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Let us now discuss the simpler version of an out of order processor. So, we have added a 

lot of complexity in the past several lectures. So, we started with a basic version, then we 

added different speculative mechanisms, then we added different replay mechanisms 

which of course, was required given that we had speculation already so, after that some 

lightweight state recovery was required which is why we introduced replay. 

Let us now look at a different design which is not all that efficient, but it is a different 

paradigm of executing an out of order processor where we simply perform a little bit of 

surgery and move around units a little bit. 
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So, what we have seen up till now is the physical register file PRF based design, it is fast 

and efficient. However, there are problems, state recovery is complex, so, we need either 

a retirement register file or an RRA something of that type. Physical register 

management is hard, it is onerous, it is difficult. So, these are clearly some of the 

shortcomings of this scheme and these shortcomings broadly lie in the area of 

complexity. 

What we can instead do is that instead of having physical register files, we can have 

architectural registered files ARFs. So, recall that in our previous design, architectural 

registers only existed conceptually. so, architectural registers, their existence was only a 

conceptual existence, but instead, let us create a new design where we have an 

architectural registered file similar to the RRF that we introduced in the previous lecture 

or the one before that. 

So, the architectural register file has it stores the committed state. So, it stores what is 

called the architectural state or the committed state of the program and thus, recovery is 

not an issue because we can always revert back to the architectural registered file. So, in 

this case, we do not have a PRF, but we have an ARF. 

So, then, the question that automatically arises over here is that where do we store 

temporary values? So, temporary values recall that they were being stored in the PRF. 

So, these were essentially interim values that were produced by instructions in flight. So, 



in this case, what we do is that we enhance the reorder buffer with additional value 

storage capability to store uncommitted values such that all the interim values get stored 

in the ROB, the ROB is thus wider and fatter and it has more features so to speak. 
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So, what was the crux of our discussion in the previous slide that instead of a PRF, we 

use an architectural registered file or an ARF, this contains the committed architectural 

state. So, what are the stages that we are looking at right now? Well, decode and 

renaming remain the same in this design as well. 

However, after renaming before dispatch. in this case, essentially the order of dispatch 

and register read, this order is swapped. So, we read the registers first. So, we read the 

architectural register file first if our rename table indicates that the value will be found 

here otherwise, if it is an temporary value, it is an interim value, then we read it from the 

ROB. 

So, the ARF in this case does contain the committed state, but if let us say this contains 

the most recent version, the most recent value for register, we read it from the ARF 

otherwise, if there is an instruction in flight that is writing to the same register, we read it 

from the ROB because the ROB in this case is enhanced. 

After we read all the values that are ready, we proceed and also, I have added one more 

arrow here so, I am showing the animation once again so, values proceed from the ROB 



to the ARF at the time of retirement. so, at the time of commit, commit is also called 

retirement values proceed from the ROB to the ARF at commit time. 

Subsequently, they are dispersed, they are returned to the instruction window and then, 

we have a regular the rest of the mechanism is the same in the sense of the values that 

have not been produced.  

Well, we have the same wakeup, broadcast, select mechanism, execution mechanism, all 

remains the same, it is just that in this case the tag is the ROB entry basically, instead of 

the tag being the physical registered ID is ROB entry and so, the values are read once 

after renaming, they are not read here which was the case in the earlier design.  

So, this underscores the fact that the rest of the pipeline remains the same. So, simplicity 

basically is that we have gotten rid of the PRF and all other circuitry including the free 

list and so on that was associated with the PRF and then finally, we write to the register 

and of course, the register write phase in this case, the write is actually written to the 

ROB entry and this value only at commit time goes to the ARF, the architectural register 

file.  

So, as you can see here, I will just that the uncommitted results which the register write 

stage produces that is written to the ROB entry and these values move to the ARF at 

commit time. 
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So, let us now look at an entry in the RAT table. So, an entry in the RAT table looks 

something like this. So, it has an ROB RF bit that is the most important bit over here that 

is pretty much the operative part of this design. So, this bit basically says will the value 

be found in the ROB, 1 if the value will be found in ROB, 0 if the value will be found in 

the architectural register file or ARF. 

So, this essentially indicate that whether the value is coming from the committed state or 

whether the value is being produced by some other instruction in flight, this is what is set 

is being set. Subsequently, the if the value is coming from the ROB, then well, the idea 

of the ROB entry is stored, and these two pieces of information are what we find in the 

rename table or the RAT table. 

So, we use the ROB if the ROB RF bit indicates that the value might be there in the 

ROB. Subsequently, what we do is we access the entry in the ROB. The entry in the 

ROB well, it will have a lot of fields, but I am only showing a subset of the fields that are 

relevant so, of course, it will have some copy of the instruction packet. So, let us only 

consider these two fields, this and this.  

So, we will have the value of the destination well, if the value has been generated, then 

yes and then, we will have a bit that indicates if the value is in the ROB or is currently 

being generated in the pipeline via an in flight instruction. So, the ready bit in this case 

which is something similar to the available bit that we had in the previous design that 

was attached to each entry in the rename table, in this case, the ready bit associated with 

the destination, this essentially says that whether the value is currently there in the ROB 

entry or not or whether we need to wait for it and get it via the regular work cast, 

wakeup, bypass mechanism. 

So, basically this is what, this ready bit is indicating, and this is very important. So, this 

is essentially telling us that look either you take the value that is there which is this or 

you take it from the pipeline using the wakeup, select broadcast, bypass mechanism that 

we have already discussed. 
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So, each entry in the instruction window gets modified. Previously, it was not storing the 

values of the operands. In this case, it is storing the values of the operands well, because 

there is no choice because that we have already accessed the register files, we are not 

going to access the register file. subsequently, hence each entry of the instruction 

window also needs to store the values. 

This kind of makes each entry fatter, wider, broader whatever may be the context over 

here whichever objective you would like to use, but pretty much it increases the size and 

the moment you do that well, negative consequences in terms of area, negative 

consequences in terms of latency structure becomes slower and clearly power. So, it is 

kind of an all-round bad idea, it is no doubt simpler, but again simplicity and efficiency 

are not known to go together. 

So, as I said well each entry needs to store the values because we will not access the RF, 

the register file again. What is the tag in this case? Well, it is not the id of the physical 

register as it used to be, it is the id of the ROB entry. What else? Along with the tag, we 

also need to broadcast the value because well where else will it get the value from? 

