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Welcome to chapter 6, the chapter on GPUs or Graphics Processors. 
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So, here is the background that we require for this chapter. So, we need three things 

specifically. We need in ordered pipelines. Now, basic knowledge of C ++ programming 

and some knowledge of parallel programming; so, for parallel programming you can also 

look at chapter 9 that will give you some idea of parallel programming or the early.  

Or the first part of the two book series computer organization and architecture. So, that has 

something about parallel programming or you can consult the web or any other book. So, 

broadly speaking from this book we need chapter 2 and these two as a matter of pack up, 

nothing else is required. 
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So, there are three parts to these chapter 3 sections. 1st we will give a broad overview of 

application specific computing notably existing GPUs, ASICs and FPGAs then we will 

look at the CUDA 10 programming language. See even though as we speak CUDA 11 is 

the latest, but we will discuss CUDA 10 because that for us is complex enough and also 

the time of writing this book it was the latest version and finally, we will go to the design 

of GPGPUs. 
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So, let us first start with a question. Are we satisfied with an IPC of 4 or 6? Even achieving 

this IPC is quite hard. So, if you look at a very aggressive out of order processor with all 

the tricks that we have done. So, with all the tricks with regards to advanced speculation, 

replay, pipeline optimizations all of that including memory system optimizations getting 

an IPC of 4 or 6 is very hard. 

So, at the typical IPC for an out of order pipeline even if its 4 issue would be between 1.5 

and 2.5 typically. So, even getting 4 or 6 is quite hard almost impractical, but it turns out 

that we are not satisfied with it. The reason being that if we consider very large programs 

such as for example, simulating an airplane wing, weather prediction, image recognition 

they have far more they have far serious ILP requirements and far higher performance 

requirements as well. 

So, the reason I say that is because linear algebra particularly matrix algebra forms a core 

of these methods and consequently if let us say I were to add two matrices then the 

instruction level parallelism is huge and in that an IPC of 4 or 6 is actually too low. So, 

you consider this piece of code. So, in this piece of code we are just adding two matrices 

element by element. See if we look at this then we have two loops iterating from 0 to N 

loop iterators being i and j. 

So, if we consider this then what we can see is that for different pixels these are completely 

independent computations totally independent. So, for different pixels these computations 

are totally independent. So, for large values of N we have truck loads of parallelism. We 

have a huge amount of parallelism right.  

If N is a large value, the reason is we consider N square points and all N square points can 

be processed in parallel. All of these order N square additions can happen in parallel and 

that is exactly why we are not satisfied with the major IPC that we get. We need a different 

computing platform. 
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So, what is the; what is the main big deal with these high ILP programs? Well, many of 

these linear algebra based programs that deal with matrices regardless of the matrix 

operation they are very high degree of ILP extremely high degree of ILP. Existing multi 

core processors such as the ones that we have designed possibly maybe with one or 

multiple out of order codes they are very general purpose. 

In the sense they are designed to execute a very large array of programs. So, they are kind 

of constrained by the fetch and issue width, fetch is not much. It is limited to 4 to 6 and 

that also restrains the IPC to remain within this value. So, a solution here is to create a new 

processor that has 100s of ALUs. So, what we want to do is that we want to design a 

different kind of processor, where we will have very very small computing units, hundreds 

of small computing units. 

So, we will have hundreds of small small computing units. And what this small computing 

unit will basically give us is that let us say for these simple pieces of codes where we have 

to do many additions or multiplications in parallel, we will be able to realize the massive 

amount of parallelism. So, for these small computing units we can either call them an ALU 

or a code they are often small one two three issue in ordered codes they have a very simple 

ISA. 

Many of the advanced features of modern programming languages such as irregular 

memory accesses or conditional branches are not supported. So, what we need to do is we 



need to create a processing framework for such kind of parallel programs that have a 

massive number of parallel yet simple operations. So, the key point is that the operations 

are simple. 
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So, we will now discuss ASICs, ASIPs and FPGAs. So, what we want to do is we want to 

create a custom chip with 100s of ALUs. So, one of the options is to create an ASIC, an 

Application Specific Integrated Circuit. So, this is done only for a specific application, 

specific kind of application with the inputs outputs formats everything is fixed. 

So, instead of using software we just create a chip for it, but needless to say there has to 

be a market for it because without a market, we cannot really design a chip. So, this will 

be used in all kinds of devices which include; well let us say that ASICs are used in all 

kinds of devices, but it does not mean that the same ASIC is used in all kinds of devices 

different ASICs are used. 

