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Welcome to the section on EPIC and VLIW processors. So, in this video, we will look at 

an important class of process that actually use the compiler for most of their 

optimizations. so, much of the hardware that we have seen is actually replaced by the 

compiler. 
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So, it start with a provocative question which is that can we outsource the work of 

renaming and scheduling to the compiler. So, I will use the term scheduling and 

scheduling together. So, the key question is that, two important functions that we were 



doing in hardware namely renaming and scheduling the instructions; can they be 

somehow offloaded or outsourced to the compiler. So, this will basically save hardware. 

So, the key idea over here is that it is going to save hardware resources and this may be 

extremely beneficial. So, undoubtedly this sounds like a very promising idea because the 

moment we have less hardware, we have less power and less complexity. So, less 

hardware is always good.  

Also modern software is quite fast, it is quite intelligent as well and given that we can do 

a lot of analysis kind of offline before the program has run, we can possibly generate a 

highly efficient piece of code and also give directions to hardware on how to rename and 

schedule instructions. 

So, what is the basic idea? So, the basic idea this kind of extends from what we have 

studied in order pipelines multi issue in order pipeline. So, you may want to go back and 

take a look at that way back in chapter 2, but I would say that we start from here 

conceptually at least from this point.  

So, what we do is we create bundles of several instructions using the compiler. And the 

expectation is that we do not have dependencies within a bundle and the entire bundle is 

scheduled in one word one time. And let us assume that for the time being all the 

dependencies are handled. So, we will take a look at them later. 
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So, in this space there are two ideas. So, the first idea which is actually quite old dates 

way back to the mid-eighties is known as VLIW. Some modern avatar of VLIW is called 

EPIC. So, let us discuss VLIW first and then we will go to EPIC. So, VLIW stands for 

very long instruction word these were the first designs in this space.  

So, what we do is that we take an instruction or we take a set of consecutive instructions 

and we add more information such that they can direct the hardware to do different 

things at a low level so this also is kind of a conceptual successor to micro programming. 

So, we bundle these instructions into long words. So, let us say if you have a long 

memory word like this, then we can bundle the instruction.  

So, let us say this is instruction 1, 2, 3 so on and so forth. So, an instruction is four bytes 

and we create a bundle of four instructions, then we will essentially have a 16-byte word. 

So, if we schedule and execute all the instructions together in a word and it is assumed 

that the instructions are so designed or so arranged that there is no problem whatsoever, 

but problems will always be there.  

So, what we will do here is that, we will look at some other patterns which can cause 

problems or the problematic patterns. So, one of the patterns is conditional if statements. 

So, in the case of a conditional if statement the control flow is not predictable. So, we do 

not know at compile time whether the if part or the else part will actually be executed. 

So, this will only be clear at run time.  

So, the control flow is consequently not predictable and furthermore we can have 

memory instructions whose addresses are computed at runtime. And as we have seen 

earlier in this chapter, there can be complex dependencies. Mainly because we are 

computing the addresses of memory instructions at run time. 

So, what is the basic philosophy of many of these VLIW processors? The basic 

philosophy is that it is the compilers job to actually ensure correctness. So, VLIW 

processors do not really take upon themselves the job of ensuring correct execution you 

assume that the programmes are simple the compilers have enough visibility to ensure 

correctness this being the most important and the most crucial. 
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So, let us take a look at some of the ways in which if statements are handled. So, if you 

remember GPUs. So, we use predicated execution over there. So, we can do something 

very similar here. So, let us assume that there is a bundle of four instructions one of them 

is a branch an if statement. So, if it is taken the rest of the instructions in the bundle are 

invalid which means this instruction is invalid. 

So, what we do is that instead of dynamically doing more changes, we allow the rest of 

the instructions in the bundle to pass through the pipeline as if they were normal 

instructions. It is just that they are kind of marked with a bit something similar to the 

Poisson bit that we have seen they are marked with a bit which means that the instruction 

is invalid. 

So, what we do is, we still maintain the semantics of the bundle and if there is an if 

statement over here which is a taken branch then the rest of the instructions in the bundle 

are just marked to be invalid and they simply pass through the pipeline, but they do not 

change the architectural state. 
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Memory instructions. Well, we have seen that memory instructions could be quite 

problematic in the sense that they could have two memory instructions and if we take a 

look at these memory instructions their addresses are being computed at run time. So, we 

can have multiple memory instructions in a bundle, addresses needless to say a computer 

at runtime and we could have hazards and dependencies.  

