
Advanced Computer Architecture

Prof. Smruti R. Sarangi

Department of Computer Science and Engineering

Indian Institute of Technology, Delhi

Module - 05

Lecture - 13

Alternative Approaches to Issue and Commit Part-II

(Refer Slide Time: 00:36)

In this lecture we will discuss replay mechanisms. Replay mechanisms are extremely

important when we have aggressive speculation. Recall that aggressive speculation was

predicting load values, addresses, load store dependencies and all other forms of data and

addresses which are typically not predicted.

What I mean is typically not predicted in a simple pipeline, but it is necessary to predict

them in an aggressive out of order pipeline. So, sometimes in this prediction we will

make a mistake and that is where replay mechanisms are required.

(Refer Slide Time: 01:18)

Well, one option we have for doing a replay which is to flush the entire pipeline.

However, flushing the pipeline for every single miss speculation is not particularly a

very wise idea; the reason being that it is flushing the pipeline is very expensive for two

reasons.

So, what are the overheads of doing a pipeline flush? So, the first reason is that we need

to clean up the state and we need to restore the state from where we are flushing. So,

essentially the restore and cleanup actions take time they are not instantaneous. So, they

take several cycles. But this again is not that much as compared to the shear amount of

wasted work because what would happen is that we would have executed a lot of

instructions and we will simply waste we simply stand to waste some work.

So, something that we would have gained had the speculation been correct the entire

work will be wasted it needs to be redone and a corollary of this of course, is extra power

consumption extra power or energy consumption. Well, extra power is not clear because

we are flushing and restarting, but definitely it is extra energy consumption which is an

issue. So, what we can do is instead of flushing the entire pipeline we can flush a part of

the pipeline.

So, recall that this is a novel idea we have not discussed this before, for flushing the

entire pipeline we did discuss the reorder buffer, but for flushing a part of the pipeline

this has not been discussed before. So, what we do is that we somehow track all those

instructions that have possibly used the wrong value and we re-execute only them. So,

we will revisit this notion several times, but essentially were execute a subset of

instructions in the pipeline we re-execute a subset that is the crux of the discussion.

So, we replay those instructions once again after let us say the load completes its

execution. When the instructions are being replayed in this case we are guaranteed to use

the correct speculated value. So, let us say we are predicting the value of the load. So,

when instructions are being replayed they are guaranteed to use the correct speculated

value not the correct they are guaranty to use the correct value of the load because we

detect a misspeculation when we realize that whatever we were guessing was not correct.

So, at this stage what we do is that of course, we initiate a replay we will see how we

also wait for the correct value and once when that comes we restart. So, the next time we

will not have a need to speculate. So, what we want to do to kind of save wasted work

and also not to avoid a full scale pipeline flush is we need to locate what is called the

forward slice of an instruction and just replay that. So, let us define a forward slice.

(Refer Slide Time: 04:51)

A forward slice is defined as follows; we have let us say one instruction I 0 it produces a

value the consumers of those values are I 1 and I 2. So, let us say I 2 whatever I 2

produces nobody consumes it, but let us say I 3 and I 4 produce something I 4 consumes

both and so on and so forth.

So, we can create a graph of this type. So, this will be what is called a dag or directed

acyclic graph and so, this is the structure if you do not know what a directed acyclic

graph is this is the right time to actually look it up in a book on data structures because

this concept is used rather heavily in computer architecture. So, you cannot escape this

concept. So, it is far better to look it up right now.

So, this structure that we have here note is not a tree. So, this is not a tree. So, let me do

this it is a directed acyclic graph and furthermore this is routed at the instruction whose

value we are predicting, it is routed over here. So, this entire set of instructions is known

as the forward slides of instruction I 0, it contains the instructions consumers the its

consumers and so on.

So, the entire forward slice including I 0 and all its consumers and so, on the forward

slice has to be replayed, but not the rest of the instructions. For example, it is possible

that another instruction was issued along with I 0. But it is independent from I 0 and

even some of its instructions are in are independent not in the forward slice.

So, this set of instructions can execute and it should also be allowed that these

instructions execute, but of course, the commit happens in program order still, but at

least these instructions are not re-executed only the forward slice is the candidate for

replay or re-execution.

(Refer Slide Time: 07:13)

So, the trivial solution could be that we flush the entire pipeline or somehow we flush the

pipeline between the dispatch and execute stages if it is doable, but this again is wrong

and impractical and hard to implement. So, we should go for a smarter solution which is

non selective replay. So, we will discuss three replay schemes non selective replay, a

delayed replay and a token based replay.

So, this is the first such scheme. So, this scheme is simple, but as we shall see there are

some issues, but the issues can be fixed these are not major issues. So, these are all

fixable issues. So, the first is that it is not really necessary to flush or remove all the

instructions.

So, I would not call it schedule let me call it dispatch. So, between the dispatch and

execute stages all the instructions that are there which could potentially be consumers,

consumers, consumers and so on we do not have to remove all of them.