For example, let us say for a video camera you would have to do image processing at a 

very fast rate. So, we can have an image processing ASIC with it. For washing machines, 

we will require a different kind of chip. So, we will fabricate a different ASIC. And given 

the fact that video cameras and washing machines have a huge market, what we can do is 

that well we have a large enough market to justify the creation of a specific chip for doing 

a specific task. So, these are in general not all that programmable. 



So, as I said ASICs have a lot of value. In the sense that we need not have large processors 

that run programs, but they have a lot of value in specific scenarios. They can be made 

program more programmable if we move from ASICs ASIC to ASIP. An ASIP is an 

application specific instruction set processor which brings in a little bit more in terms of 

flexibility. 

So, it provides a degree of flexibility in the sense there is some ISA support. So, you can 

think of it as a weak processor with very heavy ASIC like functionalities. There is a basic 

ISA support and there is definitely some flexibility including the flexibility to write small 

programs, but of course, the what you can do is quite limited in that. 

(Refer Slide Time: 09:03) 

 

Then we have PLAs. So, in the good old days we had programmable logic arrays or PLAs. 

See if you look at it this can be used to implement any Boolean function. So, for example, 

if let us say we have three inputs A, B and C. In the inputs at this point will become 𝐴 

, 𝐵 and 𝐶. 

So, here the idea basically was that we choose a subset of this. So, clearly we cannot choose 

A and 𝐴 both together, but we choose a subset of this. For example, 𝐴, B and C. So, what 

you are seeing in this wire? So, this is not a single wire, but it is actually a group of three 

wires that are going into this AND gate. 



So, the first wire is carrying any one of A or 𝐴; the second one any one of B or 𝐵  and the 

third one any one of C and 𝐶. So, essentially this the AND gate over here is computing a 

minterm. So, that is why this is known as the AND plane. So, just to remind you once 

again this is not a single wire, but a set of three wires. 

So, here what we are doing is we are computing the minterm. And so, the advantage of 

computing the minterm over here is that we can compute different kinds of minterms. So, 

let us say we want to let us say compute ABC our function is of this type then the first 

minterm could be ABC. The second the one could be 𝐴, B and 𝐶 then what we can do is 

we can take two wires like this and we can leave the rest. So, it does not matter. 

So, we can choose in for this vertical wire. Again we do not have a single wire, but let us 

say we have multiple wires. So, we have 8 wires. So, out of this we can only choose these 

two and send them to an OR gate. So, then the output over here would basically be the 

output of this sum of these two minterms. So, similarly we have other OR gates. So, this 

is known as the OR plane. 

So, we can then take another set of minterms and maybe like enable them enable this this 

and this and compute or of this. So, this will be another Boolean function. So, this is being 

used to compute Boolean functions. So, we are computing f 1, f 2, f 3 and f 4. So, in this 

case as you can see we can generate 1, 2, 3, 4, 5, 6, 7, 8. 

We can generate 8 minterms and then among the 8 minterms what we can do is that we 

can we are generating 4 functions. So, we can choose any of those 8 minterms, do an OR 

a logical OR of that and we can generate 4 Boolean functions similar to the way that they 

are generated. 

So, as you can see that these selecting units over here are fully programmable that is the 

reason we call this a programmable logic array, where given a Boolean function and a set 

of variables we can implement it. In fact, we can compute several Boolean functions 

together. So, that is the reason even implementing something like an adder can actually be 

quite simple because one of them could be the Boolean function for the sum and other one 

for the carry. So, this as you can see is a quite flexible programmable logic array. 
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This of course, PLAs have been superseded by FPGAs because PLA is only for 

combinational logic functions. There are no state elements, but to implement something 

similar to a processor we need state elements. In the sense elements like flip flops and 

registers which can store values. So, we need some sort of a bit storage mechanism 

something similar to a state element and we need a flexible interconnect. 

So, basically why a flexible interconnect? Because we will have to store different logic 

elements sorry connect different logic elements to different state elements and that is where 

we have the opportunity of creating a custom processing unit. So, this is why we use an 

FPGA which has these things. So, you can think of an FPGA as an extension of a PLA at 

a state elements and the flexibility of connection. 

So, what it does is that along with programmable logic. So, incidentally now the amount 

of programmable logic in FPGAs has gone down quite substantially. So, given that the 

presence of PLAs in FPGAs has reduced quite substantially. We have moved to lookup 

tables or LUTs. 

So, here the idea basically is there assuming that we want to add two 4 bit numbers, so, 

what is the total size of the input. It has 8 bits and the total size of the output maximum 

could be 5 bits. So, what I can have is that I can have a table with (2)8 entries, which is 

like all combinations and for each combination I can store the output. So, let us say it is a 



5 bit output for each combination. I just store the value of the output whatever it is. So, 

that will give me the sum as well as the carry. 

