
Advanced Computer Architecture

Prof. Smruti R. Sarangi

Department of Computer Science and Engineering

Indian Institute of Technology, Delhi

Lecture - 18

Graphics Processors Part - III

(Refer Slide Time: 00:24)

(Refer Slide Time: 00:38)

Welcome to the 3rd lecture on GPUs. So, in this lecture, we will talk about the Design of

general-purpose GPUs, design of GPGPUs.

(Refer Slide Time: 00:51)

So, let us take a look at the structure of the NVIDIA Volta GPU. So, as you can see

GPUs are typically large chips so, they have a large number of computing elements. So,

the first green box that you need to look at is the PCI express interface with the host and

the host in this case is the CPU. So, the CPU and GPU typically communicate by an

external bus which is a PCI express 3.O interconnect.

Then, every GPU task regardless of whether it is a general purpose, or a graphical task is

a thread. So, GPU has its internal thread manager and thread scheduler known as the giga

thread engine. So, think of this as kind of the brain of the GPU. So, this does the job of

the scheduling aspect, it is not much, it is a very simple brain, it is not a human brain, it

is more like a bird’s brain, but it is a small brain.

Then, we have these graphics processing clusters which is basically a large collection of

small cores. So, the Volta GPU we have six of these, 1, 2, 3, 4, 5, 6, we have six of these

and we have a large amount of on chip memory. So, as I said as opposed to as compared

to CPU caches, GPUs are bigger, they have more resources. so, they have a big L2

cache.

And furthermore, NVIDIA also allows us to connect multiple GPUs together. So, if you

have one GPU, they all can be connected, interconnected together. So, then, we have

these high-speed hubs. So, with these high-speed hubs via the NV Link inter connects, it

is possible to interconnect GPUs and then, we have a set of eight memory controllers.

The eight memory controllers are then connected to high bandwidth memory. So, we will

study what is high bandwidth memory in chapter 10.

So, as I have said all these four points are covered. So, the broad idea or the broad

takeaway point from this slide is that every GPU has a large amount on GPU processing

clusters, and we have six of these which we shall see in as a deeply hierarchical

structure, but we have six of these on a Volta GPU.

(Refer Slide Time: 03:26)

So, coming to the GPC, the GPC has a raster engine. So, if you go back to the first

chapter where we talked about rasterization, we did discuss that rasterization is not

something which is amenable to parallelism. So, rasterization requires its separate unit

and so, that is the reason is separate hardware for the raster engine has been provided.

And then, in this case, every GPC has seven TPCs, I will come to a second, what is a

TPC? It is a texture processing cluster. So, that is like historical name, it is not that this

only processes textures, but this is more like a historical name for this piece of hardware.

So, in this piece of hardware, we have seven such TPCs 1, 2, 3, 4, 5, 6, 7 in a GPC and

then, we have a little bit of extra graphics processing hardware.

So, as you can see the philosophy was to limit the amount of graphics processing

hardware to be as little as possible. So, the special hardware unit that we have over here

along with the raster engine, we also have a special hardware unit called the polymorph

engine.

So, the polymorph engine does the tasks that a regular polymorph engine is starts to do.

So, which we have discussed in great detail in lecture 1 of this series on GPUs where the

polymorph engine as we have seen was divided into five stages does tessellation and all

of that. So, large amount of the computations is actually mapped to all the cores in these

SMs and SM is a streaming multiprocessor which again has a large number of cores.

As you can see, this is a deeply, deeply, deeply hierarchical structure, but the key point

to note is that there are two separate units over here for rasterization and the polymorph

engine which are kind of dedicated for graphics, but the raster engine is more dedicated.

The polymorph engine what it does in modern GPUs to a large extent is that it tries to

map the computations to general purpose units as much as possible.

That is the best thing to do from an engineering standpoint such that you can reuse the

GPU for regular computations as much as possible. So, now, let us drill down. So, where

were we? So, we had six GPCs, eight GPC has seven TPCs and the TPC has two SMs.

So, let us now further take one-level deeper and look at the structure of these SMs.

