications and no multiplication happens 

twice.  

So, and then you can also verify what exactly we are adding and how we are computing 

C[i][j]. So, using this it is possible to prove that both the algorithms are identical and of 

course, proving it more formally is left as an exercise for the viewer. 
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Well burger question over here is that proof that the algorithm is correct. So, this can be 

done we need to just prove that the same set of multiplications are done. No extra 

multiplication is done and the results are computed correctly. 
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Now, let us come to the question that we had kind of left unanswered when we discussed 

way prediction. So, what we had discussed then is that any internal address is a virtual 

address which needs to be converted to a physical address. So, we need to compute the 

address its needs to be translated and the translated address needs to be used to access the 

d cache. So, the key insight is that we need to spend an additional cycle translating the 

address after it has been computed which is this cycle. 

So, this cycle is essentially at least one cycle of delay because here we access the TLB 

between the address compute phase and a d cache accessing, but of course, to improve 

performance after computing the address we also access the load store queue. So, that can 

be that phase can be overlapped with this phase subject to the fact that we store virtual 

addresses in the load store queue, but storing virtual addresses in load store queue is tricky 

it does have correctness issues which were discussed in a previous slide. 

So, now the question that we ask is what if we do not need any translation to access the 

correct set in the L1 cache. So, what if in the l one cache we actually do not need any 

translation well does it mean that we send the virtual address to L1 cache that will cause a 

problem the reason it will cause a problem is that the next time that another thread runs on 

the same core another process runs on the same core thread or process actually if they are 

using the same virtual address there will be a problem. So, there will be a problem. 



So, let us discuss this in some detail, but we are seeing that it is possible, but well the idea 

is that if it is there is a different thread or process that uses a different virtual address space 

if it is using the same virtual address space there is no problem, but we can always have a 

thread from a different process that is that has a different virtual address space.  

So, unnecessarily if we use virtual address to access the cache we get a wrong answer. So, 

the overlap problem will come up. So, now, we see that there is a fundamental trade off 

here between performance and correctness we would of course, not want to compromise 

on correctness, but we would also like to use the virtual address in accessing the d cache. 

Now, let us see how to do it in some cases we can get away with it. 
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So, where can we get away let us understand this process in some detail see if I have a 32 

bit or 64-bit memory address I would typically break it into a page id and an offset, where 

the offset is typically 12 bits because the size of a page is normally 4 kilo bytes. If I were 

to consider a 32-bit address space the page id would be 20 bits and then the frame id will 

also be 20 bits, but of course, it can be different depending upon the size of the physical 

memory. 

But let us say that the maximum size is limited to 20 bits say if I were to look at the offset 

in some detail I will see that there is a little bit of hidden magic in here. So, what I can do 

is that if I take my cache address if let us say these 20 bits of the frame id correspond to 



the tag and the offset corresponds to the byte offset within the block and the set index then 

the offset which will actually not change.  

So, basically the offset is not dependent upon the virtual to physical mapping. So, 

essentially this part is something that does not change. Whereas, this part is the one that is 

actually mapped we can use the offset to find the set. So, basically to so the tag of course, 

will come from the mapping process, but what we can do is we can use the offset to at 

least access the correct set within the cache and readout all the data blocks and tags within 

the set, simultaneously we can do the mapping.  

So, let me explain this in some more detail because this is very very important mechanism. 

So, what is the what am I trying to say well what I am trying to say is that in any virtual to 

physical translation process there is a part of the address known as the page offset. 
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I should call this is the page offset and I should call this is the byte offset over here. So, 

the page offset remains constant if my addressing scheme of the cache is such, that the tag 

comes from the mapping phase and the rest is a part of the offset then the set index is not 

dependent on the mapping.  

So, the key important point is that the index which is the set index is not a function of the 

mapping and then the brilliant idea is that I can use this index to access all the ways in the 

set read my tag and data blocks and at the same time also do the mapping. 
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So, what is it that I am doing? Well what I am doing is that my tag will go to the address 

translation module, but my index can come directly from the page offset this can be used 

to read all the tags of the tag array as well as read all the blocks from the data array in 

parallel some. Essentially, what am I doing I am accessing the tag array I am reading the 

data array in parallel I am doing the address translation. So, overlapping all of these within 

the same time window after that I can perform the tag comparison because I will already 

have the tag. 

So, I am essentially saving a cycle over here that instead of this process being sequential 

for a translate the address first and then access the cache, I am deliberately introducing an 

overlap over here to give me that extra to reduce that extra 1 cycle then I do the tag 

comparison and I select the appropriate data block.  

So, this part is the same what is actually different is the earlier part where I was able to 

save one cycle by creating an overlap over here and the reason that I could create this 

beautiful overlap is basically because the tag part of the access actually came from the 

mapping fields. 

So, this is not a generic mechanism because this depends on the size of the cache the size 

of the set index and so on. So, that is the reason for an L2 cache this is not a very reasonable 

idea, but if you read the book and you will see a working example given you will find that 



for most typical L1 cache sizes this is a very reasonable idea that is why many commercial 

processors actually use this mechanism. 
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So, next we will discuss a novel idea called trace caches. So, where in trace caches the 

idea is that can be totally side line the branch predictor and the decode unit and just store 

an unrolled trace of instructions that can be directly fed to the remaining stage. So, can this 

be directly done? So, we will look at that next. 


