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In this lecture we will discuss The Cacti Tool which is used to model caches and we will 

also discuss the Elmore Delay Model that is used by the Cacti tool to model timing and 

power. 
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So, let us start by asking a simple question. Any architect will always be confounded with 

such dilemmas. For example, should I use a 4 KB 2-way associative cache or an 8 KB 1-

way associative cache? So, well then this is not a very clear cut question. Well, it does not 

have a clear cut answer. The reason is it could be that the access time of this is two cycles 



and the access time of this is one cycle, because it has a lower associativity, it could be the 

reverse. 

Furthermore, the moss rates could also be different, hence unless we perform a thorough 

simulation where we find out the access times of these two designs and then we simulate 

them for a large number of workloads. We will not be in a position to say which design is 

actually better, because they are sort of in the same range and without a lot of simulation 

studies it is hard to say which one is better. But what we definitely do need is given the 

design of a cache we should be in a position to find out how long it takes to access for a 

read and write and secondly, what is the average power dissipation? 

How much energy is required to for making a single access? The other important question 

is how many concurrent accesses should we allow? Should we allow one access per cycle? 

should we allow two accesses per cycle? and so this of course, has a cost in the sense if 

we have a multi issue pipeline then having multiple accesses per cycle is a good idea, but 

this has a cost.  

So, we will see what is the cost and how to do it, because the SRAM array that we have 

presented allows a single access right. It does not allow concurrent accesses. So, we need 

to do something more we will see what we need to do. But, what we need to do is that the 

basic three steps have to be understood first before we go into more advanced designs.  

And, a three basic steps are that we need to find the access times of course, under model 

of how many accesses we will allow per cycle 1 or 2, the access time will then be converted 

to clock cycles. Then we perform detailed architectural simulations of both the 

configurations and then we find the faster one. Whichever one is faster the that design as 

chosen. 

So, the Cacti tool which was designed by HP labs its very popular it used to have a web 

interface at least till 2 years ago, but now the tool is freely downloadable, it can be 

downloaded and modified. So, this will tell us the access time the timing power and area 

essentially gives three statistics. And, so the latest version will also give leakage powers.  

So, in chapter 11, we will discuss what leakage power is, but for the time being let us see 

that it is the static power dissipation which is the power consumed even though there is no 

active access. So, to actually model a cache and see how long it takes we need to see how 



it is constructed. So, we will actually find that it is at its heart, at its core, an optimization 

problem. So, we need to solve an optimization problem we can either use brute force that 

is a bad idea. 

So, what I would suggest is that you should devise AI base techniques to actually solve 

the problems. So, I will discuss what are the norms, what is the optimization problem like 

and how it can be solved with AI based techniques. So, you never thought that you can use 

AI to design a cache. It turns out that you can. 
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So, first let us look at how to do multiple concurrent accesses. So, one simple solution, one 

simple idea which will well, which will work in a sense or not work in a sense. So, it will 

work from an electrical sense it will work, but from an computer architecture sense its a 

bad idea, which is that we modify the basic SRAM cell. So, the inverter pair is over here. 

So, the basic SRAM cell that has fixed transistors would have consisted of this inverter 

pair, this word line transistor and this word line transistor. What we do is that we add two 

additional transistors. Which means; we add an additional word line, word line 1 and word 

line 2 and along with that we add two additional access transistors and two more bit line. 

So, one more bit line pair basically. 

So, we have two bit line pairs, and we have two word lines. See, we do this for every single 

cell in the array. So, basically in the entire array what we do is that we have two decoders, 



so we have a decoder 1 and we have a decoder 2. Decoder 1 drives the word line 1, decoder 

2 drives the word line 2 for every cell. 

So, it is possible to in parallel access two different rows of the SRAM array. So, we cannot 

still access the same row, but we can access two different rows, because row the first row 

we can activate word line 1 and bit line pair 1.  

So, then we can read or write this row. And, the second row we can do the same we can 

activate word line 2 and bit line pair 2 and we can access that row. So, let us say it is one 

row is this one and the other row is this one. So, this one can, so the top one can use word 

line 1 bit line pair 1 in the bottom row can use word line 2 and bit line pair 2. 

So, as far as we are concerned they are separate accesses, because they have that separate 

word lines and bit lines and we can have concurrent accesses in this way. So, in this case 

the SRAM actually has two ports, each port allows a read or a write. So, we say we have 

two read write ports. So, we say we have two read write ports. We can instead design the 

SRAM in such a way that we have one read write port just one read port. So, the other read 

port will not have a write driver, will not have the facility for writing, but it will have the 

facility for reading. 

Similarly, we can say that look instead of a generic read write port we can have just a read 

port or just a write port. So, this will reduce the amount of hardware, but its architectural 

implication needs to be understood. So, what we need to understand is that we need to 

solve an optimization problem. So, there is a tradeoff. So, whenever, wherever there is a 

trade off there is an optimization problem at its heart. 

So, let us understand what is good and bad about the design. So, let us consider this design 

that we have an option. Either we have an SRAM cell with 6 transistors that allows a single 

access per cycle or we have an SRAM cell with as you can see 8 transistors that allows 

two accesses per cycle. So, we will see whether these are read write or just read just write, 

that is a later decision. 

But the important point is, that since we are doubling the number of word lines and we are 

doubling the number of bit lines, what actually happens when we layout this circuit is that 

the area of the circuit will increase by 4 times, because the y axis is having double the 

number of word lines and the x axis is also having double the number of bit lines 



intersecting it, and because we need to maintain a minimum distance between two bit lines 

known as the pitch. So, it will turn out that the area will increase by roughly 4 times. So, 

on similar lines, if we have k ports, the port is an interface for a read or write. 

