
Advanced Computer Architecture
Prof. Smruti R. Sarangi

Department of Computer Science and Engineering
Indian Institute of Technology, Delhi

Lecture - 02
Out-of-Order Pipelines Part- I

(Refer Slide Time: 00:23)

Welcome to the chapter on the introduction to Out-of-Order Pipelines.



(Refer Slide Time: 00:50)

So, in this chapter, we will study everything about out of order pipelines which is a very

different kind of pipeline as compared to traditional in order pipelines. So, since this is an

advanced book on computer architecture, let us think of it as a second level course, so,

something that you are supposed to read in the final year of your undergraduate studies or in

your post graduate studies.

So, in this case, we would require some background and the background that is required to

understand this chapter is the understanding of assembly languages specifically RISC

assembly languages, so, this is definitely required. Furthermore, student also should know

about basic processor design and finally, the student should also know about basic pipeline

design of how to take a simple processor and pipeline it? So, these three basic concepts we

require before somebody can actually proceed further.

So, I am giving a pointer to my earlier book on Computer Architecture which was published

by McGraw Hill in 2015. So, this book is widely available and also online versions are

available on Amazon, Kindle and Google Books. So, readers are advised to at least go

through these three chapters, but again reading my book is not necessary, any other text in

computer architecture is also sufficient as long as these three basic concepts are understood.



So, all the videos for these three basic concepts for my earlier book are also available on

YouTube. so, students can also go through the PowerPoint slides and videos. So, the links to

these PowerPoint slides and videos is given below right over here. So, I would advice

anybody listening to this video to kindly look at the YouTube videos at least for these three

topics before proceeding forward. So, this is a think of this as a mandatory requirement.

(Refer Slide Time: 03:23)

So, what we will do? is that we will divide this short lecture into three sub lectures, 1st we

will do a quick recap of in-order pipelines. So, kindly note that the description will be at a

very high-level and is by no means meant to be complete. So, this is a part of the prior

background that I was talking of.

Then we will look at some performance considerations of how exactly do we model the

performance of an in order pipeline? and what exactly are the matrix? what should be

considered? and what should not be considered? on the basis of that, we will develop our

motivation and also the key essentials features of what an out of order pipeline?

So, out of order pipeline is something that we do not know, but almost all processors in

laptops, desktop, servers, even mobile phones these days use out of order pipelines. So, out of

order is also called “OOO”, triple O. So, this is so, when we use this in the text, it will refer to

an out of order pipeline. So, without further ado, let us move to discussing basic in-order



pipelines. Again as, I said another is the last disclaimer is you, and this is just a very

high-level overview.

(Refer Slide Time: 04:55)

Let us not go through the structure of a typical processor with 5 processing stages. So, I will

describe this somewhat complicated slide. If you are having any difficulty in understanding,

you need to heed to my advice given in the previous slide and go back and see the earlier

videos.

So, I start this diagram is extremely easy to understand nevertheless let me just provide a

brief overview for viewers of this video who have seen similar processors I will be designed

slightly differently. So, what we will do? we will divide the entire processing of an instruction

into 5 stages. So, the processing starts here where we read an instruction from instruction

memory. So, in an actual processor, this is actually an instruction cache so, it is called an

i-cache and what is a cache? Well, we will see that later.

But a cache is essentially a small memory that holds a subset of memory locations, this is

called a cache and an i-cache has instructions and similarly, we have a data memory called

d-cache that has data words. So, the i-cache instructions over here are the instructions are

read and they are read by the fetch unit. So, the fetch unit of course, reads the entire contents

of the instruction.



After that, it is passed, so, here the green box just indicates for this diagram a bunch of wires

we call it an interconnection element and so, it passes it to this unit which is the next unit. So,

next unit does several things, the first is we have a control unit, this we can also call the

decoder. So, what the decoder does is that it decodes the instruction which means that it

understands the instruction.

So, normally an instruction is like a compressed bundle of a lot of things. a compressed

bundle of the opcodes, the register files, memory addresses all of that it kind of you compress

it and keep it. So, the decoder essentially expands it and essentially, generates what are called

control signals which control the rest of the elements in the data paths which essentially

determine the execution of the instruction, the way it will be executed.