(Refer Slide Time: 06:16)

So, the structure of an SM is as follows that an SM has an L1 instruction cache, and it

has four of these processing blocks. So, again you see one more level of hierarchy. So,

just in case you have forgotten about it, let me remind you, it is a GPC, then a TPC, then

an SM and then, the SM is now divided into four PBs. So, for the NVIDIA volta, we had

6 GPCs, per GPC we had 7 TPCs, per TPC where 2 of these SMs and per SM we had 4

of these PBs wow, that is a lot.

So, that is 6 X 7, 42 X 2= 84 and 84 X 4= 336 and we still have not reached the bottom

level code, but we are getting there. So, the key points over here what all the processing

blocks share in an SM is the L1 instruction cache. So, of course, one instruction in a

GPU can actually do a lot because the same instruction is being executed by multiple

threads in the kernel as we shall see.

So, that is the reason one instruction can actually translate to a lot of instructions across

the thread block. Of course, the same static instruction but multiple dynamic instructions.

Then, we have a 128 KB shared L1 cache for data and then, we have four dedicated units

for texture, storing texture data.

So, these they are called the texture cache, and this is required primarily because in

modern graphics such as games and so on, it is a much better idea to have a dedicated

storage of texture caches which store only textured information nothing more. So, this is

again one of those units that are dedicated for saving graphics-oriented information.

(Refer Slide Time: 08:26)

So, there are four kinds of memories in an SM. So, what we have seen on the last slide is

that we have seen the L1 instruction cache which is quite similar to our i-cache. We have

seen the L1 cache, it stores regular data. Then, we have seen the texture cache also which

stores texture information.

So, there are a few more types of caches so that there is a constant cache that stores

constants and we have also discussed the shared memory directive when we discuss the

CUDA processing language. So, this cache over here is actually shared. So, whenever we

have the underscore shared underscore identifier, it is used to store arrays in this region

which in this case does map to the shared L1 cache.

So, this is the reason that whenever we are writing a piece of code, we need to be

mindful of the resources of the GPU for efficiency and let us say that if the size of our

shared variables or shared arrays are more than the size of the shared cache, it is not

really an error, but of course, things will get slowed down.

(Refer Slide Time: 09:45)

So, now, let us come to the structure of a PB which is the last level because PB is the one

that contains cores and contains a lot of cores. So, if you look at the PB, the PB also has

an instruction cache. so, it is an L0 instruction cache. So, if you would recall, we had an

L1 instruction cache with each SM, but each PB has an L0 instruction cache and it can

deal with or it can handle, it can manage 32 threads every clock cycle.

So, these threads are like a subset of a thread block, something that we had studied in the

previous lecture. So, what we do is that we schedule, or we group 32 threads into one

group or one block and they operate in lock step. So, this is known as a warp. So, we will

discuss more about warps later, but what each PB has is that it has a warp scheduler.

So, the warp scheduler basically schedules an entire warp in one go. So, we will discuss

more about what that means, later and then, there is a dispatch unit which dispatches a

warp to all of these cores, we will see in a second what they are, but essentially, the

entire warp which is a group of 32 threads is treated as one atomic indivisible unit.

So, the fun part with a PB or a GPU in general is the register file is very large. So, just

look at how large the register file is. So, in principle, even though PTAs does assume that

we have an infinite number of registers, it is not that far from reality because if you see

that we have 16k 4-byte registers, it is a lot of registers roughly, 64 KB of space.

So, such a large register file is required mainly for data locality as well as to support the

very high levels of parallelism that we have within a PB. So, now, let us count the

number of cores. So, if you look at it, we have eight double precision cores. So, each

core is a is like more of an embellished ALU, in a sense it has a very simple pipeline

maybe a two or three stage pipeline.

In many cases, it is a single cycle pipeline as well, but the key point is that these are very

very simple cores which basically enclose an ALU pretty much and there are few double

question units because the idea is it is a bad idea to use double precision all the time, it is

expensive. So, there are more of these single precision units. So, we have 16 integer

units, and we have 16 floating point rates.

So, any warp if let us say there is an integer operation and there are 32 threads, it will

take two cycles to process the entire warp in terms of throughput. The reason being that

the first 16 threads go, they execute in lock step. So, we will discuss what lock step

business means and then the next 16 threads. Similarly, if it is a floating-point

instruction, then 16 threads execute FP 32, 32 is single precision, a float whereas, 64 is

double precision or a double.