So, because there is no internal storage happening in this part of the pipeline unless the 

value is broadcasted, we will not get the value from anywhere else because we are also 

not reading the register file. Hence, the value also needs to be broadcast, this needs to be 



done, the value of the operand also because we will well, along with the tag, we need to 

broadcast the value well of the operand also.  

So, see essentially the idea is that even if we do not pick up the value from the broadcast 

network, you can always argue that look the instruction will get selected and we will 

pick it up from the bypass network, but it will not happen you know in such a simplistic 

fashion because it is possible that this cycle the instruction may wake up. 

But it actually might end up getting selected 10 cycles later or maybe one operand wakes 

up and other operands still has not woken up and clearly the value will not be there in the 

bypass network for such a long time because of that, the instruction window needs to 

temporarily buffer the value. 

So, this part of the sentence should be changed that we essentially need to broadcast the 

values operand also. Well, I think what is missing here is a comma basically, if we will 

not get the value from the bypass network. 
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So, let me fix this slide. So, what this is saying is that if we will not get it from the 

bypass network well. Why? Because we can get selected much later that is one. The 

second is other operand might not have woken up. So, because of these two reasons, it is 

possible that we will not get it from the bypass network. So, this is why along with the 



tag, you send the value such that the value is there for sure. So, this will clearly make the 

circuit slower. 

So, let us see if we have 128entries in ROB well, it is a 7-bit tag and recall that even 

previously with the PRF, we were broadcasting 7-bits, but in this case, a fat 64-bit value 

needs to be broadcasted and this will increase the inefficiency of the system and make it 

slower. 
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So, changes to wake up, bypass, the register write and commit well, we can follow the 

same speculative wakeup strategy and broadcast a tag.  

In this case, the tag of course, changes, it is the ROB entry immediately after the select 

that is and also what is actually broadcast is a tag plus a value, tags plus values are 

broadcasted and this is the change at this stage, then instructions directly proceed from 

the select unit to the execution units. So, they there is no register file access stage in 

between which used to be there, this is not there. 

All tags are ROB ids. After execution, we write the result to the ROB entry instead of the 

physical register. Commit is simple. So, this is important, commit is rather simple. 

Essentially, what happens is that we save the architectural state in the ARF so, whenever 

we commit, we write a value to the ARF.  



This is again, as I said this is again a power-hungry operation. So, power wise you can 

see it is inefficient, I am putting a (- -) here. so, the commit part is not power efficient at 

all, but at least the architectural state is in the ARF. So, this is working in the same 

manner as the RRF that we had discussed earlier. 

And if let us say you want to flush well after a misprediction, all that we do is we flush 

the ROB and we just recover from the ARF and of course, the rename table has to be 

modified to incorporate this aspect of execution, but essentially, recovering from a 

misprediction in this case is more straightforward. 
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Let us compare the positive and negative points. Well, the positive points in the PRF 

based design which are plenty is that a value resides in only a single location. Multiple 

copies of values are never maintained.  

So, this is important to bear in mind that multiple copies of values are never maintained, 

they are only there in the PRF nowhere else and if let us say we use an RRF which we 

have already said is inefficient, but if we use an R RAT, then this is definitely true and 

also, recall that in a 64-bit machine, all values inside the data path are all 64-bits wide so, 

storing values is inefficient there is no doubt about it. 

Each entry in instruction window is smaller again because values are not saved. So, the 

crux of this design is that do not store big values. The broadcast also uses 7-bit tags 



which is essentially the idea of the physical register. Restoring state is complicated, there 

are complexities with the design so, this is clearly a complex design. 

Positive points in the ARF based design. Well, recovery from the mis-speculation is 

easy, no doubt that is because the ARF functions as a register file that stores committed 

data, we do not need a free list, we do not have to manage physical registers simpler is 

just that values are stored well that itself is bad and to make matters worse, values are 

stored at multiple places namely the ARF, the ROB and the instruction window. 

So, as we can see clearly there is a latency power trade off with complexity. So, 

depending upon what we would like to do and what is the target workload, what is the 

power budget? how much performance do we want and also, the skills of the engineers 

can they deal with a more complex design or not, all of these factors have to be taken 

into account before choosing either a PRF based design or an ARF based design. 

So, we have finished the hardware aspect of the processors design. So, this is great in the 

sense that at least this is an important milestone for us that all the hardware related 

techniques they are done.  

So, we will now discuss a few software techniques. So, software techniques primarily 

use the compiler to optimise the code and then, hardware can pick up from there in the 

sense that the compiler can let say optimise 80% and the hardware can use those 

optimizations and do the remaining 20%, but primarily, it should be understood that 

these are compiler-based techniques. 

And then, we will reach the zenith of compiler-based techniques with Intel Itanium for 

almost all the work of the processor which is scheduling dispatch rename you name it, all 

of it is outsourced to software. So, this is essentially a natural extension of this, let us 

first look at some simple techniques and then, move to Intel Itanium. 

So, Intel Itanium for people who have not heard of it is a flagship Intel server processor 

for very high-end servers.  

So, there is an Intel Itanium 1, Itanium 2, I am not very sure if there is an Itanium 3 or 

not, but it was a joint effort between Intel and HP to produce a server chip that relies on 

the compiler heavily and this is an important paradigm of course, Itanium did not see 



great days after that so, it is not extremely popular, but nevertheless, it is a very 

revolutionary design in this space and popularity has many factors depends on the market 

and different aspects of it. 

So, let us have a logical separation between an academic discussion and a market 

discussion. so, they essentially belong to two different courses. 
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So, the key question that we would like to ask is can the compiler optimise the code? 

Well, yes, before you ask me, it is yes. The reason being that we have already seen this 

happen. In the case of an in-order pipeline, we have already seen the compiler do a lot. 

Well, what was it doing? It was reordering the code to avoid stalls. 

So, let us say between a load use hazard, it was in inserting some other instruction, then 

it was leveraging delayed branches to bring instructions before the branch to the two 

delay slots after it so, this was also reducing stalls and the compiler was also ensuring 

correctness if the hardware did not have interlocks. So, the compiler did play a role. 

So, we can see it can do more, it can reduce the code size which is the number of 

dynamic instructions that can be done. It can increase the ILP. So, it can identify more 

instructions that can be sort of co-located such that they are fetch together and we can 

execute more in parallel. It can reduce slow instructions with faster variants which we 



shall see this is known as strength reduction, a very important from the point of view of 

performance and power also and the modern compilers actually do much more. 