And so, regardless of the memory instructions unless they are two loads because we 

never have a retreat problem, but otherwise there could be issues. So, we have to avoid 

certain situations in either software or hardware. So, we will take a look at very elaborate 

mechanisms to take this issue into account. 
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So, these were all about VLIW processors where what we do is that we create a large 

group of instructions and software, we refer to the large group as a bundle. The entire 

bundle of instructions is executed at the same time. It is just that VLIW processors do not 

guarantee correctness and consequently their usability is limited. As of today, they are 

mostly used in DSPs digital signal processors and multimedia processors.  

So, they never saw a generic use so, but let us say if you want to bring VLIW processors 

into the mainstream which is an effort that was tried in the early part of the 2002 to 2010 

decade by Intel and HP. So, they made a very popular processor called Itanium which 

was also called an EPIC processor. So, EPIC is like the second generation of VLIW it is 

explicitly parallel instruction computing.  

So, in EPIC the idea is that regardless of whatever the programmer or the compiler does 

the hardware always ensures or guarantees correctness. This increases the load on the 

hardware, but it also improves the acceptability and the portability of the processor. So, 

basically fares better in the market mainly because more programmes can run on it and 

also compilers support can be slightly lacks. So, this is where VLWI ends and the 

journey of EPIC begins. 
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The Intel Itanium processor was a very unique collaboration between Intel and HP. The 

aim here was to design the first commercially successful and available EPIC processor. 

So, one thing we need to understand what the that at the time that this processor was 

being designed roughly in the late 90’s and early 2000 compiler technology was already 

quite matured.  

So, that is the reason the best of software was already there and also hardware 

technology also quite matured, but instead of investing the hardware resources in out of 

order execution, it was thought that it is a better idea to actually use the hardware for 

implementing an EPIC like server. The main idea was to target the server market unlike 

VLIW processors that target specific applications that was not the aim. So, the main aim 

was primarily server only. 

So, what was supposed to be removed was the scheduler notably the instruction window, 

the wake up select and broadcast mechanisms. But we still needed some units from 

traditional process such as the branch predictor the decode unit execute unit and also 

advanced load store handling unit. So, those are still required because branches are 

something that you need to predict and advanced load store handling is also required 

because memory addresses are resolved at runtime. 
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So, we will look at the different stages of the Itanium processor and of course, the best 

reference are the papers by Sharangpani and Arora on the Itanium processor. So, Itaniun 

had a high bandwidth fetch rate for those days. So, we could read 32 bytes from the 

instruction cache in one go. 32 bytes are enough to fit six instructions. So, it is possible 

to create two bundles of three instructions each. 

Given that the fetch rate is very high and the rest of the pipeline may not be able to 

process instructions at that rate, it is necessary to have a queue between the fetch stage 

and the rest of the pipeline this was known as a decoupling buffer further the decoupling 

buffer could hold 8 such bundles. So, it is possible to hold 8 such bundles in the 

decoupling buffer.  

So, one advantage of this is that even if there is a slight mismatch in the rates of fetching 

and the rates of processing the decoupling buffer can sort of ensure that when we enter 

the high IPC phase enough instructions are available. 
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The branch predictors needless to say are required. Even if we do not have the elaborate 

broadcast wake up schedule units, branch predictors are required we cannot kind of wish 

a branch predictors Itanium has four types of branch predictors. So, let us look at them. 

So, we will look at two types in this slide.  

We look at the compiler directed predictors and the traditional predictor. So, the 

compiler directed predictors are those predictors where the compilers borrow 

information. It figures out the direction of the branch at the target as well and that is 

populated software. So, we have four special registers known as the target address 

registers or the tars the compiler populates them. 

So, what does a tar have? It has a PC a target of course, it is assumed that the branch is 

taken. So, the moment that the programme counter the PC matches the PC stored in the 

tar reach after the target we predicted taken and jump to the target. So, this would happen 

let us say in cases where so something like an exception handling code or something 

where most of the time we will kind of jump out.  

In that case it is a much better idea for the compiler to do some analysis and directly give 

a hint to hardware that a given branch is taken and also it will jump to a given target, 

here is the target you take it there is no need to actually do additional branch prediction 

or use a VTV because I am giving you all the information that you need.  



So, this is useful this is useful this is clearly the first priority and it is useful in cases 

where it is possible for the compiler to come up with such information. Otherwise, we 

will use a traditional predictor. So, the traditional predictor is a large path predictor 

which we have seen in chapter 3, which basically means that the branch history register 

PC bits going to that which is a first level and they also go into the second level that has 

the pattern history tip. So, in both the PC bits are used. 
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So, we have two more kinds of specialised branch predictors in itanium, the reason being 

that fetch was seem to be a massive bottleneck. So, if you think about it Itanium as a 

very high IPC guaranteeing processor. So, that is the reason you do not want the fetch to 

be the bottleneck and given the fact that we are doing the best possible compiler analysis 

that we can including profiling, we can do our best in ensuring that the rest of the 

pipeline does not face an issue because of the fetch stage. 