So, I can basically take any function. So, we have a lot of customized software extremely 

sophisticated software these days that can take any function and basically map it into a set 

of simple lookup table accesses even if we are adding two 64 bit quantities. So, we are 

adding two large 64 bit numbers. We can still break it into a large number of smaller 

computations such that we access these lookup tables. 

So, with lookup tables and flexible logic and flexible interconnects we can implement 

anything; addition, subtraction, multiplication, large processors everything. So, a flexible 

interconnect can be used to connect LUTs and state elements together. So, this will provide 

us with high computational throughput. So, note that reconfigurable architectures such as 

FPGAs. So, this method of using PLAs LUTs interconnects and so on. 

So, even flexible interconnects are done with a PLA like logic only where let us say you 

know we want a packet to go this way. So, all that we need to do is we will have a set of 

multiplexers over here and we will then configure it to route all the signals to go that way. 

So, FPGAs also use something called an anti fuse. So, I will, so that can be seen on 

literature on FPGAs. 

So, basically that is more like a persistent element where once programmed it maintains 

its state and it ensures that whatever signals from this will get routed that way. But, we 

will not discuss that in great detail, but what we will discuss is that FPGAs are extremely 

flexible and they have a very large number of logical limits. 

So, you can implement massive parallelism. The only thing is that their clock speed is 

quite limited 400 to 600 megahertz and it is also not the case that one clock cycle achieves 

a lot of things. So, even for a simple operational that would take one cycle on an ASIC it 

may take multiple cycles on an FPGA. So, FPGAs are limited in terms of their frequency 

in terms of their area overheads all everything. 

So, they are fairly you know they are extremely used they are fairly used frequently when 

creating hardware prototypes, but nowadays they are also used to implement production 

quality systems because both the efficiency of FPGAs and the software used to program 

FPGAs that has matured significantly. So, for many tasks like DNA sequencing and linear 



algebra and so on FPGAs are not bad candidates, but they are quite expensive. So, one 

FPGA is almost as expensive as a state of the art server. 
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So, given the fact that ASICs are very good, but again ASICs are extremely specialized 

and furthermore if I have a small application I am not really going to make an ASIC for it, 

it is too expensive. Fabricating a chip when the market demand is not there or is not that 

much to justify the huge costs and given the overheads of FPGAs particularly for graphics 

intensive tasks which is almost everything we do these days our windowing systems games 

and so on GPUs were designed. 

So, initially they were handling graphics intensive tasks like mostly handling the 

windowing systems or modern operating systems and also games, but later on they were 

repurposed to run numerical programs and scientific programs. So, this is how the GPU 

the graphics processor unit became a GPGPU, a general purpose GPU. 
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So, what is the need for a GPU? Let us do a little bit of math. So, consider the display on 

which I am recording this video. So, it has 1920 pixels on one axis and 1080 pixels on 

other axis. So, it is a high resolution, it is an HD display. The refresh rate which is the 

number of frames that I show per second is 60, 60 frames per second. So, this means that 

roughly 125 million pixels have to be processed per second. 

If I consider a 3 gigahertz processor with an IPC of 2, which is medium to high it will be 

able to process 6 billion instructions per second roughly and so, which basically means 48 

instructions per pixel ok. So, this is roughly what we will have to process. So, 48 

instructions per pixel even though it sounds to be a lot, but actually it is not a lot if I look 

at this high intensity games that we have all of the effects that we have all the video that 

we watch. 

So, nowadays what happens? Nowadays even if I am writing a book for making a 

PowerPoint and keep on listening to some music on YouTube or keep watching a YouTube 

video at the corner. So, then you know my processor has to do both. It has to run 

PowerPoint as well as process the sound of a YouTube video and the video of a YouTube 

video. So, typically this much is not enough. So, for more high definition and high intensity 

graphics we need better platforms for the graphics effects and HD movies. 
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So, this is where the need for GPUs comes up. So, GPUs are used for many things. So, 

one thing we need to understand before we actually look at GPUs about in modern graphic 

systems. So, in the modern graphic system as compared to what things were 30 years ago, 

where we thought of the screen just as an array of pixels, so, I am talking of things 30 

years ago. 

So, we thought that you know screen has x pixels and y pixels. So, we have xy pixels and 

this can be represented as an xy element array. Each element of the array is assigned a 

color right and all that we need to do is we need to compute these arrays and show them. 

And monitors of those days that worked at roughly 30 to 50 frames per second, so 

incidentally this array is called a frame. 