So, I would like to add one thing that in most undergraduate compiler courses, they only 

focus on lexing and parsing which is essentially known as the front-end. So, what does 

lexing do? Well, it takes a C program, if let us say you are building a C-compiler, breaks 

it into individual tokens like a for loop the word for is a token, then the brace is a token, 

a variable is a token and so on and these tokens are then sent to a parser like Yacc which 

makes a parse tree and parse tree is basically a data structure that represents the program, 

this is further optimise and we generate the code. 

So, most modern compiler courses especially at the graduate level, they do not focus on 

lexing and parsing, they assume that all of this is done, this is easy technology, they just 

focus on what is known as the abstract syntax tree which is an output of parsing actually.  

So, the abstract syntax tree is then processed, processed, processed. so, then like an 

assembly line, we have different compiler parsers, it just do different operations on the 

abstract syntax tree and keep on making it more efficient and finally, we generate the 

code and we produce the binary. 

So, these compiler passes, these are something that we will study, and most modern 

compilers have different optimization levels were depending upon what you specify they 

will either have more passes or less passes. So, more or the number of passes, more 

efficient is the code and also, it takes more time to compile. So, if I just do gcc x.c well, 

this is the default, it will do some optimization not a lot, I can add a flag (-o1) 

optimization level 1, it will do more (-o2), even more (-o3) maximum. 

So, you I invite you to do this that you take a C program and then, you enable different 

compiler optimizations, run the C program, and see how long it takes. You will see that 

gradually as you increase the level of optimization, the program becomes faster, faster, 

and faster and this is a great advantage of modern compilers that look if you want to 

compile very quickly, then no problem, use a lower optimization level, but then your 

final code will be slower or you want to spend more time during compilation, in any case 

not much use (-o3). 
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So, let us now come to our first optimization which is known as constant folding. Take a 

look at the code over here. If you look at it, we are doing arithmetic operations, but if 

you think about it, there is no reason to actually do them do the addition for example, we 

can instead analyse this in the compiler, most compilers will actually not do the addition, 

they will just say a = 10, just set a = 10. 

Once a has been set to 10, most compilers will not do the multiplication, they will just set 

b = 20. Once that has happened, most compilers will just set c to 400 and we are thus 

avoiding two multiply instructions, two add instructions and also, one additional 

instruction of putting 4 into a register because in most ISAs, we cannot have two 

immediates as arguments. 

So, given that this piece of code can be optimized somewhat significantly, constant 

folding is one of the passes, one of the default passes actually in most compilers. So, 

most compilers even without asking you, they will do it and this will produce reasonably 

efficient code because most programmers will not or are not expected to know what is 

efficiency that is why compilers try to help them in the sense, that if programmers are 

trying to shoot themselves in the foot, compilers give them bulletproof shoes most of the 

time. 
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The next optimization is strength reduction. So, often we perform several arithmetic 

operations of this type. So, these arithmetic operations over here, they one is a*8, / 4, * 

12. So, we very frequently also we compute the half of a value or the quarter of a value 

and because of this, we typically have multiply and divide operations of this type. 

Multiply and divide operations are slow in the sense that they take many cycles, many 

many cycles and it is much better to replace them with variants that take a single cycle. 

So, let us say well * 8, this is equivalent to left shifting by 3 positions, So, they say * 8 is 

tantamount to left shifting by 3 and / 4 is the same as right shifting by 2 positions. 

Furthermore, what many smart compilers can do is multiplying let us say something by 

12, this can be replaced as the sum of * 4 and * 8. So, this can be replaced as a sum of 

two shifts, and one add.  

So, of course, this depends on the machine in the sense a single operation over here is 

being replaced with three operations, but sometimes in some machines, this can turn out 

to be a faster operation mainly because we are parallelizing this so, both of these shifts 

can be computed in parallel and then of course, we need to perform the addition.  

So, all of them are fast operations and let us say that at that point of time, we have three 

functional units, then this is not that bad an idea. Even though, the conversion of into 12 

into this form, this is rare, but nevertheless these two are very popular, these two kinds of 



optimizations are very popular and as of today strength reduction is a default 

optimization scheme that is there in most compilers. 

(Refer Slide Time: 31:33) 

 

Another common optimization is called common subexpression elimination. So, let us 

look at these pieces of code. So, in this piece of code, what we see is that the expression 

(a + b) appears several times. So, if you do not do anything in a naive implementation, 

we would actually perform this addition three times which is expensive. 

However, most compilers today would pre-compute (a + b), store it in a temporary value 

let us say a register, let us call it t1. So, the way that this code has been written over here 

and also, the same holds for the previous example that we have. So, each line of C code 

is very simple. so, it is simplistic in the sense this is complex, but the bottom part is 

simple and let us say in this example as you can see each line of code corresponds to one 

line of assembly code.  

So, what we do is we compute (a + b), put it in t1 can be register, then we compute c = t1 

* 10 and we compute d = t1 * t1. So, each line in the second example here, did not hold 

exactly for the previous in the previous slide, but in this slide, each line in the second 

example corresponds to one line of assembly code. So, we do not have to compute (a + 

b) many times, we just compute it once. So, identifying such common subexpressions in 

arithmetic expressions is something that modern compilers do very well.  



So, that is the reason when we have a series of arithmetic expressions, they are able to 

reduce that to a smaller sequence of computations which uses a combination of constant 

folding strength reduction as well as common subexpression elimination to reduce the 

number of instructions as well as to replace them with faster variants. 
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Now, let us look at one more kind of optimization known as dead code elimination. So, 

let us take a look at this program over here. So, any program finally, what matters is 

what is written to the output. So, the output in this case is Hello World and if you think 

about it, these two statements have no value.  

So, this is dead code in the sense that whatever they compute, this is not a final output of 

the program. so, it is not leading to a printf statement given the fact that it is not leading 

to a print statement, this piece of code has no use, it is called dead code. 

This I would say is not a part of the default optimization level at least as of today in 

many compilers, but still, with more advanced optimization levels like o3 and so on it 

will identify dead code and it will remove it. So, this will reduce the number of 

instructions that your program executes. 
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A silent store is somewhat more sophisticated version of dead code, often it is hard to 

identify at compile time, but whenever it is identified, it should be removed. So, what we 

see over here is that we set the first element of the arr[1] = 3 and then, do a little bit more 

of computation. The key operative point over here. So, of course, there are many lines, I 

am not showing them, but I am only focusing on this part. So, the key operative point 

over here is that we set the first element of the arr[1] = 3 and we are setting it to 3 once 

again. 