So, here is the third kind of predicted multi way branch predictor and a fourth which is 

the loop exit predictor. So, normally what happens is that a compiler would ensure the 

last instruction in the bundle is a branch. So, if this is a bundle the last instruction in the 

bundle is a branch. So, step taken or not taken it does not matter the bundle at least is 

correctly executed, but sometimes it can so, happen there are too many branches we can 

have two branches.  



So, in this case, let us say after this bundle there can be many targets one can be the 

default where both are not taken, one can be the bundle when the first branch is taken 

one can be the bundle when the second branch is taken. So, we clearly as you can see we 

can have multiple targets. If there are multiple targets for a bundle then what we need to 

predict is that let us say out of the branches that are there which of them is taken that we 

want to find the earliest branch that is taken and its target.  

So, this is a multi-way branch predictor. So, multi way branch predictor is there and 

Itanium is made it is kind of constructed in a similar manner as the rest of the predictors 

that we have seen, where the broad idea is that out of all the possible options it kind of 

gives you the most probable options such that we can start predicting from that part, then 

we have a loop exit predictor.  

So, normally what happens is in many scientific holes we have a loop and the number of 

iterations of the loop this is known beforehand the compiler knows it. So, in this case 

what it can do is that, it can have a small loop iteration register or a loop count register it 

can be populated with the initial value of the loop count and we can always of course, 

given a piece of code find the branch that leads to the loop that is easy to find ok.  

So, this can be in this case this is marked by the compiler even otherwise any branch that 

normally has a negative offset within a small range, we can think of that as a loop 

branch. So, the key point over here is that the predictor will keep on decrementing. So, 

we will have a register for the initial value of the count will be loaded which is the 

number of iterations of the loop every time we arrive at this loop instruction this will get 

decremented until it reaches 0.  

So, when it reaches 0 what we have seen in our discussion in chapter 3 is that, we 

normally make a misprediction. But in this case we will not make misprediction instead 

we will make the correct prediction primarily because the loop count has become 0. So, 

now we know that at some point wherever we do the check we are actually exiting the 

loop and that loop exit can be predicted correctly.  

So, one of those one odd errors that happen when we either enter a loop or when we are 

exiting a loop, they will also not happen. So, we are removing those sources of errors as 

well. So, now, just a quick summary we have four branch predictors compiler directed at 



additional pap large pap predictor, a multi way branch predictor to figure out which 

branch in the bundle is taken the first one and in loop exit predictor dedicated to loops. 
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So, now, let us look at this part of the pipeline. So, we have looked at the fetch stage then 

we have instruction dispersal. So, instruction dispersal is kind of like dispatching 

instructions to different functional units. So, you can think of it as a combination of 

dispatch and issue well it is called dispersal over here and EPIC literature. And then 

register remapping which is something conceptually similar to the renaming that we do 

of course, with major differences. 

So, let us look at the details of the hardware first Itanium has 9 issue ports, 2 for 

memory; memory instructions that is 2 for integer 2 for floating point and 3 for branch to 

find whether a branch condition evaluates to true or not. So, you can see the 

disproportionate amount of resources that have been dedicated just for branches, the 

reason is that the designers of Itanium took the fetch bottleneck quite serious.  

Dispersion of the instructions as we have just discussed is mapping the instructions to the 

issue ports such that they can be sent to their functional units of course, here we need to 

be mindful of data hazards. And data hazard in a bundle of three instructions can be 

there. So, we will try our best not to have them, but the code might be such that we 

would still have data hazards.  



So, there is no going around bit. So, the code might be such that there is nothing that we 

can do to avoid data hazards. In this case well we have the traditional option to fall back 

to which is nop instructions or of course, we can forward. So, there is an ample amount 

of forwarding within itaniums pipeline. 

So, that is not something that should worry us, but in some cases like the load use hazard 

and so, on what we have seen there are of course many more specialised cases in Itanium 

where forwarding is not really possible. So, in this case we use stop bits. So, what 

happens is that with every instruction we have a stop bit.  

So, we look at the instruction across bundles, the stop bits could be something like this. 

So, what this is, this pattern is essentially trying to tell us that if let us say all of the 

instructions between two consecutive ones were independent of each other. So, the 

hardware can take all of these and schedule them in any way that it wants because there 

are no there is no dependency between any pair of instructions.  