We then have an immediate and branch unit say any constant within the processor is called an

immediate and we have an immediate and branch unit which extracts whatever constants are

embedded inside the instruction and expands it to a full 32-bit or 64-bit value depending upon

whether it is a 64-bit or a 32-bit processor depending upon the width of the data path, this

value is expanded.

Then, for all the register operands, we read the values from the register file, recall that the

register file is a set of named storage locations, a typical processor has 16 to 32 registers and

they are used for different purposes as we shall see later. So, we read the registers from the

register file. So, we call them op1 called the values that are read as op1 and op2, operand 1,

operand 2.

And of course, we have a choice, so, we will be using the simple risk instruction set, this is

provided as an appendix in the book the 1st appendix, appendix A. In addition, it is there in

the previous book, and this is similar to any other RISC instruction set broadly and it is

extremely simple. So, in this case, in the simple RISC instruction set, the 2nd operand can

either be a register or an immediate, so, we have one multiplexer over here to choose whether

it is a register or an immediate.

So, what do we get from the second stage which is operand fetch and decode? Well, what we

get is that we get a set of control signals which determine the behaviour of the instruction in

the rest of the processor, we extract the constants or the branch target. So, the branch target is



encoded as a fixed offset from the current PC, from the current program counter. So,

essentially, we take the current program counter, here we add the offset to get the branch

target.

So, whatever we compute we just take everything along with us and whatever we take along

with us is called the instruction packet. this c got hidden behind the red line, but nevertheless

what I wanted to write is it is the instruction packet, so, all of this information flows along

with us. In the 3rd stage, which is the execute stage, the EX stage, we do the following.

So, we can either process the branch which means see if a branch is taken or not taken or we

can perform an arithmetic or logical operation. So, let’s look at the later first. In the ALU unit

the arithmetic and logical unit, what we do is that we take in the instruction packet. If let’s

say it is an add instruction we add, if it is a multiply instruction we multiply, divide we

divide, logical OR, and so on.

So, one important internal register is the flags register. So, whenever we see a compare

instruction which is the same for almost all instructions sets, they work in a similar manner.

Whenever we see a compare instruction, we set the flags register, we set certain bits within

the flags register such that a later branch can look at the bits of the flags instruction and find

out if the latest comparison resulted in an equality or a greater than or a less than and this can

be used to decide the direction of the branch.

After, we have processed the arithmetic logical instructions and the branch instructions, we

move to the 4th stage which is called the MA stage, the memory access stage. So, look at the

mnemonics over here IF, OF, EX and now, we are at MA well, MA stage basically only

processes the load and store instructions.

So, for both of them so, load and store are actually multipart instructions, so, we only support

the base offset addressing mode in simple RISC which means that an address is of the form

let’s say you know some constant and a base register. So, we read in the contents of r2 here

from the register file, we add 4 to it so, it becomes r2 + 4, this is the address. So, this addition

of r2 + 4 is done in the ALU unit and subsequently, the address is sent to the memory unit.



So, the memory unit does either perform either a load or a store depending upon what the

instruction actually is and finally, so, store of course, does not produce an output, it just

writes to data memory in this case is the data cache. So, in the modern memory system we

typically have an instruction cache at the top, a data cache a d-cache, both of them are

connected to a much larger piece of memory called the L 2 cache, this is again connected to

an even larger piece of memory called the L 3 cache.

So, well, why it is the case? We will look at that when we discuss the hierarchy of the

memory unit, but we will not focus on that issue right now, but as far as we are concerned,

there are two separate memories the instruction memory and a data memory. So, once the

load is done, we have read something, so, we need to either write that to the register file or

write the value computed by the ALU to the register file which of course, is passed directly

via this stage.

And so, whatever be the case, we have a register write unit or register write back unit, so, this

unit again writes the results back to the register file. So, this is a simple processor, it does not

have pipelining of any kind and this is it we have logically divided into 5 stages because if

you take a look at it, we have 5 distinct parts of the processor that do rather different things.

so, that is the reason we divided it into 5 parts.

And then, as we see that is some amount of information flow between stages, so, of course,

the 2nd stage produces something when the 3rd stage reads, the 3rd stage produces something

when the 4th stage reads, but however, there is a back connection. So, both the back

connections are shown with this magenta colour.