So, this process is problematic. The reason it is problematic is that if 3 is already written 

in the memory location, we are writing 3 once again which is not, I mean establish which 

is not achieving any purpose. so, this is a silent stored in the sense that even if this store 

was not there, nothing would have happened. So, the right the same value that is already 

present so, this store can be and should be removed. 
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So, now, we have discussed a couple of regular simple optimizations starting with 

constant folding, strength reduction, dead code removal, silent stores, most of the 

common subexpression elimination we have discussed five. So, these five are pretty 

much present in most compilers as of today and compilers furthermore optimized loops 

because a program spends most of its time, some say 90% of its time in loops and thus, 

optimizing loops is of paramount importance. 
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So, let us take a look at this piece of code. So, this piece of code over here assuming N is 

a very large number is setting the variable val = 5 in every single iteration. So, in every 

single iteration, what we are doing is that we are setting val = 5 which needless to say is 

not something that we would like to do over and over again because it is increasing the 

number of instructions within the loop and that too significantly N is a very large number 

if here number of times and this is being done will be N times and if N is a million, we 

will do this million times and each one of it is a silent store. 

So, what we do is that we move this instruction over here, we move it over here and this 

can be done automatically, most compilers have sophisticated analysis process to 

identify such patterns, they will identify this pattern and they will move val = 5 before 

the loop. So, this is also called a loop invariant in the sense that this is not varying in the 

loop. so, this remains constant for all the iterations of the loop. 

So, this can be moved to a point which is before the loop because there is no point in 

setting val = 5 repeatedly and this will make a loop function very efficiently in the sense 

out of two C statements, we are removing one and that is substantial. 
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The other is induction variable-based optimization. So, in this case, the variable j which 

is derived from the loop variable i is known as an induction variable. So, as I mentioned 

the induction variable is derived from the loop variable. In this case, it is 6 * i and then, 



we have some expressions that it involves both i and j. So, the particular instruction that 

we are concerned with the statement is j = 6 * i.  

So, we do not seem to like that. Why? Because we do not like the multiplication 

instruction, our claim is that the multiplication instruction is slow that is our claim. So, 

that is why we do not like it. What we would instead like to do is that we would try to 

replace a multiply with an add which is much much faster if possible and most compilers 

can recognise this pattern.  

So, they will set j = 0 outside the loop and simply replace j = j + 6 which is the same as 

this. If we just take a look at it, i is being incremented by 1 every cycle. This means that j 

is being incremented by 6 every cycle and incrementing by 6 every cycle 6 * i is 

basically j = j + 6 and this is by far a more efficient method of dealing with multiplies 

which is convert them to an addition in this way. 

And since this is happening within a loop, the potential advantages are much more 

because as I said programs spend most of their time roughly 90% of the time within a 

loop and this is why we get to see the advantage over here. 
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Another idea loop fusion well, let us take a look at these two loops. So, we have two 

loops, and we iterate from 0 to (N – 1) and in the two loops all that we do is we set 

elements of one array to 0 and the elements of another array to 0 A i and B i. So, what 



we can do is we can fuse the loops in the sense, we can create an optimized loop that will 

set A i and B i both to 0 at the same time.  

So, the additional overhead of the branches and the checks and the loop overhead right of 

the second loop will go away. So, this will reduce the number of runtime instructions and 

bring in efficiency. The idea here is that we completely got rid of these instructions, we 

just have a single loop now and we fuse this operation and this operation.  

So, loop fusion is also done by compilers, but sometimes you have a loops are 

complicated so, the programmers are supposed to write efficient code such that they fuse 

the loops without bringing in, without passing on the effort to the compiler, the 

programmers sometimes should do it particularly, if in the feel that it is complicated 

something that the compiler might not catch. 

So, loop fusion will reduce the instruction count drastically and also the number of 

branches quite significantly. So, as I said it will remove the overhead of one of these for 

loops completely and that will bring in the desired amount of efficiency that we needed 

which basically means that instead of two loops, we will just have one. 
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Now, let us come to loop unrolling which by far is maybe the most popular optimization 

in this space. So, let us take a look at this. So, loop unrolling incidentally used to be 

much more popular in the older days when we had in order pipelines, but even now also, 



loop unrolling is extremely popular and it has many other applications other than this 

simple optimization as I will show because it forms the basis for far more sophisticated 

optimizations and also while programming hardware, when we have loops in Verilog or 

VHDL, they are also unrolled and a lot of work on the loops is done. 

So, let us consider a simple 10 iteration loop, all that it does is just does sum = sum + i 

and of course, sum is initialized to 0. So, let us take a look at the assembly code r0 is 

mapped to sum, r1 is mapped a loop iterator i, every iteration we compare r1 with 10 if it 

is equal, we just exit. otherwise, we just add the add; add to the sum, we add to i and we 

jump to the next iteration.  

So, this assembly code is simple. We have seen something similar many many times in 

the previous lectures, I am not going into this in detail. 
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So, what we can do is that these 10 iterations can be fused into groups of two iterations. 

So, instead of incrementing i by 1, we can increment i by 2 and we can replace this sum 

operation with this which as you can see with the previous slide, this is equivalent. So, 

there is a degree of equivalence, it is the same basically what we are doing, it is just that 

we are doing more work within the loop and instead of 10 iterations, we have reduced 

the number of iterations to 5. 



Given that we have reduced it to 5, there is an advantage. The advantage over here is that 

we have reduced the loop overhead which is essentially the branches and the checks and 

all of these. So, let me come to the assembly code as you can see, it will be visible very 

clearly. So, we set sum to 0, we set i to 0 well fine, then this is the main body of the loop. 

So, we do the same comparison, compare r1 with 10 and if it is equal, we exit. So, this is 

basically the loop code. 

Now, what we do is we do something interesting. We compute sum = (sum + i). We 

increment i with 1 and add it to the sum once again or we could have multiplied i * 2, 

added 1 to that and then added that to the sum whatever is more efficient. So, what we 

could have done is we could have done sum + = (I <<1) which is same as X 2 and then, 

we could have + 1. So, this would have done, this would have had the same effect. 

So, regardless how we do it? We compute the updated value of sum and we also 

increment if you see we increment i twice, incremented once’s here, incremented once’s 

there, but the advantage is that we reduce the number of; the number of instructions that 

implement the loop code, these two instructions implement the loop code and this 

instruction implements the code of the loop.  