If you have k ports, the area will increase 𝐾2 times. So, of course, one of the negative 

factors is the additional area. So, we of course, need more area for the transistors, but the 

more important thing is we need more idea for the wires and the later dominates. The other 

thing is, of course this is slower slower and more power, because its a bigger circuit bigger 

the circuit more power. So, these are all negative, but the positive is that it allows 

concurrent accesses. Let us say it allows parallel, that is the big big positive over here that 

it does allow, it does allow parallel accesses. 

So, this can be used to increase our IPC because let us say that one in three instructions is 

a memory instruction, and we are issuing six instructions per cycle we expect to have two 

memory instructions, in that case our IPC will undoubtedly increase. So, of course, here 

the question is that can we do 2 read write ports or just 1 read write and 1 read or 1 read 

write and 1 write. 

So, of course, there we will pay an area penalty, but we can slightly reduce the amount of 

hardware there are lot of choices. How do we resolve them? Well, so the gold standard is 

we do architectural simulation where we take a wide variety of programs and we just 

simulate the different configurations. 

And of course, we analyze all the data so we decide you know complicated trade off, that 

is actually the job of a computer architect that different sites pull him from different 

directions. So, somebody might be saying that look let us have a bigger cache with cells 

like this that allow multiple ports. Others would say that look we do not have enough area 

for the cache, so keep the cache as small as possible because we need to fit other elements 

on the chip. 

So, there is a lot of push and pulls. So, this creates a very fertile space for tradeoffs and 

optimizations, but the main problem, one reason why such designs did not really take off, 

is mainly because if we increase the number of ports k times the area increases 𝐾2 times. 

So, ultimately the area becomes the most dominating concern. So, we will look at how it 

is done how this problem is solved in a slightly different manner and for that we will have 



to go through details of the Cacti tool and then I of course, I will discuss the optimizations 

that are involved. 
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So, the Cacti tool famously takes 3 inputs. Primarily, they are called A B C inputs. So, the 

orders in which they are given to the tool is reverse C B and A. C is the cache size and 

bytes, B is the block size and bytes and A is the associativity. So, then there is another 

parameter that can be provided it is the number of banks where a bank we can think of as 

a sub cache, but we will discuss more later. 

And, there are two more inputs which are hidden, but you can always change the code of 

Cacti and change them. So, one is that what is the output width in the sense how many bits 

or bytes do we read out in one go. So, it could be 4 bytes, could be 8 bytes, can be 

configured. And the other is, what is the width of the memory address. So, that can also 

be 4 bytes or 8 bytes 32 or 64 bits again can be configured. 

So, we give it the inputs and the output. So, the input such as A B C inputs with a few 

implicit ones and output is of course, the area timing and power, but of course there are 

many many ways of physically designing the cache as we should see. So, Cacti will choose 

the most optimal design based on what you tell it to optimize it for, minimum area, 

minimum time, minimum power any combination thereof and then it will give you the 

specs of the final design.  



So, Cacti is both a estimator of area time and power as well as it is it also computes the 

most optimal design of the cache given your parameters. 
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So, a sample input output of how it works. So, we provide the cache size over here in bytes, 

it is a 16 KB cache line size the block size is 64 bytes, the associativity is 4 maybe you 

cannot see that 4 is written. The number of banks well we will take a look at the bank issue 

later, but let us assume its 1 for now. 

And, the technology node that is very important the technology node here is said to 32 

nanometers. So, as you know every 1 to 2 years use to be 1 is 2 now, the technology node 

reduces by a √2 factor of √2. So, given that each dimension reduces by √2 the area of a 

transistor reduces by a factor of half. So, this is how the technology nodes have been 

progressing we are currently at 7. So, what is the technology node?  

Well, the technology node or the feature size is the minimum is the size of the smallest 

structure that can be fabricated on silicon reliably. So, traditionally it is the DRAM half 

page. So, well, when we discuss DRAM I can tell you more about what is DRAM half 

page and that is going to come in chapter 10, but essentially if let us see what happens is 

that in DRAM we have pretty much a single capacitor like this.  

See, if we have let us say these parallel copper wires primarily with moss based capacitors. 

So, the pitch is essentially the distance between two parallel wires and half pitch is half of 



that. So, the output is shown over here. So, the output shows the input first, number of 

banks, cache size, size and bytes it computes the number of sets and so on and of course, 

the read write ports read ports write ports. 

So, we have a single read write port. So, Cacti also has an advanced interface where these 

things can be configured. So, the most important output is the access time, which is 0.61 

nanoseconds and then a couple of more energy and power and area statistics. So, the area 

is 0.326 mm square. 

So, most tools like Cacti will maybe end at 32 nanometers, but if you want to use it for 7 

nanometers then we apply what are called scaling rules that take this data that Cacti has 

produced and multiply them with a set of well accepted factors derived empirically of 

course such that these values can be scaled to let us say a 7 nanometer process. A 7 

nanometer feature size. 

So, you will find a lot of I triple E papers that have different scaling rules. Some of the 

papers are well accepted. Any of those scaling rules can be used to convert numbers 

generated for a 32 nanometer technology to let us say a 10 or 7 nanometer technology. 
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So, how does Cacti work? Well as we have discussed given the inputs it tries to create the 

most optimal design. So, what can happen? Well, if you do not create an optimal design 

you will come up with bad designs like this, where you know it can be very long let us say 



in 1 axis. One problem is physically constructing such a cache is hard, because you will 

have to unnecessarily displace other elements in the chip and it just might be very hard to 

place it. 

So, just placement will become very hard. And also, if you have too many rows in two few 

columns your row decoder will become huge and very slow. Similarly, if I have my cache 

is like this well first it will be hard to place; second, we will have too many columns, so 

you know the column MUX DEMUX will become very slow. So, a fast design is typically 

squarish its not fully squarish, but typically looks somewhat, like a square it subject to 

optimization of course. 
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So, how do we do it? So, here is the idea that how do we actually design a cache. What 

exactly are the steps, the optimization processes? So, let me now talk about the broad space 

of optimization. So, what are our inputs? 
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The input is the cache size in bytes, block size in bytes and the associativity. So, from this 

we can calculate a couple of things. So, we can actually calculate everything and we also 

know the memory address and all of that. So, we know the number of bytes we want to 

read out and let us say let us call it B in or B width which is the size of the input address. 