So, we execute 16 threads and then, 16 more. Finally, we have two tensor cores. So,

what we will discuss in chapter 14 which is a chapter on deep learning is that most of the

operations in CNNs and in deep learning are essentially matrix operations. Matrix adds,

subtract, multiply, primarily matrix sublime operations.

So, the tensor core that we have over here is specialized for matrix multiplication and

this is a direct support for any kind of a deep learning algorithm because the tensor core

directly offloads the matrix operation and essentially, works in an entire matrix in one

go. Of course, if we are multiplying two large matrices, then it is necessary to split them

into smaller sub matrices, but that is done later and then, we have a bunch of load store

units to talk to memory and a special function unit.

So, there may be several special function units, but I have just drawn one rectangle. So,

the reason again is that if you look at many scientific cores, they use many trigonometric

functions such as sin, cos and tan. A lot of deep learning actually uses the sigmoid

function that is based on computing this value. So, such functions are computed in the

SFU primarily using lookup tables.

(Refer Slide Time: 14:38)

So, let us now discuss the concept of a warp right which was one of the key concepts that

emerged from the previous slide, but we did not discuss it in great detail. So, first let us

do a little bit of math of the number of parallel threads that can run on an NVIDIA GPU.

So, we have 6 GPCs, we have 7 TPCs per GPC, 2 SMs per TPC, 4 PBs per SM and let us

assume, we can multiply, we can process 16 threads in one go which means either all of

this is being used or all of this is being used.

But we will then see that in modern GPUs, they can actually run two separate kernels at

the same time and use both, but that is slightly more sophisticated, but the number will

double. But if you just were to multiply this 6 X 7 = 42 X 2 = 84, 84 X 4 = 336 X 16 =

5376. So, just look at the shear parallelism within a GPU, we can run these many threads

together in one bow.

If you assume that there are no memory stalls, then just look at the shear computational

throughput of a GPU. It is true that the frequency of a GPU is slightly lower. so, it is not

as high as 3.5 gigahertz, it is lower, it is around 1.5 or so, but still this degree of

parallelism is huge, and this is pretty much like a supercomputer made of CPUs, we are

bringing all of that within one GPU.

And then, if we go with the modern of that which is that we can execute both of these

together LV by different kernels or let us say different warps, then this number gets

multiplied by 2. so, we basically have approximately 10000 threads that we execute

together and that is a huge huge huge increase in the total computational throughput.

So, if you look at let us say one CPU, for one CPU it will provide you around you know

around best case let us say 3 gigaflops where a flop is a floating-point operation per

second and just multiply this by 1000, this will become 3 teraflops by 10 more, this will

become 30 teraflops. So, 30 teraflops is pretty much what one GPU can give you.

And If you have 30 of this GPUs 33, then you can pretty much realize the petaflop

machine. So, it is actually not that hard to get a petaflop worth of computing just using

GPUs. Of course, using CPUs, it is much much harder as you can see, but of course, if

you have multicore CPU, then this number will get multiplied.

So, it is not that simple. So, basically this number that I gave is for a single core and it is

clearly not that simple because multicore CPUs are also better, but that said and done,

the shear computational throughput that a GPU offers is huge, is very very large and it is

quite hard to beat that.

So, the question is that can we afford to give each thread its PC? So, can the threads be

executing different instructions? So, this is something the clear answer is no, this would

involve too much or overhead. So, what do we do? So, what we do is that we create

groups of 32 threads in the warp, I call them a warp.

So, think of this as a subset of a thread block, they give them the same PC so, because

they execute the same code. So, what happens is that all the 32 threads execute in lock

step which basically means that we execute the same instruction for all the threads. So,

even if let us say there are 16 units so, for the same instruction, we first execute 16

threads and then, we execute the next 16. Once that instruction is done, we move to the

next instruction. So, this is what we mean by lock step.

(Refer Slide Time: 18:52)

So, let me further explain. In a warp, all the threads complete the execution of an

instruction first and then, they move to the next instruction. So, just to reiterate, if we

have 32 threads in the warp and we have 16 cores, the first group of 16 threads executes

and the second group of 16 threads executes and if let us say that we have only 8

functional units, then instead of this taking two cycles, it will take four cycles.