So, you just have to recompute this array 30, 40, 50 times every second and most of the 

time the array remained constant you know there was no change. Only when there was a 

change this was updated, but modern graphics is quite different. So, in modern graphics 

we have to construct the image. So, what the user actually writes is a set of rules that is 

what the user writes. So, these are a set of rules. 

So, let us say there is a character running in the middle of a city with guns and police cars 

after him with sirens glazing as you have in a game. So, what the user writes is the user 

defines the objects, defines the interactions between the objects, puts effects such as 

shadows and elimination and so on, but the final scene has to be constructed from the rules 



and furthermore, if its small monitor like the monitor of a mobile phone then of course, 

rectangles will appear smaller, but you will still see the scene. 

If let us say move it to a big monitor, we will still see the scene. So, this means that 

whatever the user does is not really specified in terms of coordinates, but rather in terms 

of rules. So, the user basically says that look in this frame this is the starting and end point 

of a rectangle and let us say that we move it to a bigger monitor the rectangle will get 

scaled appropriate. 

So, when this method is used it is called vector graphics where for example, if you are 

storing a line we just store its first coordinate and the second coordinate. Now, if you move 

to another monitor with the line needs to be lengthened, it is very easy to lengthen it 

because we are not storing each pixel of the line, but rather we are storing the start and 

end. So, it can be lengthened. 

So, you can have a library to lengthen it and render it. Render it means show it, show it 

correctly. So, we will discuss about rendering, but rendering basically means creating the 

graphics object on the screen. So, when such a rule based system is used as you can see 

over here where a rule based system has been used to create this tree full of fruits. 

So, the image was much smaller, right, it maybe the image was this side, size, but when I 

expanded it, it became this size, but it still looks like a good image, it is not blurry. In 

comparison I took another image where only the pixels were stored as opposed to vector 

this is called a raster rasterized image. So, the rasterized image when I actually made it 

bigger you can see the blurriness in this image. So, this is called raster graphics. 

So, the two paradigms that we have in GPUs particularly is that in the olden days we 

mostly had raster graphics because we only cared about arrays of pixels, but after that very 

soon we came to a point where we represent an object as a set of polygons. So, you will 

see mostly it is triangles, but let us say polygons and shapes of all sizes and any image is 

generated by the interaction of these shapes. 

Here again there are two generations. The first generation was 2D that the tom and jerry 

kind of cartoons and the current generation is 3D where you can you have these three d 

characters in games and movies and so on. So, that is like 3D. So, movies of course, we 



do not generate anything, but movies there is a separate problem that movies come encoded 

and they need to be decoded by the graphics card. Why encoding and decoding? 

Because encoding means like heavily compressing a movie and decoding means 

uncompressing it with as little loss of quality as possible. That said and done most graphics 

tasks be it power point be it a game or be it just your windowing system specify the 

interaction in terms of objects and the GPUs job to pretty much convert that into a scene 

which you see on the monitor. 

Raster graphics is still used in the sense many objects are still specified as arrays of pixels, 

but that is not all that common. So, given the fact that these GPUs were doing so much of 

geometry. People observed that this could be the GPU could be easily repurposed to create 

a GPGPU that also does general purpose computation without changing the design of a 

GPU very much. 
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So, if we further look at this, if we further look at this need for GPU slide you will see that 

in vector graphics as we have said I am just repeating some things where the programmer 

has created a high level set of objects with shades, textures, characters, worlds etcetera 

with the rules for interaction. And this vector graphics capability of the GPU was later on 

used or leveraged to create a GPGPU where a GPU continues to do what it was doing, but 

additionally it can also be repurposed to run absolutely general purpose numerical and 

scientific ports. 
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So, this for example, would be an example of an auto generated scene from a game where 

you can see a lot of effects. You can see this complex object over there. You can see the 

effect of light, shading, elimination. Just look at this point and look at this point. So, this 

point you can clearly see the effect of the face of the rock pointing towards the sun and 

you can see the shade over here. 

So, all of this has been automatically generated after the main after the design was given 

to the GPU and you can also see the effect of texture. So, just look at the texture of this 

wall like you say feeling that this is the wall, but you this area gives you the feeling. It is 

the sky. So, the texture etcetera was all added.  

So, lot of these things are added and you will see that if let us say I play the same game on 

the mobile phone. You will pretty much have a very similar visual experience because of 

the fact that the GPU of the mobile phone can interpret the rules differently as per its screen 

size. 
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So, this is where our GPUs have come to. So, now, the thinking is that well ASICs are 

very good, their but their usage is very limited and they are very expensive to at least 

create. So, there is a very high startup cost. So, unless the volume is large ASICs make no 

sense. 