So, on the basis of that we can say that the number of blocks in the cache = 
𝐶

𝐵
. 

The number of sets in the cache = 
𝐶

𝐴𝐵
. And, then what we can do is that the first question 

that needs to be answered is, we need to find out the aspect ratio of the cache, where we 

can say the aspect ratio is, let us say the height divided by the width. So, the aspect ratio. 

So, when we buy a TV so let us define it the width divided by the height, because that is 

traditionally the way that it is used. So, the aspect ratio basically says whether the cache 

looks like this or the cache is squarish, because as you can see the aspect ratios are 

different. So, in a square the aspect ratio will be 1. So, we need to figure out what is the 

width by height. So, this in itself is a hard thing to figure out, but let us say this is one of 

the parameters that we will optimize. 

So, let us say that let this be the parameters, let us say N spd for the data array, d for the 

data array sets per row of the data array let that be spd, so let this be a parameter. So, if 

this is the parameter, say every row of let us say the data array will have N spd sets. 



So, if it has N spd *A *B *8 these many bits. So, it will essentially have these many 

columns. So, this is clear that N spd is a number of sets per row multiplied with the number 

of blocks per set multiplied with the number of bytes per block number multiplied with 

the number of bits per byte. So, the we will have these many columns.  

Now, the next question is to figure out the number of rows. So, the number of rows is not 

hard to find. So, the number of rows so this is number of columns. So, the number of rows 

is basically equal to the number of sets divided by the number of sets per row. So, we 

check that the product is correct, all that we have to do is we will have to multiply both 

and the final result is C into 8, which is C into 8 bits.  

So, this is equal to the number of rows. So, this is one of the parameters that our optimizer 

needs to find out that what is N spd. So, in earlier versions of Cacti this had to be an integer, 

but now even fractional values are allowed which means that part of a set can be in one 

row and the other part can be in the next row. 

So, this will clearly give us the aspect ratio of the cache that whether it will more 

rectangular, whether it is squarish it will clearly tell us once. So, this is an unknown, this 

needs to be found out. So, once let us say that we know this; then what? Then what we 

will have is that we will have a large array, where we know the number of rows, where we 

know the number of columns, but the problem with such large arrays is that they are very 

slow to access. Why are they slow to access? Bit lines are very long word lines are very 

long. 

So, the signal propagation time on the bit and word lines is very high, if there are many 

rows the decoder needs to be very big, many columns the column MUX DEMUX has to 

be very big. So, what we can do is, we can partition this big array into several sub arrays. 

So, what I have done is, that I have partitioned it on the vertical axes basically. So, I have 

essentially partitioned it. 

Then again I can partition it this way I can this is like a horizontal partition. So, what I 

have done is that I have partitioned it into 16 sub arrays. For sub each sub array contains 

a part of the data, so we can of course, partition it in different ways, but let us see that each 

sub array. In this case, so let us start with a simple design let us start with a simple two 

level hierarchy and later on I will break some of these assumptions. So, let us say a simple 

two level hierarchy has an array and a sub array. 



So, let us say that a block is entirely contained in a sub array, then there is absolutely no 

problem. What we need to do is that we are essentially breaking a big cache into like this 

16, this big SRAM array into these 16 mini arrays, so to speak and these 16 mini arrays 

where each one of them is called as sub array contains a block. So, what we do is, we go 

there and we read it. So, what is the time that is required? Well, the time that is required is 

that first we need to figure out in which of these sub arrays the block resides. 

See, if let us say if there are 16 of those, so we will need some sort of a circuit to figure 

out where we need to go. So, this will essentially be a circuit that uses a decoder where 

will use some of the address bits and then we will find out where we exactly need to go, 

which specific sub array we need to access. 

So, we go to that sub array and then we read in the block from there, and so since this is a 

smaller sub array smaller than the entire array its access time is expected to be faster. So, 

let us now draw a simple trade off graph. 
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So, on one side we have the access time of the entire array. We need to compare that with 

let us say the time required for finding out which sub array and then routing the address 

bits to that. So, this will require a de multiplexer. So, let us say that this is broadly decoding 

and routing. You need to find out which sub array to go to and send the address bits over 

there this is this overhead plus the access time of the sub array. 



So, this is essentially the trade off that we are looking at. We cannot have too many sub 

arrays. Like, we cannot have a 100 sub arrays, maybe we cannot have a 1000. Number 1, 

because this overhead will become too much and number 2 is that now a block will be split 

across sub arrays, so we need to need, we need to read multiple sub arrays, because each 

one of them would be containing a part of a block. 

So, even if let us see we are reading not a full block, we typically do not we typically do 

not read 64 bytes. But, let us see even if you are reading 4 bytes or 8 bytes even that needs 

to come from a single sub array, and if that is not the case then multiple accesses need to 

be made. So, all of this has to be kept into account. But, pretty much sub arrays do not 

come for free. 

Sub arrays have a decoding and there is a decoding and routing overhead and also the 

additional wires are required and each sub arrays also have its own logic. So, they do not 

come for free, but keeping these costs in mind we need to basically see whether we have 

the original array or whether we split it. 

So, a large array is typically split into smaller sub arrays and that would make it a two 

level hierarchy. So, find the two level hierarchy make sense and this is what Cacti used to 

do for a long time. Now of course, things have changed and things have moved towards 

the multilevel hierarchy. So, let me at least describe some slides of the two level hierarchy 

and then I will come to the multilevel. 

So, as I have described, let me just go back to the 2 level part. So, the number of sets that 

are mapped to a word line in this case is N spd as we said higher N spd there are issues 

lower N spd there are issues. So, we are basically changing the aspect ratio of the cache. 