So, we are basically reducing branches that is what it comes down to, we are reducing 

branches and other code that is important in maintaining the number of iterations of the 

loop. So, well, reducing branches has two advantages. So, the minor advantage is that we 

are also reducing the total number of instructions which needless to say is beneficial. So, 

that we have already seen from the performance equation. The specifically, we have 

fewer branch instructions, and this is the crux.  

So, fewer branch instructions mean fewer mispredictions, a fewer times you have to deal 

with the branch predictor. So, even accessing the branch predictor requires time and what 

happens is that in a modern program or the loop itself will have a lot of instructions, 

these instructions can destructively areas with the branch that can increase miss-

predictions. 

So, in general, if we can reduce the number of branches well, that is great right ok that is 

absolutely fantastic. If we can reduce the number of branches because less branches are 

both less instructions as well as less less predictions. So, essentially it is reducing the 



sum total of this branch heading and so, that is one advantage of unrolling. Of course, 

unrolling has other advantages which is also as I said reducing number of instructions.  

Also, another advantage of unrolling which we shall see it is more important for in 

ordered pipelines is that stalls associated with branches are not there and another good 

thing in out of order pipelines is that we get a larger window of instructions that are 

branch free. 

So, let us say instead unrolling it by a factor of 2 so, this 2 is called unrolling factor. 

Again, let us say unroll it by a factor of 5, in that case, I will have a large number of 

instructions without a branch and these instructions can then be scheduled very 

efficiently using our out of order pipeline scheduling logic. So, that is unrolling, it has 

multifaceted advantages. So, these are those. 
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So, before we move to the next topic which is software pipelining which essentially 

builds on what we discussed, I want to highlight some of the negative aspects of 

unrolling and the negative aspects of unrolling will become amply clear as we discuss 

software pipelining as well. 

The first negative aspect is so, let me write it unrolling what is bad with it, a (-) means 

negative, (+) means positive. So, the first negative aspect is that the code size actually 

increases. So, there is an increase in the code size which means there is additional 



pressure on the instruction cache, this is not something that you would ideally want 

particularly, the instruction cache sizes low. 

The other is that in many cases, we have to add more registers to get good performance 

and unrolling. So, we have a limited number of registers, but I do not want to talk a lot 

about this because the entire section on software pipelining is in a sense devoted to that. 

So, I would not say more, but clearly what we have seen up till now is there is an 

increase in the code size and the code size will put pressure on the instruction memory, 

which is conceptual, it is actualized in terms of the I-cache or the instruction cache. 

So, software pipelining is trying to do what hardware pipelining does. In hardware, we 

are trying to do that in software somewhat in an abstract and conceptual sense and so, I 

will discuss the rest of the lecture will be on software pipelining and we will end over 

there. 
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Let us now discuss software pipelining. So, we will use this piece of code as a running 

example throughout the lecture. So, in this piece of code, what we do is we consider two 

300 element arrays A[i] and B[i] and we just copy the contents of array B into array A 

that is all that we do.  

So, the assembly code looks like this, we assume that the base address of A is in register 

r0, the base address of B is in register r1 and then, the counter i is mapped to r2 and we 



also define an offset variable which is mapped to r10 why r10? we will see later, but 

basically we need to create a lot of temporaries and that is why having r10 where it is a 

good idea it sort of keeps the code clean. 

So, what do we do? Well, first we check for termination. If you have reached 

termination, we exit. So, this part of the code we have seen so, there is; there is nothing 

new with this part. So, we first have a load block. So, in the load block, we for array B, 

we add the offset to r1 that gives us the address of B[i]. The address of B[i] is put into 

register r3, then the contents of the address which is essentially B[i] is transferred to the 

registered r5. So, r5 at this stage contains B[i]. 

Then, let us consider the next two instructions. In this instruction, we do the same, but 

instead of array B, we do it with array A. So, what we do is that let r0 contain the base 

address of array A so, we add r10 to it, r10 is the offset so, then A[i], the address of A[i] 

rather gets transferred to r4 and again, the contents of A[i] are anyway given by the 

contents of B[i] which is in register r5 so, this is stored over here. So, this basically 

achieves this A[i] = r5 which was set in line 11 to B[i]. So, this is basically doing this for 

us. 

Then, what do we do? Well, then we do the customary increment so, we increment r2 

and at the same time, we multiply (r2 * 4). So, instead of using a complex multiplication 

instruction, we instead use the left shift instruction. So, the left shift instruction over here 

left shifts r2 by 2 positions or in effect, multiplies it by 4 and this is the offset which is 

stored in r10 and again b loop. 

So, what we see over here? If I were to get rid of all the ink on the slide, what we see 

over here is there are three blocks of statements, those three blocks of statements work 

something like this L, S and I. So, the way that they actually work is that so, L is a load 

block and in the load block, what we do is that we load the value of B[i] into register r5, 

then we have a store block where we store the contents of register r5 into A[i] and then, 

we have an increment block where each block contains two instructions. 

So, what we see is that this can run in an in-order pipeline, there will not be a load use 

hazard because there is one instruction that separates the load and the use. However, if 

we have longer memory latencies like longer than one cycle, then of course, there will be 

a problem. 



Furthermore, if there is a need to parallelise some of these blocks so, we will see how? It 

does not appear to be parallelizable right now, but we can modify the code in such a way 

that this structure can be parallelized then of course, it should be possible to do so even if 

the latency to load a value from the data cache is more than one cycle like it is of the 

order of two, three, four cycles, it should still be possible. So, this is where we would 

like to look at software pipelining. 
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So, let us look at these three blocks across the space of iterations. So, we have a L block 

as you can see over here L, S and I. So, we have L, S and I for all the; for all 300 

iterations, I am only showing for the first 5. So, I can write these in a different way, I can 

write L, S, I here, then I can write it the next iteration, I can just write it next, after that, 

then after that so, nothing stops me from writing it in this order, then I can create these 

rows as you can see.  

So, I have created this row over here, I have created this row over here, this row over 

here so, these rows have been created. So, well why have I created these rows? Well, this 

would be clear because I wish to execute instructions in a certain order and that order 

will become clear, but let us understand that every iteration has three of these blocks and 

these blocks can alternatively be written in this fashion where we can look at a different 

order of execution. 
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What is the order of execution? Well, it is this order where basically I will execute it like 

this. So, I am just adding my arrows over here so, just give me a second or so to add 

these arrows. So, what I can do is that I can execute them in this order, first the L block, 

then S and L, then I, S and L, I, S and L and so on. 