Stop means that it is like it is like a dependent stop ok a stop because of a dependence 

which essentially means that we it sequentializes execution. So, as long as there are a 

bunch of zeros we execute them in parallel then we stop execute this instruction, then we 

execute this again the next port we execute in parallel again we execute this instruction 

and so, on and so, forth. 

So, it is the job of the compiler to insert these stop bits and it is the job of the hardware to 

interpret the stop bits find all the consecutive zeros or instructions with consecutives 

zeros as their stop bit and execute them in parallel along with that Itanium also allocates 

each bundle with the resource requirements. So, for every bundle it is annotated with the 

resource requirements what it would require? 

So, anytime that the scheduling happens, the hardware takes that, figures out the resource 

requirements and then on the basis of that it does the process of issuing the instructions. 

So, essentially the resource requirements help us avoid structural hazards. 
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Finally, we come to the register remapping stages, the register entry in Itanium is quite 

special it is quite different. So, first is we have a large number of registers similar to 

GPUs because GPU registers were truly virtual in the sense we assume that there are 

they are a very large number of registers, here we are not making that assumption even 

though we are making something quite similar. 

So, the first is that we divide these 128 registers into two parts, 32 static registers and 96 

stacked registers. The static registers are visible to all functions. So, all the functions can 

see and access these static registers whereas, the stacked registers are pretty much meant 

to have the state of a single function. So, they are not really visible and they are also 

managed in a special way which we will shortly discuss. 

So, here is a very very limited visibility across its very low. So, what we do is that we 

allocate different sets of these virtual registers in the stacked region to each function and 

then because we avoid different sets you have a large number of registers. So, we can 

even if you have multiple functions that arrive at the same time, they can be assigned 

different registers.  

So, because they are assigned different registers we do not have spilling the register 

spilling into memory the normal way that we have, that is because first we have too 

many registers and second different functions are given different registers within these 

set of stacked registers. So, this idea is also known as a register window which means 



that every function is given a set of private registers to work with and so SPARC also at 

a register window. So, we will also do that. 
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So, let us take a look at an example. So, the example will make it quite clear. Assume 

that the function foo is calling the function bar. So, what we do is that we take a set of 

registers and we mapped them like this that we divide them into three sets the n registers 

are the ones in which the parameters are passed into the function.  

The local registers are the ones that are used to store internal variables and do 

computations and so on and the out registers are the ones that are that are used to 

essentially send parameters to functions. So, this function invokes the callee functions. 

So, since foo calls bar, what we actually do?  

So, what you are seeing over here? These are the virtual register numbers. So, what we 

actually do similar to virtual memory we mapped this register over here to this register 

over here. So, we just mapped them. So, one advantage of mapping them in this fashion 

is like this that basically similar to sharing a virtual memory page both of these registers 

actually become the same. 

So, the moment the foo function write something over here this automatically is visible 

to the bar function which is of course, invoked at some point of time by foo, but bar 



automatically finds its input argument over here in this register. So, what you can see is 

that the same.  

So, these so these are virtual registers, but two different virtual registers are mapped to 

the same physical register. So, as a result one right is automatically visible to the called 

function and then the callee over here which is bar it again has its set of local registers 

and out registers. 

So, what is being done over here is that, we are deliberately creating an overlap in the 

virtual register set of two functions to pass parameters and there is similar to virtual 

memory there is a manager in hardware and software to manage the set of registers. To 

ensure that these mappings are created to manage that we have a management 

mechanism we will talk about that later. 

But the key idea is that passing parameters and functions and passing function 

parameters is quite easy. Basically, we take the set of virtual registers partition them into 

three types in local and out and out registers are mapped to the in of the callee function 

and that is how values are passed. 
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So, we have a register stack frame. So, what happens is that the in and the local registers 

are preserved across the function calls, as you have just seen the out registers are used to 

send parameters to callee functions. We have an alloc instruction in itanium, it 



automatically creates a register stack frame for a function. So, that is how the stack 

frames are allotted or allocated.  

So, currently let us start talking about overflows because recall that we have only 128 

registers, out of 128 we have 32 registers called static. and we have 96 registers called 

stacked which are precisely being used for this purpose. 
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Coming to return values, I would first like to motivate the mechanism by showing the 

code of a binary search programme. See if you see the binary search programme over 

here. So, what does it do? What it does is that it takes in an array, it takes a left pointer a 

right pointer is such searches for the value within it.  

So, after doing some sanity checks it finds the midpoint, it compares the value with the 

midpoint. If let us say the value is less than array mid then we basically run binary search 

over this half and return the value that it returns. So, if you look at this functions it 

invokes the binary search routine for the left half whatever that returns it also returns. So, 

the return value is not further processed. 