First group of 8, second group of 8, third and fourth groups of 8. So, there are several

good things about it, the first is that it is simple, no doubt. We do not have to maintain a

per thread PC. So, if let us say because of a long latency operation, I am not talking of a

disadvantage, because of a long latency operation, one of the threads needs to wait, then

an entire warp will wait.

So, warp essentially does not leave a thread and go forward, the reason is that we are not

maintaining a per thread counter or a per thread PC. so, because we do not have a per

thread program counter, what we do is that if one of the threads stops, the entire warp

stops.

his may sound inefficient but given the fact that GPU cores are incredibly overgenerous,

in a quite predictable and quite homogeneous. This normally does not happen, normally

it is not the case that one thread gets delayed substantially, the reason being that also the

data in memory is co located so, normally this does not happen. So, that is the reason its

typically not that concerning.

(Refer Slide Time: 20:42)

So, before you ask the question, let me answer what about code with conditional

branches? If we have code with conditional branches, then of course, as you can see

there is an if part and there is an else part, the notion of lock step execution does not hold

because maybe out of 32 threads, 10 threads will execute the code of the body of the if

statement and 22 threads will execute the code in the body of the else.

So, then, how do we execute by execute in lock step? So, here we do predicated

executions, if you would go back to chapter 5, the lecture on Itanium, then we will have

the notion of predicated execution. So, predicated execution is like this. Let us assume

two threads.

So, then, what will happen is thread 1 and thread 2 will process both the instructions, but

for thread 1, the predicate will be true which means that this is on the correct path so, it

will both process, execute and commit the results whereas, thread 2 will process in the

sense it will just get the instruction in, but will ignore it, it will not do anything with it.

So, they will still proceed in lock step. So, the key point that I am trying to make here is

that all the threads in a warp will still proceed in lock step, it is not the case that lock step

execution will not happen. It is just that for every instruction, a thread needs to assess

whether the instruction is in its correct path or not.

If it is on the correct path, then so, what it will do is that it will basically process the

instructions, compute the results and update the state otherwise, it will ignore it and for

more on predicated execution, you can go to the chapter on Itanium, chapter 5, the

lecture on Itanium, the last lecture of chapter 5.

(Refer Slide Time: 22:49)

So, let us look at predicated execution, the previous example. Assume there is thread 1

and thread 2. So, both will execute the if statement because here they are evaluating

whether x > 0 or not. So, of course, x is a thread, specific variable here, that is why this

instruction falls in the correct path of both threads 1 and 2. Now, if we look at the body

of the if statement, then the body of the if statement is in the correct path of thread 1, but

for thread 2, it is on the wrong path.

So, thread 1 will process the instructions and thread 2 will just ignore. Finally, the body

of the else well for thread 1 will not process, thread 2 will process and this is known as

the point of reconvergence because this is when thread 1 and thread 2 start processing,

both of them start processing the instruction. So, you can say that this is where the if

statement kind of ends so, this is the point of reconvergence.

(Refer Slide Time: 23:53)

So, how is predicated execution achieved? Well, each thread maintains a stack. When we

enter the body of an if or else statement, what we do is we push on a 1 or 0 onto the stack

depending on whether we are on the correct path or the wrong path respectively. So, let

us say I am entering the body of an if statement or an else, what I do is that I push a

value onto the stack. So, I will to come to a second why it is a stack.

So, if let us say I am on the correct path, it push a 1 otherwise, it is a 0. Now, coming to

the fact why it is a stack well, because we could have nested if statements. See if that is

the case, it is very well possible that I may be on the wrong path or the first if statement,

then after that I come and then you know maybe I do a comparison and I see that I am in

the correct path of a if statement that is nested in the outer if statement, but this does not

matter because I would have not entered this piece of code anyway.

So, what I basically do? or what is supposed to be done is that the stack maintains the

fact if you see there is a last in first out behavior, the last in first out behavior comes

because if I have one if statement, I have one more, I have one more and so on, then I

enter this if statements body at the end and also exited the first so, it is last in and first

out again, last in and first out again, last in the first out.