So, the colour that I see over here is somewhere between red and pink that’s the best that my

eyes can tell me, but you know if any of you have an exact name for this colour, kindly write

it in the comment section. And so, whatever this colour is flavour of red, so, from the branch

unit to the fetch unit, what we do is we have a back connection. So, this back connection

essentially indicates the direction of the branch.

Branch is like an if statement, so, whether it is entering the body of the if statement or exiting

it. So, this information is being conveyed. And similarly, in the register write unit also we are



writing from the 5th to the 2nd stage with the results that have been computed by either the

ALU unit or the memory unit or the load, so, that has been used to write back.

So, we have discussed this complex diagram so, this is actually simple, but again as I said any

difficulty, go back to the videos of the previous book, this is explained in full detail. In fact,

there is one full chapter that discusses this diagram something that we finished in 10 minutes

several hours are devoted to describing just this. So, I would advise that before we move to

the next slide at least this part is completely totally fully understood.

(Refer Slide Time: 16:50)

Now, let’s come to pipeline, well, if we take a look at this diagram, there is a source of

inefficiency. So, let me show this source of inefficiency over here that let’s say you know this

unit is active, the rest of the 4 units are not active. So, at any point of time only 1 unit is

active, and 80 % of the chip is not active which does not convey a very efficient solution

which is not a very efficient solution, it does not convey a good message.

So, ideally, we want the entire processor to be busy. So, in pipelining what we do is that we

send 1 instruction down the pipeline. So, in instruction 1 is over here, so, we given the fetch

unit is idle, we bring an instruction 2.

In a next cycle, instruction 1 moves here, instruction 2 moves here to this stage and

instruction 3 is fetched so on and so forth. So, there will be a time when instruction 1 will be



here, 2 will be here, 3 is here, 4 is here and 5 is here. So, if you take a look at it, a pipeline

manages to keep the entire processor busy. So, of course, this will increase the throughput

and the performance, but we will see, but this is not that straightforward, so, we will see a

when it will increase the performance and when it will not.

(Refer Slide Time: 18:42)

So, if I were to create a pipeline version of the processor well, I just make a simple change.

So, look at this diagram and just look at the previous one. So, in the previous one we just had

a bundle of wires that we call the interconnection elements, now what we do is we remove

this and we replace this by a pipeline register as you can see right here.

So, the pipeline registers are regular edge triggered, negative edge triggered flip flops. So, if

they are negative edge triggered at the end of a cycle when there is a negative edge from the

left side whatever is being written that is written and in the beginning of the next cycle which

is after than negative edge, the data over here gets transferred to the next stage, the next stage

does its processing.

So, it is expected to complete its processing within one clock cycle which means from within

one you know between two of these registers IF-OF and OF-EX, so, the signal is supposed to

take a maximum of one clock cycle to propagate via these units which means that the

latencies of these units is limited to one clock cycle.



Similarly, the latency between these two units is limited to one clock cycle and so, what does

this allow us to do? Well, what it allows us to do? is that we can have five separate

instructions in five of these stages and we can process them in parallel. So, of course, this

does introduce complexities to the design.

So, pretty much an instruction has to move along with all of its data, it is in entire instruction

packet and hop across the stages that is one and we will see there are some other problems as

well-known as hazards in the next few slides. So, just to repeat, the only change that we did is

that we added a register called a pipeline register which of course, does not store one bit or

one byte, but it stores the entire instruction packet which can be tens of bytes.

The entire instruction packet is stored and every cycle, so, each stage reads the input

computes the output by the end of the cycle and writes it to the pipeline register at its end. So,

of course, the register write unit does not have a pipeline register at the end because it is the

last stage, but by the end of the clock cycle, it is expected to write the values to the register

file and finish off the work.

So, see that if we have 5 stages, we need 4 pipeline latches, so, there is 5 is no hard and fast

rules if we want, we can further split this into one more stage. So, create 2 stages and so, we

will have one more pipeline latch over here.

And if we want, we can further slip this down or maybe we can take it into 3 stages, so, we

will have one more pipeline latch here, one pipeline latch here. So, if there are n stages in the

pipeline, we will need (n-1) the n stages, we will need (n-1) latches. so, that is easy.