Similarly, if the value is let us say greater than mid then we focus on the right half and 

once there is a match whatever the right half returns this function also returns. So, if you 

think about it in the calling path of course, a lot of computation is happening, but in the 



return path whatever the callee functional is returning, it is essentially the same function 

albeit with smaller arguments the value is just being transparently passed. 
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So, let us now understand some critical aspects of the register stack frame. In and local 

register that clearly are clearly clearly clearly preserved across function calls the out 

registers are used to basically send parameters to callee functions. So, once the callee 

functions are used there we do not really care and what we have discussed in the past is 

an alloc instruction is used to creates register stack frame. 

Communicating return values is slightly tricky, but if we let us say take the previous 

example as a representative, it is a much better idea for let us say whoever produces the 

value let us say that this instruction over here. So, you have to see where the recursion is 

terminating. The recursion is terminating at these two statements. 

So, since the recursion is terminating over here either at return minus 1 or return mid, 

then we can think of these as the final return statements and then whatever they are 

returning it just comes coming back back back back until this point. So, it is much better 

if you directly have a shortcut from here to let us say over here and we can completely 

skip the rest of the functions. So, what we will do is that we will store the return values 

in a static register. 



So, recall that this is a register in a static area which is the first 32 registers. So, the 

return value can be stored at any point over here. In this case, we can directly jump to the 

return address in the main function which is basically directly jump over here and 

whatever is the result of the binary search will directly be assigned to the variable result.  

So, that is the reason it is good to have the return value in an area which is not within the 

register stack frame, but it is within the static region and then well we can quickly 

resume processing the return value of binary search. So, that is the reason we allocate a 

separate area.  

So, I am not saying that for all function calls the binary search example is representative. 

In fact, there is a very famous pattern it is called tail recursion. So, this pattern is known 

as tail recursion and if we directly jump from let us say this point and then set the value 

of result this will be known as tail recursion elimination. 

So, it may appear that this scheme is kind of disproportionately biased towards tail 

recursion, but there are many similar patterns can have throughout ports and of course, a 

lot of analysis was done, so it was found out that for return values we can safely keep it 

in a space which is not in the stack such that it can be processed not just by this function, 

but by other functions as well and then we can return back quickly.  

So, in that case, we do not really have to copy values across registers or restore from 

memory or do anything of that type. So, that is why a separate storage region was 

provided for return buckets. 
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Let us now look at some more issues. So, let us first take a look at the first problem let us 

say we run out of registers. So, the reason we will run out of registers is because as I 

have discussed we have a stacked register storage area and the local state of all the 

functions at least that are currently active is going in there and since only a 96 registers 

in this area we might have run out of registers. 

So, the fun part over here is that Itanium has a registers stack engine an RSE which 

automatically handles the spilling of registers to memory and restoring them. So, which 

is actually great. So, this means that the compiler or the user do not really have to be 

bothered with this aspect of writing code. So, they can happily write code and then a 

dedicated engine will just manage the communication of registers to and from memory. 

So, this is let us say a major assistance that is being provided to the assembly language 

programmers and the compiler that this is being done automatically. So, basically 

handling the function state to a large extent is being done quite easily and quite 

automatically. Now coming to software pipeline. So in software pipelining if you would 

go back a few slides you would see that we use separate registers for the same variable 

across different iterations.  

The reason is that we are essentially taking instructions from different iterations 

executing them together. So, for the loop variable particularly we use separate resistance 

such that its value is updated correctly. This issue in it in Itanium is taken care of 



automatically. So, we have a rotating registers set. So, this is the key innovation over 

here which is the rotating registers set ok. 

So, we assign registers based on the loop iteration number. So, as we have discussed 

earlier in the case of the loop exit predictor, we can very easily predict what is the 

current iteration number well why that is because the compiler annotates the loops. So, 

you can also find it ourselves by looking at backward branches, but in this case the 

compiler annotates. 

So, at least a loop iteration number is always known depending upon the loop iteration 

number we can use the appropriate register from the rotating register set which is think 

of it is exactly the same thing that we were doing in software pipelining. It is just that at 

that point we are using more registers compiler were generating all this extra code all of 

that goes away because the hardware takes care of it.  

So, this makes it significantly easier to write software pipeline loops because the key 

problem which was to assign different registers to different iterations is being taken care 

of. 
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Next comes the high performance execution engine. So, in this case we do not have an 

instruction window, we do not have a wakeup select broadcast mechanism. So, these are 

things that we do not have the these are things that we do not have. Instead what we have 



is we have a scoreboard a scoreboard is something which was kind of in vogue in the late 

70’s after that it was not used.  