FPGAs again are great for prototyping and maybe a small set of applications. Traditional 

GPUs great for graphics, but if let us say I can kind of combine all of these three kind of 

get the power of traditional GPUs to do graphics power of ASICs to do general purpose 

computing. And power of FPGAs in the sense I have a C of computational units, I will 

arrive at the modern general purpose GPU. This is a broad idea. 

So, this can look at games high intensity graphics movies of course, far more powerful in 

an out of order processing. So, we will first focus on the graphics aspect of a GPU and 

then we look at the general purpose that is fine. So, first we focus on the graphics aspect. 

Next we focus on the general purposes ok. 

So, the graphics aspect what we need is we need a we need something called a shader 

program. This is a master program which does all the heavy work on objects, vertices, 

their pixels. It looks at transformation rotation skewing and so on. So, it applies all the 

transformations that are needed to images, it applies the effects. 



So, as we have seen in the previous image it applies the effects of texture, shading, 

elimination. It does all of that automatically which also translate to linear algebra 

operations primarily, but we will discuss how having a general purpose language for these 

actually translates into something bigger something much bigger than the scope of GPUs 

themselves. 
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Let us now show the basic structure of a shader program. So, in a shader program we take 

an input data which can be in the form of pixels or vertices then we take in these three 

inputs. So, the first input actually comes from a dedicated memory structure known as a 

texture cache or a texture memory. 

So, this provides all the textures for the image in the image region then we have a bunch 

of read only data think of them as constraints for the model. So, many GPUs particularly 

in the early days used to have; used to have a cache for read only data. So, maybe much of 

that does not exist today, but something of this nature used to be there. It used to be called 

the constant cache and then of course, GPUs regularly communicate with memory. 

So, when we are talking of memory here it is mostly off chip memory. So, the GPU and 

the CPU do not share caches in general they speak they communicate via the off chip d 

ram memory and finally, the output is in terms of pixels and vertices. Some of it is stored 

in the caches inside the GPU and of course, if more data is generated which is not 

subsequently used then it is written to the off chip memory. 
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So, the graphics pipeline of a typical graphics processor this is the way that it looks, but 

there are some changes. So, one of the stages has changed. So, I will describe that later, 

but the quintessential graphics pipeline that shader programs use it is a dedicated graphics 

pipeline that has these four stages. The first is the vertex processor, then the rasteriser, the 

fragment processor and the pixel engine. 

So, what the programmer does is that she specifies a scene in terms of the basic broad 

objects and the interaction between the objects, the light sources, elimination shading, the 

normal vectors of the surfaces and so on. The rest is automatically computed in hardware 

and in software. So, there are dedicated programming language APIs that allow you to 

write all of this code and a lot of it at runtime is converted into PTX code and what we 

shall see SASS code. So, we will discuss that later, but essentially in native code for the 

GPU. 

So, there are two very common APIs Application Programming Interfaces that are used. 

Windows systems often use DirectX and OpenGL is quite platform independent. The GPU 

programs are typically written in two parts. There is a part that runs on a normal CPU and 

there is a part that runs on the GPU. So, this is compiled in the GPU specific ISA. So, 

basically you can think of it as a fat binary. A fat binary basically contains code of different 

instruction sets. 
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So, the program binary as we discussed is fat in the sense that it contains both CPU code 

as well as GPU code. Say, NVIDIA programs are first compiled to a virtual ISA. So, we 

will discuss in detail in later lectures what is exactly the need for a virtual ISA, but that is 

what NVIDIA programs are compiled to. 

And the virtual ISA is called PTX or portable thread execution that is a virtual ISA. And 

at runtime the PTX virtual ISA is actually compiled to actual ISA. So, this is something 

like Java where let us say if you take the code of an of a program you first compile it to 

PTX and then you distribute that. 

So, this ensures that nobody is seeing your code. Your code remains safe, your intellectual 

property remains safe and you assume a virtual machine and design an ISA for it and 

distribute it. But real time a lot of optimizations need to be done and these optimizations 

are nicely captured by the compiler for that specific GPU. So, that specific GPU at runtime 

it is dynamically compiled to SASS or shader assembly. 
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So, the vertex processor this is the way that it looks which is the first stage. So, recall that 

there are four stages in the pipeline. So, we typically decompose a 3D surface into a set of 

triangles because it is very easy to work with triangles and triangles also have some 

inherent advantages which other representations do not have. 

The most important being that, all the vertices are on the same plane. So, it is very easy to 

specify the plane of a triangle and its normal vector. We can then compute effects such as 

reflection very easily. And also there is a lot of literature and processing triangles and most 

triangle operations ultimately degenerate into matrix operations. We can perform ray 

tracing which is trace the path of light, light rays, see how they interact with surfaces. So, 

that will give you effects of elimination and reflection. 