(Refer Slide Time: 22:44)

So, given that we have seen this, let us go forward and discuss what is it that can happen? or

what is it that can go wrong? if we were to pipeline our instruction processing in this manner.

So, we need to understand that in a pipeline which of course, I have shown it over here, it has

been made far simpler of course, so, the 5 stages are shown like IF, OF.

So now, given that we will have 5 instructions residing here at the same time, there can be

numerous issues, numerous collisions between them. So, we can have structural hazards

where two instructions can vie for the same resource. So, this will not happen in the in-order

pipeline that was just shown, but it is possible if you take a look at this pipeline, we always

can have an instruction that tries to access the data memory.

So, we always can add an instruction that a new instruction of course that can access the data

memory in the ALU unit, so, the ALU unit will also access it.



(Refer Slide Time: 24:09)

So, in this case, if the data memory can support only one access per cycle, there will be a

conflict between an instruction over here and an instruction over here. If the instruction in the

MA stage is accessing the data memory because it need not, because all instructions have to

pass through the same route.

So, even an ALU instruction that does not access memory still has to go through this route

and so, that is the reason there may be a conflict, there may not be a conflict, if there is a

conflict, it would be a structural hazard which means that both the instructions cannot access

the data memory at the same time, one will have to wait.

This will not happen in what in the simple version that we are using, but if I extend the

instruction set with one more instruction that accesses data memory of this type, we can very

well have a conflict and the other important point is that instructions never skip stages. So, I

should this is an important concept many people often make a mistake, So, they never skip

stages.

Even in the ALU instruction that does not access memory has to go via this step. So, even

instructions that do not have an ALU component or a memory component, still go via this

step. So, they always go from one stage to the next and they never jump at least in our basic

in-order pipeline, they never jump. so, they never skip stages.



Now, coming back, we also can have a data hazards something that we will see in the next

few slides where of course, there is a read and write dependency, so, there is a read after a

write. So, it is possible as we shall show in the next few slides that the read can miss a value

that is being written can have and we can also have what are called control hazards? which

means that if a branch is taken, then there will be some problems.

So, we will discuss both of these structural hazards since they will not happen unless we

extend our instruction set architecture, unless, we do that since they will not happen we will

not discuss it henceforth.

(Refer Slide Time: 26:48)

So, let us create a mathematical tool called a pipeline diagram. So, a pipeline diagram the

rows are the pipeline stages as we can see since we have 5 stages, the rows are IF, OF, EX,

MA, RW these are the rows, and the columns are the cycles. Now, consider these two

instructions add r1, r2, r3 and add r4, r1, r3.

So, here r1 is the destination it is being written to, in this case, r1 is a source, given the fact

that this is a write, this is a read, we have a read after write hazard or a read after a write

dependency over here a dependence and let’s see what will be the problem? So, instruction 1

will be fetched in cycle 1 and as we have said earlier instructions never skip stages. So, from



IF stage it will go to OF in the next cycle EX in the next cycle MA and RW say it goes on

fine.

So, let’s consider instruction 2, this is very important. So, instruction 2 will get fetched no

problem. In cycle number 3, instruction 2 will enter the RF stage. In this case, it will try to

read the value of r1, but where is the value of r1? The value of r1 will be computed by

instruction 1 and that too at the end of cycle 5 which is pretty much at this point and so, this

is when it will be computed and written to the register file. Since computing is not enough,

you have to write it to the register file.

And in cycle 3, somewhere in the middle of cycle 3, instruction 2 wants the value of r1 from

the register file which it is not going to get, it is going to get an old value, a stale value, a

wrong value. So, it is going to read a wrong value and of course, it will continue, so, the

execution of the program will be incorrect.

So, if you see, this is a very unique situation that has arisen primarily because we have

parallel processing going on in a pipeline system where we have different instructions with

dependencies between them. They cannot proceed at the same time because we write in this

case at the end of the 5th cycle. whereas, in the 3rd cycle, we need the data from the register

file, the data is not there. Hence, if we read the register file will stand to read a wrong value

and a program will be incorrect.