But it is a very fast and it is a very power efficient mechanism of scheduling instructions 

in this case a scoreboard was found to be a good solution. So, I will tell you quickly what 

a scoreboard is, it is clearly much simpler than the regular out of order execution 

mechanism all that it does is the consider it as a Q where instructions are entered like this 

it makes an instruction wait until it is safe to execute.  

So, we store its source registers destination register, the functional unit that is going to 

use and whether it has completed or not right 0 or a 1 that is all we have stored these five 

fields for the instruction and this is implemented as a Q. 

(Refer Slide Time: 38:35) 

 

So, now, if you look at this what we do is we allow an instruction to go through or we 

allow an instruction to execute only if certain conditions hold what are the conditions? 

That we check all the earlier entries for each earlier entry E the following expression 

should be false. So, first is so, what should be false? (E. finished = 0) which means that it 

is unfinished not finished and (E. rd) is destination is same as the destination of the 

current instruction which is ‘I’.  

So, ‘I’ is always the current instruction. So, this means that we can have a write after 

write hazard because there exists an earlier instruction that is writing to the same register 



and that earlier instruction is not finished. So, this condition over here which is (E. 

finished = 0) and (E. rd = I. rd) this condition has to hold false. 

Fair enough we can create a similar set of conditions for the rest of the hazard types. So, 

like write after read hazard same thing check the earlier entries for each earlier entry E 

the following expression should be false. So, (E. finished = 0) which means is unfinished 

and either the source of (rs1) I mean its sources equal to is destination (rs1) = I s 

destination or (rs2) = I s destination.  

So, this is a typical write after a read kind of scenario. So, in this case we just need to 

create a circuit to verify all of these Boolean equations or Boolean expressions and on 

the basis of this we need to figure out if there are any earlier entries with which we can 

have a war hazard or not if there are then we do not schedule and we wait. 
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A similar expression for an RAW hazard the rest remaining the same the instruction 

should be unfinished and in this case, (E. rd =  I. rs1) or E. rd or E s destination should be 

equal to the current instructions second source. So, either its equal to the current 

instructions first source or second source there is a typical read after write scenario. 

And on a similar on similar lines a structural hazard is again when the instruction is 

unfinished not finished and the functional units are the same. So, instructions wait in the 

scoreboard until they should be they are safe and there are no hazards. So, they wait in 



the scoreboard until there is complete safety there are no hazards. So, there is a parallel 

score board unit that keeps on checking this and once an instruction is saved it is 

executed. 
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So, now let us take a look at a few more aspects of the Itanium execution pipeline. So, 

consider the following piece of code we find a flip a random coin, if it is 0 then we set 

execute this instruction (x = y) otherwise this execute this instruction. So, in this case, 

the probability of a branch misprediction is very high it is close to 50% because the 

output is from a random process.  

So, if you flush the pipeline after every branch misprediction it would be quite unfair. 

Why would it be quite unfair? Well the reason is that this is a very high overhead heavy 

duty operation where the entire rob is flushed the entire state is flushed we will lose a lot 

of data we will lose a lot of information a lot of work. 

So, what we can do is we can let the if statement just be used to mark an instruction with 

the result of the comparison, in the sense that we can simply mark an instruction and say 

that look either the comparison succeeded or it did not and we store the result in the flags 

register as we typically do.  

The rest of the instructions which means in this case this instruction and this instruction 

both are processed regardless of the branch outcome, but it is just that this instruction is 



marked with basically the output of the if statement. So, we will take a look at an 

example. So, what we normally do is that this is known as a conditional or a predicate 

instruction.  

So, in this case its let us say we will use a move instruction to move this value over here, 

then we can say move equality in a sense if there was an equality in the last comparison, 

then only this move will happen otherwise it will not happen and on a similar note here 

we can say mov ne this would basically mean that well we will move the value of that z 

to x only if the previous comparison over here was not successful. 

So, in this case, if you see we are processing both the instructions, but both the 

instructions have an additional flag or let us have some additional information where we 

go and check the result of this comparison. In a sense there is a degree of annotation 

which goes and checks and only if the result has gone in a certain way is the instruction 

actually executed. 

So, some may modify the architectural state some may not, but the key idea is that we 

will use these conditional instructions such that we can process these instructions. So, 

one advantage is that just in case there is a branch misprediction. There is no need to 

flush the pipeline. In fact, what we do is that we just store the result of this in the flags 

register.  

So, that we do not use branches the subsequent instructions which use the two of codes 

moveq and movne, simply check the flags instruction and in this case since the flags will 

say that look it resulted in an equality if it actually did the mov will happen in other case 

if it did not results in an equal equality the mov will happen. 
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So, I am showing a small piece of code over here which is the code without predication. 