When we create sub arrays, let us say we have N dwl vertical cut lines, vertical partitions 

and N dbl horizontal partitions. So, total number of sub arrays we create is this much N 

dwl, dwl is wl is for word line, bl is for bit line, d is for data array. 

So, similarly we will have t for tag array like N twl and so on. So, pretty much our 

optimizer needs to find these three parameters, if you are doing a two level partition. So, 

it is a 3D three dimensional optimization. 
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So, just to tell you when the bit lines are being snapped, we just snap snap snap. So in this 

case, N dbl = 4, because as you can see we make 4 partitions. And, each of these rows it 

contains N spd * A * B bytes N dwl is where we do snap snap snap on the word lines. So, 

here again we create 4 partitions; 1 2 3 and 4. So, then we create 4 partitions and we make 

16 sub arrays. 

So, in early versions of Cacti each sub array used to have its own decoder its own sense 

amplifier it. It was a separate kind of a mini cache on its own, but this idea has changed. 

As we will see, current cache designs do not use this they do not use the two level 

hierarchy. 
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So, current cache designs are smarter. So, what they do is that they use a multilevel 

hierarchy. So, large cache is split into multiple banks. So, I should not use be using the 

word cache, to be more accurate, it is much better to say that a large array is split into 

multiple banks. A bank is pretty much an independent array. So, bank is an independent 

array. It has its own address and data lines, and of course, its own circuitry. 

Here is the; here is the wonderful idea. The idea is that they do allow concurrent access. 

So basically, one is that because they are smaller they are faster, but that is not the key 

point. The key point is we can access different banks in parallel. So, what do we do? We 

take the address from the physical address, we find the; we find the block address from the 

block address let us say we take the 2 lsb bits, we use them to find the idea of the bank and 

the address is sent over there. 

So, as long as two addresses do not map to the same bank, which is also called a bank 

conflict, as long as there is no bank conflict, we can support four parallel accesses very 

easily. So, this is of course, bank conflicts is an issue, but let us say that there is a three-

fourth chance of not having a bank conflict.  

In this case parallel accesses can be supported rather easily and this is an advantage of the 

multi bank design, where essentially a large array is just split into four smaller arrays. Of 

course, there is a disadvantage as we have talked about more area; routing overhead, 

decoding overhead, there are disadvantages. 



Now, what do we do for a bank? So, what did we do? So, large array well we are not happy 

with that we made banks; banks gave us two advantages at the same time. They are faster, 

but the bigger thing is that they allow parallel access, so that solved our problem. So, then 

what we do? So, in this is easy.  

So, deciding the number of banks is purely based on how many parallel accesses we would 

like to support. So, let us say that we can have 8 banks. Well, we just take out 3 bits from 

the block address and just have 8 banks. So, we have still not designed them. Now, each 

bank needs to be designed by Cacti and this is what needs to be broken into the sub arrays. 

So, bank in this case is an array and each of the banks need to be broken into sub arrays. 

So, we need to compute these three parameters. And since, all the banks have the same 

size that is most often the case, if we optimize one bank, we optimize all. Which means, 

that for each bank we need to compare sorry compute these three parameters. Computing 

these parameters can be done by brute force in the sense you consider all possible values 

which is what Cacti does, not a good idea.  

So, this is slow right, very slow. What you should do is that you should use a AI based 

heuristic right. To quickly find out the combination of these three values that gives you the 

best value of the objective function. The objective function could be minimum time, could 

be minimum area, minimum power or any combination thereof right. That should be done. 
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Now, what do we do? What we do is, here is the fun part. Let me go back to the bamboo 

paper software that I use and then I will show you what exactly I am I intend to say in this 

slide. So, this slide is very loaded. 
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So now, we are talking of a multilevel hierarchy. So, we are talking of a single bank and 

let us say we have computed N spd N dwl, N dbl. So, we have essentially broken it into a 

large number of small, small, small, small sub arrays. So, the question is that how do we 

organize them? One simple organization would be that we just break a bank into a two 

level hierarchy, a bank and a sub array. 

But this is typically not what is done. The main reason being that the routing overhead is 

high and also modern processors have complex access patterns. So, I will tell you one 

access pattern which is important and which is why the cache has to be cache design needs 

to be relooked at. 

So, most modern processors inclusive of inter and a m d arm also has these features have 

what are called SSE instruction sets. Or, broadly speaking SIMD instruction sets, where 

we read let us say an entire block of 512 bits at the same time. How much is 512 bits? 512 

bits just to your math, it is 64 bits. (2)6 * (2)3  is (2)9  = 512. So, many do 128 256 and 

512 avx instruction sets do 512. 



But it does not matter. 256, 512 all of them are large numbers, as far as we are concerned. 

See, if let us say they are read at the same time, we need to bear this in mind that this is 

done. So, we do not always read 4 bytes. So, 4 bytes is the case when you are reading an 

integer, but we let us say even we are talking of 128 bit access which SSE does allow. 

Even the earlier MMX instruction set also used to allow in that case we actually pack 4 

integers.  

So, this is a packed instruction format, where we are packing 4 instructions. So, they are 

kind of placed side by side and we read these 128 bits together in one go. The advantages 

that we put them into a 128 bit register and we add taken take another 128 bit register and 

we add them. So, what this does is that this is like a packed addition, in the sense that it 

adds corresponding integers and the final result is also packed. 

So, this is very good for all AI kind of algorithms, matrix multiplication and so on, in the 

sense that it is kind of a intra instruction parallelism where 1 add instruction adds 4 pairs 

of numbers in one go. This is also called SIMD; single instruction multiple data paradigm, 

and SIMD is heavily used in numerical computing that is why most modern processors 

provide instruction sets for SIMD, hence it is necessary to read large chunks of data in one 

go from the memory system. 