So, if I look at the steady state, if I let us ignore this part and I ignore this part, but if I 

look at the steady state and let us say the iteration number is the superscript over here. so, 

order of operations in a single row would basically be for iteration 0, block I, iteration 1 

block S, iteration 2 block L, I 0, S 1, L 2, then I 1, S 2, L 3, I 2, S 3, L 4 so on and so 

forth. 

So, it is important to first appreciate the fact that all the blocks that we would have 

executed in the normal execution with this special order of execution which is also 

known as a software pipelined way of execution, we are executing exactly the same 

blocks, let us not worry about dependencies and correctness right now, we will fix that, 

but why is it called pipelining let us understand. 

So, how does a conventional pipeline work? Well, we have stages, and we pass an 

instruction from stage to stage. At a given stage and instruction, we can say is partially 

executed or semi executed. So, if I were to have one instruction over here, it will go from 

this stage to this stage in a certain sense, more of the instruction is getting executed. 



For example, in the first stage if you have fetch the value, in the second stage we decode 

the value, in the third stage we execute so, it is kind of executing it more, more, more 

and more. So, if we treat the rows as pipeline stages so, this is let us say one stage, 

another stage, another stage what we add let us say we treat an entire iteration over here 

as kind of one instruction, then we see that the iteration pretty much proceeds across the 

pipeline stages. 

So, the iteration across the stages is proceeding and this is why we can say that this is 

one way of software pipelining where the way the compiler will generate the code is that 

it will execute the entire computation row wise. So, let us not as I said, let us ignore this 

part for the time being. So, it will generate code let us say for this row where it will 

execute I 0 S 1 L 2, then it will execute S 1 and I 1. 

So, if I were to see just take a look at L 2, it first executes this, then it executes this 

instruction the store and then I 2. So, it is as if what is happening is that is execution is 

happening across stages. So, first in let us say this row, we execute the L instruction of 

iteration 2 the L block, then in this row, we execute the S block and then in this row, we 

execute the I block. 

So, this is in a sense conceptually similar to what we would do in a pipeline where 

instruction would keep on getting executed partially, but more and more as it passes 

through the stages, the same is roughly happening for each iteration that iteration in this 

case is three blocks and as it passes through the rows. so, the rows in a sense, in this case 

are conceptual for the time being. As it passes to the rows, we can treat each row as a 

pipeline stage. 

And also, what we are doing is that in each row, we are executing instructions from 

different iterations roughly at the same time so, that also is something that we are doing 

and here, maybe you can see its slightly differs from a normal pipeline, but well, as I said 

this is just about a high-level similarity nothing more than that, but the main aim is that 

we are splitting the execution of a single iteration across stages or over time. 

So, what is pipelining? The pipelining is that you take a bunch of computation whether it 

is a single instruction or an iteration, it does not matter and then, you kind of execute it 

over time, it is not over time in over time sense, but you just executed over a period of 

time so, maybe I can. In a certain sense, we are doing that over here.  



So, what we are doing over here is something very similar where we are executing in one 

row the L instruction, then we go to the next stage, the next stage is the next row the S 

block and then the I block. So, way it kind of executing it in this fashion. 

So, if you look at it, we are still executing the same set of instructions exactly the same 

set, do not worry about correctness for the time being, but the order of execution is 

different that is important, the order is different that needs to be kept in mind. What are 

we achieving that is important. 

(Refer Slide Time: 63:55) 

 

So, the advantages of software pipelining, which is essentially this order over here, we 

must be achieving something. So, let us look at again the second iteration, let us look at 

this. So, what we are basically achieving over here is that between L 2 and S 2 instead of 

having no instructions which was the case over here just take a look. So, L and S 

basically, L ends and S begins that is not happening over here, we have a new block of 

instructions. 

So, given the fact that we have added this extra block, the advantage is that we can 

absorb more delays in the sense that if we have a slow load instruction that does not take 

one cycle, but it takes more than one cycle let us say two, three, four cycles, you can still 

absorb it because we have a block in the middle and of course, four cycles we cannot 

absorb, but let us say three cycles you can absorb, if we are assuming that this block 

takes two cycles. So, one cycle it would have taken anyway plus two more. 



So, multi-cycle loads can easily be accommodated which is clearly a major advantage. 

Furthermore, it is possible to execute the I, S and L blocks of the three different 

iterations concurrently. So, what are we doing? We have essentially created these blocks. 
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And these blocks so, if I were to just show this in a different way in a different manner 

what I can do is I can divide these into groups of three, if you would see that in each 

group we have blocks from different iterations and given that we have blocks from 

different iterations, what would essentially happen is that there is a possibility that we 

can execute them in parallel as long as there are no dependencies between them, this will 

further increase our ILP.  

So, this is an ILP enhancing technique, if it is possible to execute them in parallel 

because we are using different loop iterations. So, that possibility is there, but we will 

look at it slightly later.  

But if we were to execute them not in parallel, but what is called concurrently, it is a 

concurrently in computer science is not parallel, it does not indicate simultaneously, but 

it just means that without any specific ordering specified between them well, then we 

should move in that direction so, one can be, we can use different loop iterators for the 

three separate iterations which is 0, 1 and 2. So, let me explain this with an example it 

will become much clearer. 



So, where are we moving towards? Well, we are moving towards an implementation of 

software pipelining that is correct, does not have dependencies and where we can 

possibly execute these three instructions, these three blocks in parallel. The solution that 

I will show will not take us 100% there, but the solution after that will take us 100% 

there. 
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So, let us try to understand what is happening. So, what we are suggesting is that to 

break the chain of dependencies. so, I will tell you in a second why it is important. 
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So, if you can see, let us look at this I, S, L order. so, let me erase the ink on this slide, I 

will just show you. See if you look at it, what I is doing is that this is for one iteration, 

this is for one more, this is for one more. So, just take a look at it, it is in the reverse 

order I, S, L. 

So, let us say I were to execute this first, then this will essentially change the value of the 

offset correct and then, that will cause problems over here and so, then it will actually 

not be correct. So, what I should do is that for these three, I should use different loop 

iterators and different offsets. So, that will ensure it is correct which is exactly what I am 

showing here. For iteration 0, 1 and 2, I use r6, r7 and r8, then for 3, 4 and 5, I again use 

r6, r7 and r8 and I claim it is correct, I will show in a second why, but I claim it is 

correct. 

And if you can see the dependencies well, there will be a dependency between the r6 S 

so, I will have a dependency with L here, again I will have a dependency with L here, but 

I will see how to take care of it.  