Finally, we can add color and texture to a surface. We can move rotate and scale the objects 

as is required and also calculate the depth of the triangle which is the depth of the object 

in the image as measured from the eye. So, with that what we can do is that things that are 

far away will appear to look slightly different. I also they will be occluded or hidden by 

nearby objects. So, this occlusion is important of which object hides the other object. 

And so, much of this is computed here, but it is also computed later. So, the vertex 

processor you can think about as the stage that performs all the geometric operations on 

the shapes. So, this heavily uses linear algebra and previously this was using custom 



hardware. Now, the vertex processors code is basically mapped to generic hardware and 

on generic hardware it just translates to tons and tons of linear algebra. 
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So, nowadays the vertex processor has been replaced by the polymorph engine. So, the 

polymorph engine itself is pipelined it has a five stage pipeline. So, if you think about it 

there is a pipeline within the pipeline stage. So, the polymorph engine has five stages; 

vertex fetch, tessellation, viewport transformation, attributes setup and stream output. 

So, in modern GPUs they do not have the vertex processor again. So, I must underscore 

the fact that we are mostly talking about NVIDIA family of GPUs over here. We are not 

talking about other GPUs at the moment. So, in the vertex fetch stage what is what happens 

is we convert local object coordinates to world coordinates. 

So, normally what happens is that in the programs in the shader programs that users write 

in OpenGL for example, they specify local coordinates, but all the objects are not in the 

same coordinate system. So, when all of them are in the same coordinate system this is 

referred to as world coordinates where you use the same axes same 3D axes x, y, z for all 

the objects. 

And then the next part of this the vertex fetch stage is to also fetch the is fetch the vertices 

and then do geometric operations on top of them. So, this is where we simulate the motion 

of limbs, for example, in life like characters; move objects, you are shooting a bullet the 



movement of the bullet and we also along with pre programmed motion we also look at 

other visual effects such as elimination, shading and so on. 

So, we have a process here known as the hull shader. So, what this does is that let us say 

it takes a large polygon. So, a large polygon may be something like this. It divides this into 

a smaller set of polygons, could be triangles and there could be triangles could maybe 

triangles may not be triangles does not matter, but it is just that objects which are closer to 

the viewpoint which means closer to the eye they have a higher granularity. 

In a sense the resolution is better and objects that are far away from the viewpoint. They 

have a lower granularity. This roughly corresponds to the way that we view objects that 

objects that are close to us close to our eye we tend to see them better. So, if let us say this 

is the eye and let us say an object that is close by we tend to see it much better as opposed 

to even a large object that is far away. We do not see that much of detail in it. So, this is 

also coming in over here. 
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So, then we have tessellation. Tessellation basically means, once you have created the 

polygons once you have manipulated them to some extent we take them down into a set 

of smaller objects or which are triangles and line segments. So, we have already discussed 

the advantages of triangles. The advantages of triangles are twofold. 



First is a triangle lies on a single plane and second there are lots and lots of algorithms 

there is lot of research in computer graphics to work on triangles. The third stage is known 

as viewport transformation. See the total scene in the window if I create a large scene. So, 

it is a large scene with lot of objects characters and so on all of it will not fit in my screen. 

So, what will fit in my screen is a subset of this it that I choose known as a viewport.  

So, what this will this state will do is this will kind of get rid of all the objects or parts of 

the objects that are over here and only focus on the viewport. So, the first stage was vertex 

fetching where primarily fetch the vertex divided into polygons smaller polygons do some 

geometric operations. Then tessellate which is to divide it into triangles such that we can 

do more operations on it then we focus on the viewport, the part of the scene that is visible. 
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Then this is a very important step because this step has further ramifications down the 

pipeline. In the sense other stages which are later on in the pipeline they tend to read data 

from this state. So, here what we do is we compute the depth of each object and so, let us 

say if there is a complex object like a stone. So, we find out how far it is from the eye ok, 

the distance. 

We annotate its front face. So, that so, if this is the front face. So, basically the part that is 

visible that part is annotated. So, this part is annotated and then if let us say there is a small 

light source over here then we look at different rays of light and see the way that they 



interact with the surface and given the fact that different parts of the surface have different 

normal vectors.  

There will be different degrees of reflection and scattering of light. So, all of that is 

computed in parallel of course. So, basically the list of triangles some degree of elimination 

information some degree of distance information; elimination and distance primarily 

distance from the eye right a hypothetical eye of course, and the elimination of the front 

face.  