(Refer Slide Time: 29:43)

So, what do we do? Well, what we do is? we allow instruction 1 to keep going, then

instruction 2 when we enter the OF stage, we realize look there is trouble in there. In the

sense that the value that instruction 1 was going to produce that value has not been produced,

hence, what I do is that I keep instruction 2 in the OF stage. In the 4th cycle in the EX stage, I

introduce what is called a bubble, so, the logic that inserts the bubble is called an interlock

logic.

So, in this case, we are talking of a data interlock because of course, we have a data

dependency. So, what do we do? What is a bubble? Well, the bubble is a nop instruction.

What is a nop instruction? It is a no operation instruction; it is an instruction that precisely

does nothing. So, nop instruction simply flows through the pipeline without doing anything

whatsoever. So, this is the bubble, and this instruction simply goes through the pipeline does

nothing and gets out.

In the 4th cycle also, we introduce one more bubble that does nothing and gets out. Finally, in

the 5th cycle we do this. In a 6th cycle also, we introduce a bubble that does nothing;

however, there is something interesting going on. So, the end of cycle 5, instruction 1 has

produced the value of r1 as you can see over here, this value has been produced and this



value can then be written to the register file and in the 6th cycle instruction 2 can read the

value of r1 from the register file.

So, as you can see the arrow indicates the dependency and it is going ahead in time, so, it is

fine. So, the value of r1 is read by instruction 2 and after the value of r1 is read, instruction 2

can proceed and in the meanwhile, instruction 3 has also been fetched. We have not shown

the instruction 3 in the previous slide but assume there is an instruction 3.

So, instruction 3 at that time is fetched, so, basically since we have in order processing,

instructions will not overtake each other.

So, once instruction 2 gets the value moves from OF to EX, 3 moves from IF to OF. So, the

data interlock logic what does it do? What it does is its job is to have a full global view of all

the instructions in the pipeline, we looking at all of them and it figures out dependencies if

and it sees whether it should allow an instruction to move to the next stage or insert a bubble

in its place.

So, in this case, three bubbles are inserted in the place of instruction 2 and finally, when the

data was available, it allowed instruction 2 to progress. So, it kind of put a lock on the

pipeline until the data was available. Once the data was available, it releases a lock that is

where the word interlock comes from.

So, this is an important concept. So, introducing bubbles essentially, what it does is that it

stalls the pipeline. So, for an external observers assume that this is the instructions are going

in, this is a processor over here that has a pipeline, and we have an external observer sitting

here.

So, the external observer sees that for three cycles nothing is coming out of the pipeline.so,

no instruction is completing its execution, this process is known as a stall. So, this process is

known as a stall and a stall means a cycle in which no useful work is being done from the

point of view of an external observer sitting at the end.



(Refer Slide Time: 34:05)

One way to fix this problem of adding so many interlocks is via forwarding. So, what is the

problem? While the problem is that read after write dependency is not all that rare. So, read

after write dependency can happen and what we further saw? in this slide that if there is a

read after write dependency, we need to add three bubbles.

In fact, if there is a read after write dependency within a window of these four instructions,

so, let’s say after one instruction within the window of these three instructions rather if there

is a read after a write dependency, we need to add a stall cycle at least one and if it is just

after it, we need to add three otherwise two or one.

So, this severely constraints the way in which compilers can generate code and it also makes

it rather hard for the programmer to write efficient code that can run on such pipelines

because after all stall cycles are wasted cycles and they waste computational throughput. So,

let us look at the same example once again the similar example where we write to r1 and the

2nd instruction reads from r1.

So, in this case, the 1st instruction which is instruction 1, this seamlessly goes through the

pipeline no problem and as we had discussed before for instruction number 2, it tries to read

the value of r1 in cycle 3, we happily allow it to read the wrong value it does not matter



because after all it will not use it in cycle 3, it will use it in its EX stage which it will enter in

cycles 4.

So, at that point of time, if we take a look at where instruction 1 is? instruction 1 has already

computed the result which means it has already added r2 + r3, it has done the addition and the

result is there in its instruction packet. However, the result has not been written back to the

register, it does not matter, the result is still present in the instruction packet of instruction 1

which is what we need.