So, in this case, what we do is that, we take the value input value and r 0 we compute this 

expression r 0 % 2 which means we take its modular with respect to 2 if its then we 

compare it with zeros.  

Say if it is an even number we jump over here just note the extra instructions on the 

branches. So, they cause trouble if it is an even number we mov the value in r 2. So, we 

assume y is stored in r 2 into r 1 and we exit if it is an odd number then we mov the value 

stored in our 3 into r 1 and then we exit. 

So, note the fact that we have an unconditional branch over here. So, that has a set of 

problems and we have a conditional branch over here which has major problems in the 

sense that if we mis predict it, then the entire pipeline has to be flushed. So, the code that 

you are over seeing over here is exactly the implementation of the code over here. 
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So, I will just maybe clear off the ink. So you can see is that the code over here is very 

similar with the value of rand is stored in the register r 0. So, here we compute the 

modulo compare and do a bunch of jumps to implement the logic. 
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What we can do which is actually much simpler and this is something exactly on the 

lines of what many processors not just itanium, but even arm processors are also doing it 

these days is that, well we first compute the modullo. So, we first compute r 0 % 2 and 

store it over here, then we compare the result with 0.  



Then what we do is that we store these two these are called predicates we are also been 

calling them flags they are stored in the dedicated registers. So, these predicates are 

stored in 2 registers p o and p e where if it is odd po is set where if it is even pe is set 

then what we do is that in the odd case or let us say for the odd case which as you can 

see is this case. 

Where we set it if I were to just go back, this is an even case over here this is the odd 

case over here where x is set to z and so, then we come here and then come here say the 

odd predicate is set we mov r 3 to r 1 which is essentially the value of z and this is set 

over here and then we have the even case where the even predicate is sets a note that 

only one of these predicates can be set so the even case is set then we mov r 2 to r 1. 

So, in this case there are no branches there is nothing. So, there is no possibility of 

flushing the pipeline and as you can see the predicate is correct the instruction will get 

executed otherwise it will not. So, this is similar to the previous example that we showed 

with moveq and movne which is similar to the arm terminology that was explained in the 

first part of the book not this book, but the previous one on the on undergraduate 

computer architecture. 

But the key point over here is that the predicate registers capture the outcome of the 

prediction. If let us say the given predicate register if its value is 1 as set by the cmp then 

only this instruction will execute otherwise it will just flow and pass through the pipeline 

without changing the architectural state.  

We can also have nested branches and if and if within it and so, on there could be 

multiple there could be multiple predicate registers. So, an instruction will get executed 

and it will change the architectural state only if and only if all the predicate registers 

associated with it are 1 or it would take an and of them and all of them are one then only 

it will get executed. 
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So, here is a summary of the pipeline as far as we have seen up till now. So, in this case, 

we have an I have a I cache and fetch engine, we have a decode unit we also have a 

decoupling buffer whose main job is to separate the fetch unit from it and we have a 

branch predictor we have seen that we have four kinds of branch predictors compiler 

directed, a large pap branch predictor, a multi way branch predictor and loop exit 

predictor. 

Then we are the instruction dispersal and register remapping logic. So, dispersal 

essentially assigns it to the issue port. So, we have a fair amount of support and also 

resources for the branch and predicate units. So, the branch units compute the result of 

branches and predicates as well. We have 128 integer registers divided into (32 + 96) 

like static and stacked something similar with FP registers floating point registers. 

So, the Itanium processor also has assembly units and then along with integer ALU and 

FP ALU we connect the integer registers to an L 1 cache. So, we will discuss the 

advanced load address table mechanism. So, this is something that you have not 

discussed up till now, but we have discussed the rest we have discussed the scoreboard 

which schedules and orchestrates the execution we have discussed predicated execution.  

So, what will not discuss the exception handler? So, exception handler happens if there is 

an interrupt from the keyboard or something and finally, the processor over here the 



EPIC processor interfaces with the memory system via the L 2, L 3 caches and the bus 

control. 
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So, the only major part only major chunk or the only major component that is remaining 

is the lodestone mechanism. So, this is quite intricate. So, what we do is that, if we let us 

take the value of a load we boost it up in the program in the sense if the program the load 

appears over here we move it up. 

And along with that we also maybe move up some instructions that may use its value, 

there is a good reason is that loads are almost always on the critical path. Hence, we 

boost them up and we kind of get the data early and then you know if we are ready with 

the output of the load many more instructions which are dependent on the load they can 

begin to execute and so, we will basically have a higher degree of ILP.  