So, the moment we have a last in first out behavior, we use the stack data structure. The

stack data structure is basically used to store the outcomes of the branches or whether I

am on the correct path or on the wrong path. So, to ensure that I execute an instruction,

all the entries in the stack assuming that even if I am in the wrong path of an if statement,

at least I do the comparison.

All the entries of the stack have to be 1, then only I can say that a given instruction is on

the correct path, it should be executed, its result should be computed and committed to

permanent state. otherwise, if any one of these entries is 0, then I will say that I am on

the wrong path ok, and the instruction should not be executed.

So, there are two conditions over here, the first is an instruction executed if the stack is

empty yes, that is obvious or as I have just described that the last in first out stack if all

the entries in the stack are 1 so, this is so, we have a separate stack for each thread, this is

not the programming stack, it is a separate stack which only stores the results of

predicated execution.

So, if all the entries in this predicated stack are 1 so, we have 1 stack per thread, 1 per

thread. So, we maintain 1 stack per thread in the warp. So, if all the entries are 1, then the

instruction is on the correct path, and it is executed. So, when we leave the body of the if

or else statement, we pop the step.

So, this is what is done that we push an entry when we enter the if statement and when

we leave it, we pop an entry of the stack. So, who adds all of these codes? Well, all of

this code is added by the CUDA runtime in terms of special instructions or directives or

bits that are sent to the hardware and the hardware then picks up these queues and

maintains the stack for the thread. So, the stack is maintained in hardware, but of course,

the directives or when to push and pop are given by software.

(Refer Slide Time: 27:58)

Let us now look at a slightly longer example with three threads. So, in this case, we have

nested if statements. So, the first if statement is executed by all three threads as you can

see over here. Then, we have our first if statement. So, the first if statement is executed

only by the first two threads and not by the third one which is thread 2. The reason being

that this predicate for thread 2 is false, x > 0 for instructor. Then, we execute the body of

this if statement.

So, as you can see the body of the if statement for thread 1 both the predicate bits are 1

and 1 which essentially indicate that it is on the correct path of thread 1A, but for thread

1B, even though it passed the first if statement, it was not able to pass the second if

statement so, that is why for thread 1B, this predicate here is false so, that is the reason

instead of put pushing a 1 onto the stack, we push a 0 and because we have 1, 0 valued

entry, this instruction is on the wrong path of thread 1B and that is why this instruction is

not going to be executed and it will be ignored.

Similarly, since we are already on the wrong path, as I said we may decide to do a

comparison, we may decide to omit it, in this case, we do not do a comparison for thread

2 because we are on the wrong path anyway so, we again push 0 onto the stack and so,

the thread 2 also this instruction is not executed. At this point, threads 1A and 1B

reconverge so, we pop the stack so, this entry is popped for all 3.

So, you are left with 1, 1 and 0. So, again for thread 2, this instruction is not executed

whereas, for threads 1A and 1B, this instruction is executed. Finally, we have two

instructions over here. For thread 1A and 1B, the else path for both of them is they are on

the wrong path. So, how did we arrive from this state to this state? Well, the moment we

exited the if statements body, you pop the stack, it became empty and then, we pushed 0

onto the stack because we are on the else path for thread 1A and 1B so, it is a wrong

path.

 So, you push 0 and 0 so, clearly for these two instructions, thread 1A and 1B will ignore

them. But for thread 2, the else path is the correct path so, that is the reason we push 1

onto the stack so, thread 2 will execute them. So, as you can see in every stage,

instructions are executed in lockstep.

So, basically the same instruction, instructions are executing quite well in fact, in

lockstep and now, for the last instruction, which is x = c, this is where all the threads

reconverts, it is called the POR or the point of the convergence. So, at this point, all the

threads which are threads 1A, 1B and 2, they reconverge so, then what happens is that

we execute the same instruction for all three threads.

(Refer Slide Time: 31:43)

So, there is a good idea in the sense that using warps has made the operations of GPUs

extremely efficient. However, such lockstep execution has a share of problems, and we

will see why? So, assume that we have code like this. So, if we have code like, this let us

assume that we take an internal variable x and we initialize it to 0. so, this is a shared

variable and it is not a per thread variable, it is a shared variable, it is initialized to x.