So, what we can do is given when the result is present here in the MA stage, we can simply

what is called forward it to the EX stage. So, this is being done right at the beginning of the

4th cycle such that the data will reach and once the computer data, the data for r1 reaches the

EX stage, the addition can happen which is r1 + r4, this addition can happen and the result

will be available at this point which is the end of cycle 4.

So, what we can see over here is that by doing a forwarding of this nature, we are avoiding

stall cycles altogether, there is no reason to add stalls, there is no reason to add any kind of

bubbles or pipeline delays and the reason for that is essentially because we have the result in

the pipeline.

It is just being forwarded to another stage internally we are just forwarding it not via the

register file because if you were to forward it via the register file, we would have to wait for

the end of the 5th cycle and then, we would forward it and then, instruction 2 will have to

rewrite over here and that of course, would be a delay that of course, would be a big and

major delay something that we do not want.

Hence to stop this delay from happening, what we do is we internally forward the data from

the MA stage to the EX stage and as you can see, the instruction can execute correctly both

the instructions, instruction 1 as well as instruction 2 and instruction 2 can get the value and it

can then compute its result which is r5 correctly. So, r5 can be computed correctly, we can

add r1 and r4 and we can compute r5.



(Refer Slide Time: 39:08)

So, how would we exactly implement this in practice? Well, this is very easy. So, look at the

two inputs of the ALU, so, we have input 1 and input 2. Inputs 1 and 2 come from the

previous stage, which is the OF stage, but what we do is instead of directly giving them to the

ALU, we add a multiplexer, and the other input of the multiplexer is the forwarded input, the

forwarded input comes from the next stage, comes from the MA stage.

(Refer Slide Time: 40:05)



So, if these were instructions 1 and 2, so, instruction 1 would be over here, instruction 2 will

be over here and you can see the destination is r1. So, r1, the value of r1 will be there in the

instruction packet of instruction 1, this will flow this way and it will come here. So, this is the

value of r1, the value of r1 will flow this way and it will come here and we can use it.

So, in this case, r1 was the first input, so, r1 instead of coming here, will actually come here

and r1 can then be used. So, what you can then see is what this multiplexer will do is that it

will discard input 1 because input 1 which is coming from the OS stage is not correct instead

it will use the forwarded input which is essentially the temporary result computed by

instruction 1 which is resident over here in the MA stage.

It will use that as the first input of the ALU and as we can see it is correct because the r1 is

the first input r4 is the second input and r1 in this case is being forwarded from the next stage

which is the MA stage or the memory access stage. So, this is where r1 comes from and

similarly, if we can give the forwarded input to the second multiplexer for a different

instruction combination.

So, we have a dedicated forwarding unit it is called a forwarding unit. So, the forwarding unit

computes the controlled signals of these multiplexers and figures out which input should be

selected, the forwarded input or the default input that is coming from the previous stage. So,

if we r2 effect a forwarding, then the forwarding multiplexer chooses the forwarded input.



(Refer Slide Time: 42:06)

So, this is explained in a lot of detail in the previous book, so, I will not go into the exact

derivation of this, but I will just state the result somewhat without proof that for the simple

pipeline that we have described, we will actually need 4 forwarding paths not more than that.

So, we will follow two axioms. One is obvious I am not mentioning that so, that is that we

always forward from a later stage to an earlier stage which if you see this diagram. So, we

can always forward from here to here or forward from here to here from always from a later

stage to an earlier stage depends on how you define? So, let us say later I am defining

something to the right and earlier is something to the left.

The other is that we try to forward as late as possible. So, this is the design choice that we

make such that we can reduce the number of forwarding paths and also, we forward data only

when it is just about immediately required, so, that is the other principle that we use. And this

does not tamper with correctness because in any case before a value is being used by a

functional unit, it is there so, we need 4 forwarding paths, so, one is RW to MA.

One example of RW to MA would be a consecutive load store instruction pair where we load

a value into the register r1 and in the next instruction, the instruction just after that in program

order. What again this program order? It is the order of instructions, the dynamic order of



instructions in the program and so, basically the same order that will be seen by a

non-pipeline processor that is program order, so, we will use this.

So, it is the same order of instructions as they appear to execute by a single cycle

non-pipeline processor. So, a processor that just picks one instruction and executes it picks

one, executes it. So, it will see a dynamic string of instructions which are set to be in program

order. So, assume that it is the case that after a load we have a store, we load to register r1 and

then, we store r1 to another memory location.