So, if we bear that in mind, what will happen is that we break it into very very small, small, 

small, small sub arrays. It is possible that let us see if you want to read 64 bytes, it might 

be split across multiple sub arrays that will cause some problems. So, this is not easy to 

manage further more from this point of view of power efficiency, we need not have a we 

need not have a large routing and decoding logic that you go here and then you finally 

locate which sub array or which set of sub arrays, read them and merge them.  

That is a lot of work. We should break this into several more levels. So, the first level that 

we have seen of course, is the entire array. The entire array did not allow parallel access, 

so banks allowed. Next what we do is, we divide banks into sub banks. So, within a bank 

we cannot access different sub banks in parallel, so let us say we do a horizontal split. We 

change the color if I can, you say can. So, let us let me do a horizontal split over here. 

So, let us say the top part is sub bank 1 and the bottom part is sub bank 2. So, then this 

kind of simplifies the circuit a little bit in the sense immediately from the address we know 

where to go. Now, within a sub bank we further divide it, so what Cacti does is that Cacti 



further divides a sub bank into a into mats. So, what is the advantage? The advantage of 

dividing a sub bank into mats is like this. Then let us say we divide it into 2 mats. 

So, consider a sub bank and let us divide it into 2 mats. What we can do is that let us say, 

we want to do an SSE access and we want to read 64 bytes in one go. One mat can provide 

32 bytes and the second mat can provide 32 bytes and then we can merge them. So, here 

we are essentially having a parallel access and we are splitting a block between the 2 mats.  

So, this is giving us a faster access time because the mats are smaller and also we have 

parallel access; in a sense, we have these smaller arrays we read 32 bytes from each and 

we merge them and this is much faster than having a larger array that has 64 bytes stored 

in one go. And, so basically from an electronics point of view when you read the Elmore 

delay model.  

You will realize that the latency of a wire like a word line or a bit line is proportional to 

the square of the length of the wire. So, we typically do not want long word lines and bit 

lines, that is why we would like to have small arrays and where small arrays can provide 

a part of the data and we can merge it, sounds good. 

So, we then unfortunately mats are further divided into our sub arrays. So, you recall that 

we had originally divided a bank into a sub array, but then we forgot about it, but now the 

entire picture starts to make sense. So, what did we do let us start again, we take a bank 

we divide it into many many small sub arrays. We arrange the sub arrays broadly into 2 

sub banks or 4 sub banks. So, depends on how we would like to do. 

So, Cacti of course, has some hard coded values, but in industry they run extensive 

simulations. Sub banks are divided into mats where different mats are activated in parallel 

and they provide a part of the data if there is a need, and then the mats are divided into the 

sub arrays which is the once that we had originally computed from N spd, N dwl, N dbl.  

So, this sub arrays within a mat are also activated in parallel, same idea. So, let us say the 

mat has to supply 32 bytes, then each of these sub arrays will supply a 4th of it like 8 bytes 

each ok. Each of them will supply 8 bytes each. So, this is also fast. So, there is one more 

things of, so then somebody could easily argue what was the need for having mats in the 

first place, why not have sub bank and a sub array why did you have a mat. 



Well, the answer is; the answer is the different sub arrays can actually share resources. So, 

mats did not share resources, but different sub arrays within the mat, so let us say we have 

4. They actually can share resources which will make the design more area efficient. So, 

what is the resource that they can share? They can share the decoder for example, the row 

decoder, sorry this is meant to look like a D. So, the row decoder what it can do is it can 

take the address bits and then the decoded outputs. 

So, let us say there are k bit decoded outputs they can be sent to each of these sub arrays 

within the mat and the sub arrays need not have their own decoders, so we are saving a lot 

of area over here. So, this sharing of resources and even shearing of other circuits and 

buffers and so on can be done. So, the sharing of resources is something that is unique to 

sub arrays within the mat, but not resources are typically not shared between mats in the 

same sub bank. 

So, this is a complicated hierarchy we are looking at, it is not two levels it is 1 2 3 4 5 

levels, but different hierarchies play different roles, the reason we broke it into banks is 

for parallelism. The reason we broke banks into sub banks is for efficiency. The reason we 

broke sub banks into mats is basically because of intra block parallelism. 

Intra block parallelism as well as faster access and the reason we have different sub arrays 

within a mat is basically for sharing resources notably the decoder. So, that is the reason 

we broke it. See, if you think about it this is a complex hierarchy and we have a few more 

optimization terms.  

So, these things Cacti 6 hardwares, but need not be hardware. So, one optimization term 

is the number of banks. So, this would of course, require architectural simulations. The 

number of sub banks within a bank, number of mats within a sub bank right and the number 

of sub arrays within the mat, I mean that is not an optimization term because number of 

sub arrays is known in advance. It is essentially N dwl * N dbl. 

So, if I were to summarize this entire complicated picture, we have a multilevel hierarchy 

where every hierarchy is made with different things in mind. And if we go back to our 

power point, what we see is the same thing sub banks do not allow concurrent access; 

however, a sub bank stores full block, but then the mats and sub arrays is supply portions 

of the full block and sub array share resources. You can see an array, a bank, a sub bank, 

a mat and a sub array. 



So, this is this to us is a complicated design of a cache. And as you can see there are many 

many nobs that need to be turned for effectively and efficiently optimizing a cache, and 

architectural decisions the pattern of your program etcetera play a very strong role. All of 

these things have to be taken into account while actually designing a cache. It is not simple 

and its there are complicated computer science problems in simply doing the optimization. 

It is a multilevel optimization space, brute force is not a good idea, it is slow. Many a time 

it is not possible because of the fact that is so slow. Nevertheless, AI based heuristics work 

well and they are they have traditionally not been used, but they are increasingly being 

used in architectural design for solving problems of this kind. 
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The summary of this part, before you move to the Elmore delay part is that, look first 

decide the number of banks which is parallelism, but for each bank first compute the aspect 

ratio. Then a N dwl and N dbl and these three parameters can be used. So, the essentially 

these three parameters are what are optimizer has to give. 