So, what in a sense I am proposing is that we consider these group of nine blocks as one 

iteration and then, we execute all of that together again, we consider another group of 

nine blocks and execute it together. So, we will see that there will be no problem in terms 

of correctness. So, let me show you the code it will become amply clear. 
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So, here is the code. So, as I said we will have three blocks so, the three blocks will be 

these blocks I0, S1, L2, I1, S2, L3 and I2, S3, L4. So, these are the blocks so, what we do 

is we unroll the loop. so, recall we had discussed loop unrolling a while ago. So, we 

unroll the loop 3 times so, we will have nine of these blocks and then, we order them in 

this fashion I0, S1, L2, I1, S2, L3 and I2, S3, L4. 

So, what we do is that for the 0th iteration, for this iteration, what we do is that we 

considered r6 to be the loop iterator for the 0th iteration and then, we consider r6 so, it’s 

a pair of r6 and r10. So, what we will do is that we will assign r6 and r10 to the iterations 

which has (0, 3, 6, 9) and so on, again we will assign r7 and r11 to the iterations of the 

form 1, 4, 7 and so on and we will assign r8 and r12. So, r 8 is the iterator, r12 is the 

offset, 4, 2, 5, 8 and so on. 

So, if you see this is exactly what we are doing so, for I0, we execute this block which is 

in r6, r10 player and again, we have an L 3 and S 3, so, just take a look at L 3 and S 3. 

So, what we do is that we compute the address by adding the offset which is r10 which 

we presumed to have happened correctly. So, why do we presume it has happened 

correctly? Well, the reason that we do that do it is because of this block over here.  

So, instead of adding 1 to the iterator given the fact that it has been unrolled 3 times, 

instead of adding 1, we add 3 so, this is the crux. The fact is that since we are 

considering 0, 3, 6, 9 and so on instead of 1, we add 3 so, that is the crux of this 

argument, we add 3 to r6 and then, we compute the offset accordingly which is just r6 

times 4. So, r10 is computed correctly and no other iteration uses r10, you can verify.  

The next iteration that actually uses r10 is again the third iteration L3. So, this uses r10 

correctly, then you compute r3 and from r3 you compute r5, r5 is not used in the I2 block 

in the middle and r5 is again used, again we use r10 over here and r5 is again used to 

store the value into r4. 

So, we can see a very similar pattern here for others iteration. So, let me show that I am 

still keeping this part there for you. So, it is that can be a running reference. So, what I 

will show now is that I will show it show for the one series. So, just take a look at S1 

alright, I1 and L4. So, in S1 again, we assume that r11 is computed correctly which is the 

offset and we store the value in r5.   



We take the value in r5 and we store it in the address. Henceforth, r5 is not required. See 

L2 can overwrite r5, we do not care, then we have I1 again, the I iterator is incremented 

by 3 not 1 and we compute and the corresponding offset, which is r11 and then, r11 is 

used in L4 to again compute the address and both the value in r5. 
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So, what we see over here is that we have actually taken three iterations, unroll the loop 

by a factor of 3 and the three iterations which would look somewhat like this, I will show 

you the iterations that we have taken. So, we have essentially taken I0, S1, L2. So, just 

take an I0, S1, L2. So, it is this we have taken, this, this, this, this, this, this and then I2, 

S3 and L4 so, we have essentially taken these iterations. So, these are 9 blocks. 

So, these 9 blocks of course, if I would have executed them in a traditional manner, then 

they we would have proceeded in this fashion, first these, then these, then these starting 

from I0, but we in this case we actually did not do that, what we did was more interesting 

where we just considered these three rows and the instructions in these three rows, these 

9 blocks were considered together and then by unrolling the loop 3 times and then of 

course, we rearrange them. 

To eliminate dependencies, we had to use more registers. So, for different iterations, we 

used different loop iterators and corresponding offsets r6, r10 one pair, r7, r11 one pair, 

r8, r12 one pair and it showed that look, we are not having any dependencies otherwise, 

there would have been a problem, had we not use them.  



Had we not use them consider S1 and L2 both would have required an offset and this 

offset would have come from I0 and this clearly would have been wrong. So, that is the 

reason we have used separate ones and that has to a large extent broken the dependency 

and this execution order is correct. so, there is no problem with this. 

And what is the key advantage? Well, the key advantage is we have been able to insert a 

block the I block between an L and S block. So, this allows us to absorb multi-cycle 

loads and even from the perspective of an out of order pipeline, it gives us more 

instructions to work with an enhanced ILP. 
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So, now, let me point out the problem. So, the problem is that we also wanted to execute 

these three blocks concurrently, this is not possible. So, this is what I was hinting at in 

the previous slide that we cannot execute S1 and L2 in parallel because they actually 

depend on r5. 

So, what we want is that we want to read r5 first and we want to write to it later, but 

well, if they are executed in parallel, we have a hazard, it is write after read hazard and 

this will cause an issue. It will not cause an issue in an in order in a multi-issue in order 

pipeline, this will cause an issue. In an out of order pipeline well, no, this will not cause 

an issue because renaming will as you can see will take care of it that this will be in the 

sense given to a separate register and that register will again be read over here and its life 

will end. 



So, out of order pipeline, this issue is not there, but in order pipelines, this issue is there 

and software pipelines were made predominantly in the days of the in order pipeline so, 

it is much better to get rid of this little dependency over here so, then you will see that 

we genuinely do not have dependencies because it is all r6, r10 over here that is what we 

are writing to this uses other registers and this uses other registers.  

So, we are simply creating a different set of registers for each iteration if we do that so, 

the dependency between S1 and L2 will go. 
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To do that, what we do is let us hypothetically assume that we have 32 registers, then we 

can do this very easily and very elegantly. So, what we can do is that we can in a sense 

create a new register r21 which stores output of S1. so, which S1 uses and then, r22 

which is the load value of L2 and again, r 22 is used over here and again r20 is used by 

L3 which is again used by S3. 

So, we have effectively partitioned the set of registers between the iterations. So, there 

will be no conflict between them at least in these three so, I and in these three and these 

three.  

So, I would advise the reader to take a look at these sequences of instructions and 

convince himself or herself that genuinely there is no problem. For example, r7 and r11 

are the ones registers that are used here, but they are not used here. Similarly, r4, r0, r12 



and r22 are used, but they are not used here and so on and so forth, the set of registers 

that are used here are disjoint from the set of registers that are used here. 