So, in this case, what we have is that we need RW to MA forwarding to execute this piece of

code correctly. Similarly, we need to add the 2nd forwarding path which is RW to EX. So, in

this case, we load into register r1, then we have another instruction we do not care and finally,

we have an instruction that reads from r1. As you see, this is another read after write

dependency, this will use the RW to EX forwarding path.

Then, the 3rd one is RW to OF. Well, again here we load to r1, we have two the subsequent

two instructions are totally independent, can be totally independent does not matter, but we

need another forwarding path here from RW to OF, if the 3rd instruction reads from r1 again

a read after write instruction. So, as we can see from the last stage, the RW stage, the register

write backstage, we need 3 forwarding paths to the 3 earlier stages.

And then comes the forwarding path and example of which we just saw the MA to EX

forwarding path. So, we have just seen this where we have consecutive ALU instructions

where the earlier instruction writes to one register the later instruction reads from it. So, this

is a read after write dependence pattern where we write to r1 and then, we read from r1.

So, essentially, in the previous book, it has been proven that these are the only 4 forwarding

paths that are required. So, only these 4 paths are required, no other path is required. So, we

will not get into the proof that I mentioned, but again of course, a given the longer pipeline,

we will have many many more such forwarding paths and that is why we often avoid having

very long in order pipeline because they would necessitate extremely complicated forwarding

logic, lot of multiplexers, lot of paths.



(Refer Slide Time: 47:16)

So, let me again show you a bird’s eye view of the entire pipeline. So, recall that this

processor we have seen with the pipeline version, what is extra? What is extra are these blue

multiplexers, there are total of 6 of them 1, 2, 3, 4, 5 and 6, these are the forwarding

multiplexers which are controlled by a dedicated forwarding unit.

What is the role of the forwarding unit? Well, the forwarding unit has a complete global view

of the pipeline, it as a view of all the instructions in the pipeline. So, it decides which

instruction moves, which stops, which stalls and it also decides who forwards where. So,

from the register write unit whatever is written, we can clearly see this is the RW to MA

forwarding path, this is the RW to MA forwarding multiplexer.

This is the RW to EX forwarding paths as you can see the input goes to both the multiplexers

and this is the RW to OF forwarding path. Similarly, we have an MA to EX forwarding path

which is this green line over here the one that I am taking you through, so, this goes to both

the multiplexers. So, the multiplexers here have a choice of three inputs; two of these are

forwarding paths and one is a default input that comes from in the previous stage.

So, as I said if we have a longer pipeline with more units, we will add more multiplexers that

will make our forwarding logic more complicated, but we have whether we will derive

whether it is an advantageous thing or not we will see, but this to you is an entire functional



working and also commercially viable in-order pipeline that has all the forwarding

multiplexers that are needed which are the multiplexers with a blue colour.

So, this is pretty much where a traditional course and computer architecture will stop in so far

as pipeline designing is concerned. There are a few corner cases which we will discuss in the

rest of the chapter, but this is pretty much the meat and bones of pipelining.

(Refer Slide Time: 49:50)

So, now let us look at one hazard which forwarding cannot take care of. So, this is a very

celebrated example, it is called a load use hazard. So, here, we will see that a one cycle stall

is required, and this will also motivate us to think further and this has implication important

applications in the design of out of order pipelines as well.

So, consider these two instructions add r5, r4, 1 which is a later instruction and consider this

instruction load r4, 4 r0 which is the earlier instruction appears earlier in program order. So,

there is a dependency, so, r4 is being written to r4 is being read from so, there is a read after

write dependency that we can see.

So, consider a clock cycle. So, in this clock cycle, the earliest the value of r4 can be generated

is essentially the end of the clock cycle when the memory axis is finished. Consider the

earlier instruction when do we need the value of r4? Well, we need it at the beginning of the

clock cycle because after that we need to add 1 to r4 and produce r5, so, r4 is needed at the



beginning so, mind you the these are the same clock cycles. So, at the beginning of a clock

cycle we need r4 whereas, the earliest that the forwarding path can give us the value of r4 is

at the end of the clock cycle.