So, fine fair enough, and so then dividing a cache in the equal size banks well, we have to 

keep in mind the probability of bank conflicts, but a bank will at least array the bank will 

at least allow for parallelism and each bank is split into a sub bank mat and sub array. And, 

as we have discussed sub banks are separate, they do not allow independent accesses, but 

they still store an entire block and we have enhanced intra block parallelism because of 

mats and sub arrays. 



And, sub arrays additionally share resources such as decoders. So, given this we need to 

now go one more level down and figure out that, let us say given a sub array how do we 

find its timing and power. So, given this how do we find its timing and power. So, finding 

the power is simpler given a proper model of the circuit, the timing is much harder. So, we 

will discuss the Elmore delay model. That will teach us how to compute the timing of such 

complicated circuits. 
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So, a few experimental results are due. So, let us consider a running example of a two way 

associative cache, single bank of course, 64 byte line size 32 nanometer technology. So, 

let us plot the access time versus the cache size where the cache size is varying from a few 

kilobytes still 128 KB. So, as you can see the access time is not really increasing that much, 

that is mainly because of our optimizations.  

Because of the fact, that we ultimately end up accessing a small sub array, and the sub 

array is fast that is why even if we increase the size let us say by 64 times, nothing big 

seems to be happening. the access time is what increasing from 0.4243 nanoseconds to 

0.55 nanoseconds and this increases mainly because of the additional wire routing and 

decoding overhead of finding the sub array and merging data and so on, but this is minimal 

as compared to what you would otherwise expect and this is only because of the 

optimizations that Cacti has. 
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In comparison, the area does not increase linearly it increases, super linearly as you can 

see. And super linear increases of course, because as we add more sub arrays we add more 

wires, more decoders, more routing logic. So, this increases with the size of the cache, so 

that is why we see the super linear increase in the area. 
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But we did not see that with the access time and you will also not see that with the power. 

So, even the power that is used assuming that we have an access every cycle, at the 



maximum frequency is still going up from 0.15 to 0.25 watts which is again not much and 

this is also because of Cacti’s optimizations. 
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Now, we will come to the final question of cache design, which is that given a sub array. 

How do we find the time area and power. So, the area is easy to find. The area we know 

the area of each transistor we can multiply that is easy to find. The power and the timing 

are the important questions. So, the time and power of a sub array howsoever you get it. 

So essentially, we take a large array we then we split split split, and then we take a small 

one, we further split split split. So, regardless of that let us say, that we come at this 

particular sub array, what is the time that is required to access it, how do we compute it. 

So, this will be given to us by the Elmore delay model. 
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So, what we can do to compute the delay of a cache or for that matter any electronic circuit 

is that we replace it with a simple model, something that we can actually work with. 

Because a wire or a transistor this is a very complicated thing to work with. So, we do not 

really know how to model them quickly. We can model them, with modelling them quickly 

is the issue. 

So, we replace a wire with an equivalent RC model that only consists of resister and 

capacitors. So, we have resistors then. So, resistor indicates the resistance of a short 

sequence of the wire. This is the capacitance, capacitance with respect to ground, the 

reason being that the wire is a metal conductor and every metal conductor can accumulate 

some charge, it is like a parallel plate and there are lot of parallel plates in the chip, in the 

sense there are lot of other wires. 

So, whenever there is a potential difference across 2 parallel plates, we essentially have a 

capacitor and the way that this is modeled is that this is modeled as a finite capacitance to 

ground which you exactly see over here. Again, we consider a small chunk and we have a 

capacitance to ground, so on and so forth, so this is the RC model of a wire. Similarly, we 

can have RC models for a bunch of different elements such as, transistors, sense amplifiers, 

bit lines, word lines, SRAM cells, everything. 
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So, what we will do is, we will proceed with two assumptions. That in our circuit we will 

only consider RC trees. So, we all know what is a tree data structure. So, an RC tree is 

essentially an RC circuit that does not have a cycle, and so that is a number 1. And the 

second is that we never have a cross path in the sense we have one path other path retching 

it like that.  

So, we do not have this kind of a path. So, we will limit our discussion to RC trees, and a 

tree is the same as the data structure tree. Furthermore, we will consider only kinds of two 

only step inputs as voltage sources which means the voltage abruptly goes from 0 to 1 or 

falls from 1 to 0. So, we will in our basic model not consider a gradual transition. 

So, this for example, is not ok for us. So, the Elmore delay model for such kind of a voltage 

source will help us compute the time that is required. For let us say, charging a bit line or 

changing the state of an SRAM cell or a CAM cell. 
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So, let us look at a typical RC circuit which is also an RC tree by the way. Note the 

positions of all the resistors and the capacitors and also the terminals 0 1 2 3 4 and 5. So, 

we have voltage source connected, so we will only consider the 1 to 0 transition in this 

lecture. The 0 to 1 transition is also easy to handle. So, that is left as an exercise for the 

viewers, but we will mainly talk about the 1 to 0 transition. 

In the 1 to 0 transition, what we need to find is, that let us say, if the voltage source was 

connected. So, we connect the voltage source and then it suddenly drops from 1 volt to 0 

volt, then what would be the voltage at each of these terminals. Particularly, the output 

terminals 3 and 5, that is what we would like to know. What it would be across time over 

time. 
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So, what we do is that we replace all the capacitors. So, just go back we replace all the 

capacitors with current sources right. So, these capacitors are all replaced with equivalent 

current sources. Each current source, if you recall your discussion on capacitors, the 

current that it would actually provide is - C 3 
𝑑𝑉 3 𝑡 

𝑑𝑡
. 