This information which is basically a huge list of triangles this is return to memory such 

that it can be passed to the next stage. So, in some cases it is return to the cache and it is 

kind of internally pipelined to the next stage. In some cases, there is a need to actually 

write it to main memory 
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The next process; so, basically we finished the first stage of the big pipeline. So, in the 

first stage we looked at the vertex processor which has been replaced nowadays as I said 

with the polymorph engine. So, given a set of triangles, we convert the set of triangles into 

a set of fragments.  

So, fragment basically the set of pixels and so, instead of looking at a triangular 

geometrical thing we do the same thing, but in this case since we are aware of the display 

we look at each pixel within the triangle. So, this triangle then becomes a fragment. We 



here again optionally can compute the color and visibility of each fragment and given the 

fact that rasterization well of course, is required, but it does not involve a lot of geometric 

operations.  

It is hard to derive any general purpose value out of a piece of hardware that does 

rasterization quite unlike the polymorph engine slash vertex processor. Consequently, 

there is a dedicated hardware unit even in modern GPUs that performs rasterization. This 

is known as the rasterizer hardware unit. So, this does the process of rasterization quite 

well in fact. 

(Refer Slide Time: 44:05) 

 

So, next we come to the 3rd stage which is known as a fragment processor. So, what does 

the fragment processor take from the previous stage which is the rasterizer is basically a 

set of triangles in kind of pixel format, but the triangles are not fully developed. So, there 

is a need to develop the triangles in the sense map it to the final scene. 

So, to develop the triangles what we need to do is that we need to find the color of the 

fragment or color of the pixels within the fragment. The information that we have up till 

now is just the color of the three vertices of the triangle. We do not really have the 

information of the internals of the triangle. 

So, in this case, the broad idea is like this that we find the colors of here and we somehow 

try to interpolate try to find out the colors from here just by applying a function on these 



three colors and of course, the dimensions of the triangle. Then we add a texture over here 

right. So, we also superimpose a texture over here. 

For example, if this is wood we will simple superimposed wood, if it is brick we will put 

in brick and finally, fog computation which is something similar to what I had said before 

that objects that are close by to the eye look slightly differently. So, if let us say this is the 

eye object that is close by looks differently in the sense the resolution is higher we see 

brighter colors. 

Objects that are far away also appear to be slightly darker, but this also depends on the 

light sources. So, accommodating these effects is known as fog computation. So, we will 

discuss this. So, what are the three sub stages here in the fragment processor? Interpolation 

which is finding the color within the triangle, texture mapping and fog computation. 
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So, for interpolation there are two shading stages. So, it is called Goraud shading and 

Phong shading. Goraud shading is simpler, Phong shading is more difficult. The idea over 

here is to find the colors of the pixels within the triangle. So, here we assume the triangle 

is the flat surface. So, this is the quintessential assumption that a triangle lies on a plane, 

it is a flat surface. 

We take into account all the sources of ambient light. So, basically wherever there is light 

we take into account all the sources including in the reflections from other triangles. It take 



all of the ray that are coming. All the rays are kind of let us say, hitting this triangle. The 

triangle has a normal vector oriented along some axis. So, if we compute the dot products 

we will find out the light that is hitting the triangle. The color of the light of course that is 

hitting the triangle. 

We need to take into account the absorptivity and the reflectivity and the transmissivity of 

the surface, in a sense that this can be a translucent object as well, but let us say if 

translucency for the time being. So, if you look at the reflectivity of the surface then what 

we can do is we can take this into account and we can also look at the colors of the vertices 

over here all three. 

Use a complex function which is of course, easily computable in hardware to find the 

colors of all the pixels within the triangle. So, this is known as Goraud shading. The other 

approach is known as Phong shading which is more complicated. When we assume that 

the triangle need not be a plane need not necessarily be a plane, it can be a smoothly 

varying surface.  

So, it could be a surface like this. So, let me just draw a bigger version of it. It just could 

be a surface like this ok and this will have a very complex model of reflectivity which will 

of course, be far more time consuming, but this may be able to model a smooth surface 

quite well.  

So, we are of course, making the assumption that a triangle lies on a single plane, but this 

may be able to model the surface of a kind of an complex sloping object much better. So, 

this was all about Goraud shading and Phong shading. Both fall in the class of interpolation 

algorithms for pixels within the triangle. 
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Next coming to textures: as you can see there is a brick texture here, dirt, wood and so on. 

So, we are applying a texture to each fragment. Most GPUs will have a dedicated cache to 

store texture information. 
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And the last is fog computation. So, fog you think of it as distance fog. So, you look at the 

pixels that are close by. You see a better granularity they appear clearer, but look at the 

distances far away. They appear blurred. So, there is lesser of a granularity. Also see the 



lines, even though the railway line is parallel. Do not you see at the end it appears to kind 

of converge? It does. 