So, in this case, this is called a load and a use hazard because this is a load and this is its use,

so, the load use hazard does not have a solution with forwarding, we have to have a 1-cycle

stall, there is no choice otherwise, there is absolutely no choice, we need a stall needs to be

done.

(Refer Slide Time: 52:02)

So, what do we do? We have a small animation over here that shows you the picture. So, this

picture over here tells you that look at the operand fetch stage at cycle N, we allow, we detect

that look there is a load use hazard nothing can be done, we need to stall so, we stall the add

instruction, we make the load instruction move.



(Refer Slide Time: 52:13)

In cycle N plus 1, both the instructions move.

(Refer Slide Time: 52:32)

And in cycle N+2, this is the situation, and this is where a forwarding can be done where the

r4 can be supplied and since we need the value of r4 now, well, the value of r4 can be happily

supply to the EX stage. So, this is an example of a load use hazard as we just saw where a

combination of interlocks and forwarding both actually solve the problem.



(Refer Slide Time: 53:03)

Now, we have looked at data issues. So, with data issues we have seen forwarding is mostly

fine, the only point at which it does not work is when we have issues with the load use

hazards that is the only exception. Now, let us look at control hazards. Control hazards are

branches particularly, conditional branches which can be taken or not taken.

So, here I am showing one example of the beq instruction branch of equal which means that

if the earlier comparison resulted in the equality, the branch is taken otherwise it is not.



(Refer Slide Time: 53:50)

So, the branch instruction keeps moving, so, as it moves, other instructions keep getting

added to the pipeline.

(Refer Slide Time: 53:55)

So, of course, these are in program orders say the branch is not taken, these instructions will

be on the correct path. So, they will be on their correct path which means then they should be

executed, they are logically speaking in program order, so, they will be in the correct path.



But we get to know the status of the branch in the execute stage assume it is taken. In this

case, these instructions are on the wrong path because they should not have been fetched in

the first place, we should have instead fetched instructions from the branches target.

And of course, we did not know that the branch will be taken, we did not know its target so,

we could not have fetched, hence, we ended up with two instructions which are on the wrong

path, so, they need to be cancelled. What this means? is that we convert them into bubbles or

nops. essentially, you may convert them dynamically into dummy instructions.

So, these two instructions slots get wasted which is a bad thing, which means that every time

there is a taken branch effectively, we stall for two cycles, it is a really bad thing is something

that we will have to look at.

(Refer Slide Time: 55:11)

So, given that we have looked at in-order pipelines given that we have looked at their

limitations, what are the limitations? Well, the limitations are several. The first is that well,

assuming even if you are forwarding, one limitation is that the load use hazard well we

cannot take care of it.

And also we have made a big assumption that the memory access stage takes one cycle that is

not true. So, in general, we can have multi-cycle MA stages that is in fact, that is the norm



because modern caches and memories are rather slow, so, it can take tens of cycles for us to

actually get data back.

The second is that we can have what is called head of the line blocking which means that let

us say we have a stream of instructions. One instruction is blocked even though the rest of the

instructions do not have any dependencies with it just because they made the crime of being

after return program order, all of them are stopped, so, this is called the convoy effect.

Consider a convoy of cars, so, consider a set of cars moving in a very narrow road with a

single lane. If there is a car break down, all the cars behind it just stall over there say in-order

pipelines will have this convoy effect and of course, branches are not dealt with correctly, so,

taken branches have two stalls.

Well, there are other problems as well, the other is that the number of instructions that we can

process per cycle that is typically not one, it is less than 1. We will take a look at it which is

why the next section is titled performance considerations.

So, we will take a look at the performance, but essentially what we will show is that in a

pipeline processor IPC, the instructions per cycle is typically less than 1. So, we process for

an outside observer the number of instructions that are being processed per cycle will appear

to be less than 1, it is again a bad thing we want to process as many instructions in parallel as

possible.

So, clearly inside the processor, there is no parallel processing. So, this is why in order

pipelines are by and large not used for you know large processors in industry, they are not

considered practically. So, now, we will kind of quantify the performance issues and move

towards motivate gradually motivate ourselves towards out-of-order pipelines that will solve

all of these issues pretty much to a very large extent.