Then, assume that we have four threads 0, 1, 2 and 3 so for the four threads, let us say for

the first two threads, you will find the threadidx dot x < 2 why? Because it is 0 and 1. So;

this x and this x are different so, this is the x coordinate of the thread index and this is the

shared variables. so, they are different.

So, for thread 0 and 1, they will enter this if statement and because they are entering the

other two threads, threads 2 and 3 will also enter because we execute this instruction

where the same instruction in the warp is executed by all the threads. Of course, for the

threads 2 and 3, this instruction is on the wrong path, but they will wait for their sister

thread 0 and 1 to complete this. So, here, the fun begins.

If we have a while loop over here which waits until x = 0, will be stuck forever. The

reason will be stuck forever is basically because there is nobody who is going to set x to

a value which is not 0, but if you look at this logic so, by this logic, threads 2 and 3

should be executing these two instructions which of course, are on the wrong path of 0

and 1, but for 2 and 3, they are on the correct path.

On the correct path, they will set x = 1 and this is going to release the while loop over

here, but the point is that we will never come here. And so, basically the point is that we

are never, never ever going to come here, and the reason is that the other two threads

which are supposed to set x to 1 and release it, they will not come here because they will

keep waiting for their sister threads which are 0 and 1 to exit and they are never going to

exit the while loop.

So, we will be stuck forever even though we should not be. So, of course, we are not

assuming two threads over here, we are assuming four threads. So, the point is that if you

look at the simple logic as such there is no problem, but when you take a deeper look,

you will realize that we are never going to reach this statement only because of our

constraints on lock stepped execution within a warp.

So, this is of course, a slightly contrived example, but we will find many more such

situations in real-life where such interactions do happen and many times, the code goes

into a deadlock and the developer has no clue why. So, that is the reason in modern GPU

design, such situations have been avoided.

(Refer Slide Time: 35:20)

To precisely avoid such situations which may arise inadvertently in an execution, there is

a notion of limited yet controlled thread divergence.

(Refer Slide Time: 35:41)

So, let us consider the two code blocks. So, let this be the while loop, let us call it W and

the other port block, let us just call it X for the one that is setting X = 1 and Y. So, what

we can do is that we will not stop our basic lock step execution paradigm, we will go

with what is called restricted lock step execution.

We will execute the while loop for some time which is the first point, we execute the

while loop for some time, we see that we are not making progress. So, this can be seen

that the while loop is just going on and on so, of course, we cannot detect an infinite

loop, but at least we will see that we are there in one region of port for some time.

We can then go to the else part and again, execute it for some time. This again will

follow the lockstep paradigm. So, all the threads will again execute the else part of

course, all the predicate relations will be preserved so, only for all the threads whose

predicates are all 1 in a stack, they will execute others will not, you have seen that. So,

the X and Y blocks will be executed.

The advantage of doing this over here is that x = 1 will be set by some thread, does not

matter who. Finally, we can come back to the while loop and the two threads which

should have executed instructions in the while loop, they will execute it and basically,

the others will ignore, but at least, they will exit the while loop.

So, since the if part and else part both the thread, all the threads have exited both, we can

enter the point of reconvergence over here. So, what you are basically seeing is that we

are again coming back to the while loop after executing the else part. So, this was the if

part, this was the else part and this was the if part for the second time.

So, we are again coming back to the if part. So, this is an example of restricted lockstep

execution where we are not really letting the threads diverge or go their own way. so, the

threads are still executing together, they are still in lockstep mode so, we are referring to

this as the restricted lockstep execution whereas, you can see there is this if else if kind

of jump. So, this allows for reconvergence as we have seen.

And the deadlock situation that was arising here in the previous example, this is not

arising over here. So, this was one of the big inventions that happened in NVIDIA Volta

and has subsequently been kept and because this was required otherwise, there were

many of these sticky kind of race conditions which were happening primarily because of

our you know insistence target exists insistence on lockstep execution.

(Refer Slide Time: 38:46)

So, now, we are in the position to see the GPGPU pipeline kind of in full glory. So, this

is let us say the pipeline of a PB. So, we have a fetch logic and instruction cache which

uses both the I0 and I1 levels. Then, we have a decode. So, then the rest of the so, then,

the scheduling part, the warp scheduling has.