So, these effects that provide the perception of distance are known as distance fog. And 

since the vertex processor is already giving us this information about which object lies 

where in the sense that from the eye if I were to measure the distance then which object is 

how far, this information can be used here to render the scene. Render means, create the 

scene from the rules. So, I said the effect of distance is clearly seen. So, this is known as 

fog computation which is the third substage in this stage. 
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Finally, we come to the last stage of the traditional GPU pipeline, it is known as the pixel 

engine. So, the pixel engine by and large does two things. It does depth and color buffering. 

So, different fragments have different depths. So, the call them as it is called the Z depth 

or the Z depth. So, let us call it the Z depth. 

Based on the Z depth, we compute the visibility of the pixels because what could happen 

is we could have two objects one object could be hiding a part of the other object. So, this 

is known as occlusion. So, these effects of occlusions where one object is hiding a part of 

the other object, this needs to be computed. How will it be computed? 

Well, the way that it will be computed is like this that we know the coordinates the N 

coordinates of all the objects. So, we know where they stand with respect to the eye, we 



know the Z depths. So, we just compute the visibility of each of the fragments, each of the 

pixels if you want to go one level lower, but typically the fragment level is fine. So, then 

we can deliberately hide or occlude parts of the objects. 

Furthermore, we can look at translucency. So, we had discussed translucency earlier also. 

So, given that we had promised to come back to translucency here it is. So, the pixel color 

value is represented using 32 bits normally. There is a RGB channel. RGB is red, green 

and blue. So, we have 8 bits each to indicate the intensity of the color for R, G and B and 

alpha is a degree of transparency. 

So, one end is fully transparent and other end is fully opaque and anything in between is 

translucent. So, these values are also computed and the translucency effects are taken care 

of over here in the pixel engine where we display the translucent engines in this translucent 

objects correctly. 
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And finally, once the entire scene has been created it is sent to the display device, whatever 

it may be the monitor or you will large screen display projector whatever it may be. So, 

the early 2004, high end processors were approaching a peak throughput of around 20 

gigaFLOPS. 

But even those days GPUs were exceeding 50 gigaFLOPS. It is just that GPUs were doing 

their own thing. They were doing graphics computations and there was no way to 



repurpose or use a GPU to do general purpose computations. But, the processing power of 

a GPU was increasing by beeps and bounce. So, it became 16 170 gigaFLOPS in just 

within one year and then just kept on increasing right. So, it reached a teraFLOP very soon. 

So, now evil processor designers and programmers laid their eyes on GPUs. So, they 

thought it is a good idea to repurpose the GPUs resources in the sense that a large part of 

the computation that you have just seen involves linear algebra other than the rasterizer to 

some extent. Most of it is generic linear algebra and if that is being done for a graphical 

scene it can done it can be done for other high performance and scientific workloads as 

well. 

So, what we can do is that we can have a more generic design of a GPU where let us say 

the programmer writes in a certain layer call this the programmer layer. Then there is a 

layer of software which provides a lot of APIs and libraries and resources to kind of 

convert it to another lower layer. And again a bunch of other layers, you know we have 

already discussed PTX and then it is a virtual instruction set and SASS shader assembly. 

So, with this set of layers a simple graphical operation can sort of be mapped to a large 

number of linear algebra and numerical operations. And if a graphical program can be 

done we can take any other program and just map it to PTX. PTX should ideally not care 

and this can be even a general purpose program. So, this is how the idea of a general 

purpose GPU was born, where the GPU processes scenes, that is fine and then we can 

repurpose the hardware. 

So, before repurposing the hardware an initial solution was to repurpose the software. In 

the sense what we do is that instead of directly making the hardware generic what people 

initially did is that they took linear algebra calculations for other problems map them to 

scenes allow the GPU to process the scenes and extracted the results from the computed 

scene whichever think about it is a really indirect way of doing things it is much better to 

repurpose the hardware. 

That is exactly what they did. They designed more flexible GPUs instead of repurposing 

the software right. Make the hardware generic such that it can do graphics oriented tasks 

as well as non graphics oriented tasks quite well. So, now we have finished the first part 

which is discussing traditional GPUs, ASICs and FPGAs and what we have realized is that 

traditional GPUs have a lot of power. 



It is just that initially it was not realized, but later on once it was realized a more generic 

substrate was created. So, the next two sections we will talk about the software aspect 

which is programming the GPGPUs and then the design aspect of how do we exactly 

design them. So, this lecture which is the first part will end over here and the second part 

will be there in the next lecture. 