So, that is the reason a lot of loads whose let us say value either you can predict or we 

can predict that there are no dependencies they boost them up. Once they are boosted up 

in the sense that they are in the point of the program where they should not be, there 

could be several problems in the sense if they are boosted over here there could be stores 

in this region that write to the same address and in that case there will be an error. 

So, what are we doing we have regular program over here we have a load over here the 

load is being boosted up over here, why is such that the value comes the load comes in 



early and all the instructions are dependent on the load, they can get their value. So, they 

can start execution earlier. The only spoiler could be if there are other store instructions 

that appear over here in this case the this will be incorrect. 

So, what we do is that any load that is boosted we put it in the advanced load address 

table or the ALAT subsequently whenever there is a store it checks for the ALAT for an 

address match, if it finds it will kind of mark that entry as dirty. In the original position 

of the load which is much later instead of the load we will have a load check instruction 

which will check the ALAT and find if the lord is still valid or not why will it not be 

valid?  

It will not be valid if there have been some intervening store to the same address which 

will signal an error basically. In this case, if there is no error we are fine then in a 

boosting of the load as in a successful operation otherwise what we do is all the 

instructions on the load and its forward slice that we took up at this point where its 

original point we again re execute the load and its forward slice.  

So, this is the basic idea of boosting up a load which means try out do it early something 

similar this is something conceptually quite similar to let us say latency speculation or 

dependent speculation in LSQ, but of course, in that case we had a dedicated hardware 

we had a LSQ and all of that. 

In this case we do not, but at least idea is quite similar conceptually at least if you see 

that the compiler is kind of boosting up the load, but it is not completely forgetting it, it 

is putting it in ALAT and any subsequent store to the same address that that will also 

check the ALAT and basically indicate that there has been an error.  

But the error will be fixed in the sense if you restore the original point we will again 

check for the load, it is still valid if it has not been invalidated by a store then we will fix 

the error by reissuing the instructions. 
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So, this brings us to the conclusion of this chapter. So, I will quickly go through the five 

most important points. There are four kinds of aggressive speculation we have discussed 

all four in great detail. First is we can speculate on a load address no doubt, dependency 

in a load store cube, load latencies in the sense we can predict it will hit an L 1 cache and 

then do something about it and finally, value prediction. 

So, these are the four major mechanisms. If there is a mistake we need not flush the 

entire ROB there are three methods of replay that we looked at. Non selective replay 

kind of shooting machines with an AK 47. Delayed selected slightly more selective 

reduces the amount of wasted work and token base replay where we have an exact idea 

of the forwards slices. So, this minimizes the (Refer Time: 56:14) statement. 

After increasing the complexity, we reduced it. So, we first looked at hardware solutions 

which is the ARF based design where we use the ROB the physical register to buffer 

temporary values. So, we found that its simpler, but of course, in this case values are 

much larger and we are communicating values with whereas, the PRF based design 

whenever communicated values. Values are quite wide as opposed to a seven-bit 

physical register a value can be 64 bits which is quite wide. 

We further simplified we went down to the compiler level we looked at a large number 

of optimizations starting from common sub expression elimination on strip folding 

strength reduction to software pipelining. These ideas were conceptualized and an EPIC 



processor. So, we discussed Itanium where we kind of saw everything come together. So, 

we saw a piece of hardware that supports quite advanced concepts it supports register 

windows for example tail recursion elimination which comes as a part of that. 

It supports the idea of rotating register sets for automatically supporting software 

pipelining. It supports load boosting and a bunch of other things a bunch of other you 

know really cool features that it has. So, EPIC processors like Itanium did have their hay 

day they survived for quite some time and there was a lot of buzz around them.  

But gradually they fell out of favor and one reason could be well I can only conjecture at 

this point because I do not have the information. By 2005 or so, the hardware technology 

was quite mature and it did not really require ones compiler support. 
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So, the hardware technology even with decent open source GCC like compiler support 

was able to give very good performance in that to it a very good let us say performance 

for watt or performance per dollar kind of price point. So, the industry really did not see 

the value of moving to a technology or a platform which was totally new. 

So, you can see that you may even think about this that any industry has a fair amount of 

inertia whenever any revolutionary technology comes such as itanium. Even Itanium to a 

large extent was made compatible with existing ISAs and so, on. It is not that like that 



effort was not done, but as I said many times many good and revolutionary ideas get 

stuck up in this inertia where the industry as a whole does not want to move.  

So, something similar happened, but this is clearly not the end of processors like this. So, 

we will see many more such efforts in the processor design space, we just need to look 

out for great new ideas that will keep coming. So, this finishes chapter 5. So, our entire 

discussion on processor design is over now. So, we will next move to GPUs graphics 

process. 