So, the decode could be part of the fetch could be part of the warp scheduler, that does

not matter, but the key aspect of the warp scheduler over here is that it uses a scoreboard.

So, we have seen a scoreboard earlier so, that is the reason I am not explaining it once

again.

We have seen it when we were discussing Itanium which was the last part of chapter 5.

So, if you go to the video, the last part of chapter 5, you will find the videos on Itanium

and the videos on Itanium have a discussion on the scoreboard. The scoreboard is

nothing, but a hardware data structure that keeps an instruction stalled until there are no

hazards.

So, the hazards are four types and structural hazards. Until these four hazards, there is no

probability of any correctness problem happening because of these hazards, we just stole

an instruction, after that we issue. So, since the scoreboard has been discussed in detail, I

am skipping that part, but this was discussed in detail in Itanium and finally, we have the

register file access.

As you have seen the register file is an its looks like a memory in a PB and then, we have

a bunch of these functional ALUs which could be the integer ALU, floating point, single

precision, double precision ALUs, special function unit for sin, cos, transcendental

functions, load stored units. Load store unit’s stock to the L1 cache, the shared L1 cache

and finally, to the DRAM.

So, I saw to add an L2 cache over here that should have been there, but still the GPU

DRAM has a very large role to play in the GPU because a lot of the data because you are

dealing with big data over here, a lot of the data ultimately ends up getting stored in the

DRAM and for regular functional units, once the operands have been calculated, there is

a register write back and we again write the results back to the register file.

This is as such a regular pipeline, the scoreboard is new, but the rest are not that great.

The scoreboard basically tracks the dependencies and stalls instructions until the

dependency is met and it is an in-order pipeline, it is not an out of order pipeline, it is

primarily an in-ordered pipeline to a large extent, but of course, you will see in an

ordered pipeline, WAW and WAR hazards do not come up.

So, basically, there is a very small amount of outer ordnance over here and which is

sometimes if you have this kind of execution as I just showed on the previous slide, there

is a limited amount of that, but in general, it is the job of the scoreboard to take care of

these issues particularly, when we are executing threats in this fashion is the job of

primarily the scoreboard to take care of it.

(Refer Slide Time: 42:21)

So, the important question that needs to be answered now is that if let us say we have 32

load instructions in warp or 32 store instructions pretty much one instruction per thread,

what do we do, how do we access it? So, let us first count the number of bits that we

need to read at the same time.

So, of course, same time need not mean the same cycle, but let us say in the window of

two or three cycles. So, it is 32 X 32 well, why? Because we have 32 threads in a warp

and each value is 32 bits so, this is 1024 bits or 128 bytes. So, this would require a very

high register read bandwidth and a very high register write bandwidth as well.

So, if I were to argue in a different way so, you may say that no, instead of sending 32

requests per cycle, we may send 16 or we may send 8 well, that is fine. So, if we send 16,

you should also factor in that fact that if let us say an instruction has two operands, we

are not reading one operand, we are actually reading two so, this will become 16 X 2 =

32, again multiplied with 32, it will remain 1024 bits and let us see if we send 8 well,

then it will become 512, but that is still a lot of bits.

A simple yet impractical solution could be that we just have a register file bank, a bank is

nothing, but like a sub register file and then, each entry could be 1024 bits where all the

entries are kept together, where all the information is kept together, this is impractical,

this simple idea is impractical because we do not know in advance, which registers will

access and whether they will all be kept at the same place or not so, this is rather

impractical and does not work that way and also reading out so much of data takes a lot

of time.

A far more efficient solution is to actually split the register file into multiple banks, sub

register files and distribute these 1024 bits across these register file banks. So, one bank

can keep let us say 64 bits or 128 bits. If let us say it keeps 128 bits, then across eight

banks, the data will be distributed.

So, we will need to have an elaborate network so, that is what the crossbar network is

which is controlled by an arbiter circuit. To access all those banks which have the data,

read them or write them so, let us look at read because read is more performance and

sitting and we put all of that data in a dedicated hardware structure called an operand

collector.

So, the job of the operand collector over here is to basically work like a temporary buffer

till the data is completely read from the registered file banks. So, clearly, we are

accessing multiple banks. So, from each bank, we are reading a lesser amount of data.