So, why is this? Well, because Q = VC 
𝑑𝑄 

𝑑𝑡
 which is the current is a essentially C * 

𝑑𝑉

𝑑𝑡
. So, 

the current that C 3 for example, will provide. So, of course, given that it is flowing in this 

direction, the (-) sign comes down because the voltage is decreasing. So, it is - C 3 
𝑑𝑉 3 𝑡

𝑑𝑡
. 
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So, the aim is to compute the voltage of node 𝑉𝑥 at time t. What is the methodology? So, 

what we would like to find is, we would like to find this quantity 𝑉𝑗
𝑖, which is the voltage 

at terminal i because of the current source placed at terminal j. So, what we want to do, if 

you go back to this slide you would maybe want to find the voltage at terminal i, which is 

let us say 𝑉1 because of the current source placed at terminal j which is in this case j = 3. 

If we add up all the components, so since it is a linear system superposition holds. So, we 

add up all the components we will then get the voltage at terminal 1 which is 𝑉1. So, 𝑉1 

we will get it over time as a function of time. So, while considering 1 current source let us 

disconnect the rest of the current sources. So, replace them by an open circuit. 

So, this is a quintessential method of analyzing such linear systems. So, let us say I am 

interested in 𝑉3
4. So, 𝑉3

4 I will tell you in a second what it is essentially the voltage at 

terminal three because of the contribution of the current source placed over here, because 

of the current source placed over here, what is the voltage over here. 

So, what will happen is that since we have disconnected the rest of the current sources, all 

of them will get disconnected. The current here is going to flow this way, this way, this 

way and go down to ground. So, if the current is here = I then the voltage will actually = I 

𝑅1 and since there is no current flow along this route because everything is disconnected, 

𝑉3 = I * 𝑅1. 



So, this is exactly what we see over here, that the current that flows out of the capacitor, 

that the current source at terminal 4 is given by - C 4 
𝑑𝑉4

4 

𝑑𝑡
. So, this is basically the current 

that flows out of this current source over here, which is this capacitance divided by the 

voltage. So, this voltage is primarily because of this capacitance by dt. 

So, this is the current that is flowing. This is the current i and i * 𝑅1 is essentially the 

voltage that will be there at terminal 3, because there is no current flow along this branch. 

Hence, 𝑉3
4 = -𝑅1, why 𝑅1 because 𝑅1 is the only resistance from this path to the ground. 

So, that is why we will have 𝑅1 - 𝑅1 times the current which is given by this value. 
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So, what we can do is we can generalize the circuit. So, let us say, if you have 2 terminals 

i and j and then of course, this stands for an RC circuit. And, let us say that we want to 

find out what will be the effect of a current source placed at j on terminal i to do that, what 

we do is that we model the RC tree in this fashion where the of course, they will have their 

separate branches, but at some point they will merge. So, let 𝑃𝑖𝑗 denote the RC circuit in 

the shared path from 0 to i and 0 to j. 

So, the shared path is actually this path. So, this path is shared. So, let 𝑃𝑖𝑗 be the shared 

path from 0 to i and 0 to j. So, then what we can do is we can define a term 𝑅𝑖𝑗 =

∑ 𝑅.𝑅 𝜖 𝑃𝑖𝑗  So, sum of all the resistances that are a part of the shared path. Where does this 



basic notion of a shared path come from? Well, this will be amply clear if we take a look 

at this slide that. 
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Let us say, we were interested in the voltage over here because of the current source placed 

over here. So, then we will have one current that is flowing in this direction, because the 

rest of the currents are disconnected. And, then the voltage over here will be i * 𝑅1.  

So, that will exactly be the same voltage over here, because there is no current flow along 

this branch and the important point to bear in mind is that the shared path is only this much. 

And this shared path in this case, contains only the resistor 𝑅1. Now, let me consider one 

more example. If let us say, I want to find the voltage over here. 
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Because of the current source placed at terminal 2, in this case the shared path will actually 

comprise these two resistors 𝑅1 and 𝑅2. So, I will then say that 𝑃𝑖𝑗 which is 𝑃23 comprising 

of these two resistors 𝑅1 and 𝑅2. So, if I were to multiply that current that is emanating out 

of your I and the voltage will actually be I * 𝑅1 + 𝑅2, which is exactly what that formula 

with a summation is capturing and the voltage over here will be the same voltage over 

here, because there is no current flow along this resistor. 
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So, if I were to incorporate this formula into the next one, what I can say is 



 𝑉𝑗
𝑖 = - 𝑅𝑖𝑗𝐶𝑗

 𝑉𝑗
𝑗

𝑑𝑡
  

which is again the sum of resistances on the shared path multiplied with this quantity which 

we have seen before, this is essentially the amplitude of the current source. Since we have 

superposition in a linear circuit, we see 𝑉𝑖 = ∑  𝑉𝑖
𝑗

𝑗  why?  

Because it is essentially the sum of each of the current sources sum of the effects of each 

of the current sources. So, when I add that, I come up with this formula, which is essentially 

a generalization of this, -∑  𝑅𝑖𝑗𝐶𝑗

 𝑑𝑉𝑗
𝑗

𝑑𝑡𝑗 . So, this formula is relatively hard to compute. So, 

if you take a look at this formula, it is not that easy to compute it and that is why prior to 

Elmore. 

So, incidentally the Elmore delay model is very old, I believe it was proposed in the late 

40s or early 50s, but prior to that it was hard to analyze such kind of circuits. So, Elmore 

made an assumption. So, you will find more justifications of the assumption in the book 

that why this was made, but Elmore’s assumption was basically it’s also called the single 

pole approximation right.  

So, the single pole approximation cells that let us approximate 
 𝑑𝑉𝑗

𝑗

𝑑𝑡
 = 

𝑑𝑉𝑖

𝑑𝑡
. So, this basically 

says that the rate of fall of the voltage or rise of the voltage is essentially the same across 

all the terminals and across all the terminals when we only consider one current source at 

a time. So, it’s essentially the same. If I were to put in this assumption, this approximation, 

then you will see that this formula will certainly become very well behaved. 
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This formula will look start looking like this −𝑅𝑖𝑗𝐶𝑗  
𝑑𝑉𝑖

𝑑𝑡
 which can which is a very simple 

differential equation. So, what I would do is that the ∑ − 𝑅𝑖𝑗𝐶𝑗𝑗 , this I will represent by 

tau i. So, tau i is essentially a time constant. So, what I will do is that 𝑅𝑖𝑗 is of course, the 

sum of resistances on the shared path. 