Hence, there is no problem and we can execute these three blocks in parallel and this is 

an advantage in order setups and when we will discuss the Itanium processor that 

predominantly relies on the software to identify parallelism and to do the scheduling, you 

will find that such approaches are extremely helpful where we can pretty much run these 

three blocks simultaneously in parallel. So, this these approaches are extremely 

beneficial. 

So, one point that we need to appreciate over here is that we clearly need more registers 

to do this because well, I could have used r13, 14 and 15, but they are reserved for other 

purposes like the stack pointer and so on so, I did not want to touch them. Hence, I am 

proposing a new solution that uses more registers. 

Further expounding on this fact that we need more registers for doing software 

pipelining, this will become even more clearer when you will see that Itanium processor 

actually uses a lot of registers and it also has special support including what you have 

seen that different set of registers for different iterations so, a lot of this support is 

actually built into the hardware. 
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So, we have discussed kind of the steady state where we have looked at these three rows, 

but what about this part which is known as the prologue and this part which is known as 

the epilogue. So, this part also deserves give attention and this part is not being 

pipelined, but of course, this diagram has not been drawn to scale. 

So, if you have 300 iterations, most of the iterations can be software pipelined, but you 

will always have a few of these iterations, instructions over here part of the epilogue and 

prologue that cannot be broken down or rearrange the way that we have actually done. In 

that case, well we can add some additional code at the beginning and at the end. So, this 

is the compiler can do automatically at the beginning and at the end to basically ensure 

that the entire loop executes correctly. 

So, the summary over here is that a loop is actually a pretty complex thing from the point 

of view of a compiler because it is a full encyclopaedia of optimizations that can be 

applied. Particularly, software pipelining is very important because it exposes ILP. More 

so in the days of this free out of order pipelines and also in special pipelines that we shall 

see in Itanium and so on, software pipelining used to be more important. 

Nowadays, with renaming and so on its shine is not that bright, but nevertheless, it is a 

very very important mechanism for simpler processors that are predominantly in order 

and need to deal with large multi-cycle delays. So, there is a very very rich literature in 

compilers of how to automatically transform loops into their software pipeline versions. 
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So, now, the we showed one way, one method of software pipelining, but the it turns out 

that there are other methods as well. So, the alternative solution that does not use 

renaming we will look something like this. So, let us first go from here to here. So, I 

have slightly expanded this C code such that one line roughly corresponds to one line of 

assembly or one or two lines, not more than that. 

So, what we can see is that we can see that we are creating a loop over here. So, the loop 

over here is similar to what we would do in assembly that we will check for termination 

and if it has not terminated, well we will again have an unconditional branch statement 

and furthermore, what we will have over here? We will have the L, S and I blocks. So, 

here, each block actually corresponds to two lines of assembly, the same way that we 

have been showing is just another way of writing. 

So, what I will do over here is that I will slightly reorder them such that we do not have 

to unroll, but still the code will be correct. So, what I do is I initialise i = (-1) important, I 

initialize the temporary variable t = B [0], the first element and then, I go till 297. so, i 

essentially goes from minus 1 till 297. So, the first thing that we do is we increment i so, 

then it goes from 0 to 298. 

Then, what we do is we set A[0] = t. For the first iteration it will be nothing, but B [0]. In 

the second iteration, we will see, then what we do is we set the temporary t = B [i] + 1 

and so, basically the value that the next iteration will set we store that in a temporary 

over here and then, we go to the next iteration. In the next iteration, they again do the 

same. 

In this case, it is easy to convince oneself that A[i] = t will actually be set correctly. So, 

this will actually be set correctly because what is this t? This t is essentially coming from 

the previous iteration where we did it for B (i + 1), but now, i has changed so, the (i +1) 

of the previous iteration is these iterations i and so, basically it is the correct t. so that 

previous iterations B (i +1) is being funnelled into this iteration A, we think of it A (i +1) 

and it is happening via the t and the value of t is flowing across iterations. 

So, anytime, there is a dependence between iterations, we call it a loop carry dependence 

which we are seeing over here. So, we keep doing this, we will not be able to do it for the 

last iteration. So, for the last iteration, it will be A 299.  



So, A 299 which is the last so, basically B 299 so, after i = 298, B 299 will be putting t 

and then, we will come here, we will exit the loop and this value of t will get transferred 

over here which means that the entire iteration has been done correctly. So, the entire 

process of transferring the values from B to A has been done correctly. 

So, I am erasing the ink, it is important for the readers to stare a little bit at this code and 

convince themselves that this is indeed correct ok keep staring. So, hopefully you have 

appreciated the broad idea that we do we are doing software pipelining still I will beat in 

a different sense without unrolling. 

So, pretty much we have taken the original iteration and sliced it across iterations of this 

transformed code, again it is a form conceptual form of pipelining, and it does allow us 

to have more instructions between a load and a store. So, in this sense, a load is 

happening over here, this is the load and then, what we do is we again have a loop, we 

come here, we have some checks, we increment i and then, we do the store, it is a, multi-

cycle loads latency can be absorbed. 
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Let us now look at another way of unrolling. So, let us take a look at a C code. So, here 

basically, we load the value of B [i], we multiply it with 5 and then, the data is stored in 

A [i]. So, in this case, what we do is we unroll it by a factor of 3, if you mix the different 

iterations in a different way so, what we do is we just take a look at the outer for loop 



and outer for loop, we have i + = 3 over here which means I consider 3 iterations at one 

row. 

So, what we use is instead of one temporary, we use three temporaries’ t 1, t 2 and t 3. 

So, we load in the value of B I, (B i +1), (B i + 2), then what we do is that we multiply 

again we generate three more temporaries and again we write it. So, the advantage is that 

let’s say the difference, the time difference between reading the value of B[i] and 

actually using it, there are two instructions in between. 

So, even if let us say the load has a large latency that is still fine, the reason is that the 

pipeline is not idle, the pipeline is busy in issuing other load instructions or doing other 

work and here, what we do is that we simply compute the result and we do a store and 

the stores in this case are not on the critical path, the loads are, but the nice thing is that 

we have essentially increase the distance between the load which is over here and its 

used over here such that we can sustain or we can tolerate a much longer load use delay. 

So, this is basically what we have done over here. This is of course, again a different 

version or a different kind of software pipelining in a different flavour, but again this is 

also a very key and important example in this space. 

Well, so, this is always good news to say that we have completed 4 out of 5 sections of 

this chapter. What is left is to kind of take all our compiler techniques, put them together, 

put all of them together and create what is called an epic processor, the example of which 

being Intel Itanium. 