So, what is happening is that this is a fast access and also there is parallelism.

We have exported the complexity to the network that is the reason we need an intelligent

arbiter, but once that is done, all the 1024 bits can be read and they can be stored in the

operand collector and from the operand collector, the data can then seamlessly pass

through to the execution units and the execution units can then execute on the data,

execute the function whatever it is add, subtract, multiply on the data. So, the key

innovations over here are the crossbar network, the arbiter and the operand collectors.

(Refer Slide Time: 46:24)

So, as we have discussed a simple, yet impractical solution is to just make a registered

file bank entry wide, 1024 or 120 bits wide, that is not practical. You have to have a

large number of banks in the register file, use the operand collectors to collect the values

and then, use the on-chip network to route register and file values to the operand

collector as we have seen.

(Refer Slide Time: 46:51)

Even in the L1 cache, when you are accessing the caches, not L2 to that extent, but L1

definitely. There is a far elevated chance of bank conflicts, the reason is if you are

writing data, we are writing 128 bytes, or it is maybe easier to say 32 memory words for

a word is 4 bytes. So, clearly, if you are accessing multiple banks, there is a chance of

bank conflicts in the sense that a single bank may contain two of these words. So, if you

have concurrent accesses to the same bank, that is a problem.

So, what we can do is we can have a dedicated piece of hardware that will send all the

mutually non-conflicting accesses to the banks first, sort of let us say all the accesses, let

us say 32, we might find 25 accesses that are mutually non-conflict, we send them first.

Then, in the rest of that, then the rest of the accesses are sent to subsequent cycles, are

sent to the banks and subsequent cycles were gradually drained up.

For writes, what we can do is that let us say there is a cache line, then what will happen

is the data will either gradually come in because of bank conflicts and so on so,

whenever we bring in a line from a lower level, we can lock the line in the cache and let

us say we will have an MSHR kind of structure so, we will discuss that in great detail in

chapter 7, but what we can do is that let us say, I will give a realistic scenario.

So, let us say that in the L1 cache, there is a write miss so, the clock has to come from

L2. In the time being, a lot of reads and writes would have arrived at the L1 cache so,

they are buffered in a temporary structure, they will be called an MSHR in the next

chapter, but in this chapter, let us call it a temporary structure.

So, the temporary structure will hold on to all of the outstanding reads and writes and the

moment that the block comes from the lower level, will basically replay all the load store

accesses for the set of all the lines that arrived in the shadow of the miss which means

when the miss was being serviced from the lower level, whatever reads and writes we

got we immediately apply them to this block over here.

(Refer Slide Time: 49:18)

So, now, we have reached the end of the chapter. So, let me quickly conclude, you

always have five concluding points. GPUs are no doubt a vital requirement a modern

numerical scientific and high-performance templated. They are required for accelerating

graphics-based applications, no doubt. CPUs in comparison has severely inadequate

resources.

Early-stage, GPUs were too customized for specific applications, but then GPGPUs

arrived on the scene, and they had a very generic application. In the CUDA language was

developed to basically run generic codes on GPUs. A CUDA binary is a fat binary that

has both GPU and GPU specific code, CPU and GPU specific code and GPUs have a

complex hierarchical structure with 5 to 10000 cores these days which is massive,

several teraflops of computational power is there within one single GPU.

So, here, we have a GPC, then a TPC, SM, PB and a bunch of ALUs. A warp requires

1024 bits in one go. This necessitates a complex and a multi-banked resistor file and a

complex multibank L1 cache as well. So, we will discuss in the next chapter on caches, a

lot more about the way that these caches are designed because what you would have

realized by this time which is at this time meaning that we have completed the first part

of the book where we have discussed out of order pipelines and GPUs.

And it is possible to embedded c of computational units and increase the IPC for some

codes not for all, for the memory system can be bottle because the memory system also

needs to provide data at a high-rate and also read out results at a high rate correct, the

memory system could be a part.

Given the fact that the memory system is a bottleneck or can be one, we should invest a

lot of our resources in designing a very fast and efficient memory system. So, this will be

the subject of study in the second part of the book which is from chapter 7 to 10 and the

lectures for this you will find on the website for chapters 7 to 10. so, kindly follow.