So, for each 𝐶𝑗 in the circuit, I can compute this the summation of this is like a time constant 

of the entire system. So, this differential equation is reasonably easy to solve. So, if I solve 

it and put in the boundary conditions, then the solution will come out to this. Where 𝑉0 

was the voltage before this is the before we set it to 0. So, we can put t = 0 over here. So, 

then 𝑉𝑖 = 𝑉0 at t = 0, and if you put t = ∞ over here then 𝑉𝑖 = 0. 

So, this is essentially the solution of the RC tree, and the solution of the RC tree does rely 

on the Elmore’s approximation to a large extent. And, Elmore’s approximation again uses 

this formula over here, tau i = ∑ − 𝑅𝑖𝑗𝐶𝑗𝑗  which comes out from our basic analysis of the 

shared path in the tree. So, shared path in the tree just to recall, if let us say this is the tree 

and let us assume that every edge has a resistance and a capacitance to ground. 

So, if let us say this was the tree and this is essentially the ground node and let us say this 

is node j and this is node i. So, 𝑅𝑖𝑗 will basically be the sum of resistances of the shared 

path which is this. So, we can say that we move towards the root and we will always have. 

So, wherever both of them meet after that this is the shared path. 



And, if I sum up the resistances in the shared path, if I sum up the resistances over the 

sheared path then I come across then I come to 𝑅𝑖𝑗, and if I sum this up for all the capacitors 

then I arrive at the time constant of the entire system. So, what did Elmore do? Well, 

Elmore had nothing to do with caches. So, Elmore at the time of Elmore caches had not 

been invented. Elmore essentially gave a general approximation to solve for the timing of 

an RC tree that is all that he did. 

And, once you can solve for the timing of an RC tree well then you can use subsequent 

analysis to find the power that an RC tree would actually consume, and that can be done 

very easily. But Elmore’s main contribution was just to find the time constant of an RC 

tree. 
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So, what are the results that can be derived by using the Elmore delay model? So, one of 

the key important results, so there is an example in the book where this is derived in a great 

amount of rigor, but essentially the key idea is that if let us say consider a wire a long wire, 

like a bit line or a word line. I was supposed to represent this with a triangle I replace this 

with its equivalent RC circuit. So, what I can do is that I need to take a look at the time 

constant which as we have seen over here is summation of 𝑅𝑖𝑗𝐶𝑗. So, i can be the end of 

the wire. 

So, 𝑅𝑖𝑗𝐶𝑗  will basically be if I consider one capacitor as at a time. Let us say if it is this 

capacitor it is the sum of these resistances. If it is this capacitor is sum of these resistances. 



So, if you work it out we will have a series of the form 1 + 2 + 3 all the way till n which is 

an O(𝑛2) term. So, that is why the most important result is that the latency of a wire is 

proportional to the square of its length. So, the latency of a wire is proportional to the 

square of its length and this can be directly derived from the Elmore delay model. 

So, the Elmore delay model will essentially replace the wire with an RC tree. We know 

how to analyze RC trees, if we do that if we consider any capacitor we will just sum up 

the resistances, and if you number the capacitors from 1 to n then the summation of 𝑅𝑖𝑗𝐶𝑗 

where 𝐶𝑗 of course, is a constant, so it will come out. 

The summation of 𝑅𝑖𝑗 will essentially be the baseline resistance R * 1 + 2 because these 2 

3 4 5 6 up till n, if we are assuming that we divide a wire into n wire segments. So, this is 

clearly n times n + 
1 

2
 we are not interested in the constants it is O(𝑛2). So, this is bad news 

for us in a sense we should never have long wires in our circuit, because if we double the 

length of our wire the latency will increase by 4 times. This result allows us the model 

long wires like the bit line and the word line very easily. 

And, if we couple this with simple models for the decoder for the transistors for the MUX 

DEMUX and the sense amplifier which again can be modeled in these simple fashion we 

can model a full SRAM bank, and as the sequence of simple elements. So, we can easily 

find the time that it will take. 

And, also this analysis will help us find the power as well in the sense that once we know 

the time we will know the individual transitions. So, we can model the power as well and 

it will be extremely easy to quickly model a large SRAM. So, what Cacti does is that 

whenever we want to let us say, split an array we need to compute these three quantities 

right. So, of course, then we will split it and then after a split we can do further splits.  

So, we are not limited to one split, but we can we can spit it once and then we can split it 

once more, once more, once more and so on. As we had seen we split a array into a bank 

a bank into a sub bank, a mat, sub array and so on. So, does not matter it can even be a 10 

level hierarchy, but essentially at every level this is what we need to compute. And then.  

So, this is just a way of splitting, so we keep on splitting. And, how do we compute these? 

Well, what we do is that one is that Cacti adopts a brute force approach in the sense it 



looks at all combinations of these and then it essentially chooses the best one, but of course 

AI based techniques can be used like hill climbing and so on to find the best configurations. 

So, for every configuration we use the Elmore delay model we find the time. If you want 

the fastest design, we simply choose the best. 
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So, we have spent a lot of time and effort in going over memory systems and in how to 

model and design caches. So, we leave the core electronics part now and we will move to 

the algorithmic part. So, in the next 4 subsections sections of this book actually, we will 

discuss advanced aspects of cache design, a new idea called a trace cache. See, it is not 

that new, but at least it’s a very its nontrivial and novel idea which has been adapted in 

many different settings. 

And finally, we will discuss prefetching. So, next we will get into advanced aspects of 

cache design and discuss the 6 or 7 most common advanced optimizations. 