See even if they are in the window they can be there we do not have to remove all that is

the first insight. So, we can be slightly prudent and judicious about it. What we can do is

we can reduce the set of instructions and only focus on a set of instructions that have

possibly gotten the wrong value right because of the miss speculation.

So, what we do is, we define what is called a window of vulnerability WV that is its

abbreviation which is the window is n cycles after a load is selected. This window of n

cycles is known as the window of vulnerability. So, let us say that the load is selected in

cycle number 0. So, what we do is that we consider a window of n cycles after it till the

nth cycle.

So, this entire period is known as the. So, how do we determine n? Well n is determined

based on the predicted latency. So, for example, let us say we are predicting that the load

will hit in the data cache.

So, then what we do is that if we are selecting in the 0th cycle in the first cycle we will

read the register file, in the second cycle we will compute the address and after that in

the third and fourth cycle assuming a two cycle latency for accessing the data cache at

the end of the fourth cycle we will get to know if the value is there or not in the data

cache.

So, if we expect that a given load will hit in the data cache which means it will be found,

then we can set the window of vulnerability = 4 or we can set n = 4 over here and within

this period we expect that the value will be available. If it is not available then of course,

a replay has to be initiated.

So, this means that the load will take more than n cycles and this is where a replay

definitely has to be initiated. So, the reason that the window of vulnerability is defined

within is defined in this manner is basically because any instruction that is waking up let

me change that to say that any operand that is waking up during this period in the

window of vulnerability might have been woken up speculatively.

Because it might get selected it might go down the pipeline and it might not find its

value. So, we should particularly be interested in those instructions whose operands have

woken up in this period.

(Refer Slide Time: 11:42)

Let us consider the example of the speculation. So, let us assume that we have a load

instruction. The load instruction loads from this address, the addresses stored in register r

2. Furthermore, assume that we predict the value the predicted value is stored in register

r 1 which is the destination register of the load.

Now, let us consider these three instructions, instructions 2, 3 and 4 which have had at

least one operand that wakes up in the window of vulnerability of instruction 1. So, one

thing that is obvious is that register r1 will clearly wake up because it is in the WV of

instruction 1, but let us assume that the other two instructions also wake up because of

other broadcasts.

So, we will discuss this issue later, but for the time being let us assume that windows that

instructions 2, 3 and 4 are within the window of vulnerability of instruction 1. So, if there

is a miss speculation what will happen is that, we will squash what does squashing

mean? T we will essentially set them from ready to not ready. So, we will in essence kill

their readiness that is called squashing.

So, we will squash these three instructions and then we will wait for instruction 1 to get

the correct value which is the correct value of r1 we will reissue it and then we need to

reissue these three instructions again once again to the pipeline.

So, it is possible there are two cases one is that the operand woke up, but the instruction

was not selected. So, instruction is still in the instruction window that is one case. The

other case is it was selected and it has been sent down the pipeline as the other case

regardless of the case in both cases we squash them and we re-issue.

(Refer Slide Time: 13:57)

So, how exactly is this done? Well, the way that this is done is that the instruction

window entry for every operand is augmented with some additional circuitry. What is

that additional circuitry? Well the additional circuitry is that we store the tag over here.

So, the tag is the tag that we are expecting from the tag bus or we can say that this is let

us say a source operand can be source operand 1 or 2 does not matter. So, the tag goes

here from the tag bus. If there is an equality, we set the ready bit. So, this part we have

already seen because it was a part of the instruction window.

So, there is nothing new over here, but what is new is that in addition to this two the tag

and ready bit we have a timer. So, the timer is basically a simple piece of logic and state

where once the operand wakes up not the instruction once the operand wakes up we set

the value of the timer to n. So, this is a capital N small n here. So, kindly ignore that.

So, regardless of whether its lowercase or uppercase we set the value of the timer to n

and every cycle it decrements n, (n – 1), (n – 2) and so, on until it reaches 0. So, every

cycle we decrement the timer once the value of the timer becomes equal to 0 we can

conclude that the window of vulnerability is over. It is not a part of the window of

vulnerability and we can conclude that this instruction will not be squashed.

So, what happens? So, what happens is that we augment every instruction window entry

particularly the entry for the source operand with a timer. Once the operand wakes up

because of a broadcast, we set the timer to n and subsequently in every cycle we

decrement the timer and if let us see it receives what is called a kill. So, I will discuss

what is a kill in one second when the timer is non zero then we squash the instruction

which means we set the ready bit back to 0.

So, how do we actually squash an instruction? So, what we do is that we assert the kill

wire. So, the kill wire is meant to go and kill all those instructions whose timer is not

equal to 0. So, for the timer we have a little bit of additional circuitry over here. So, it is

a logic block I am not showing that this is one if the timer is non zero l 0 so see in the

timer is non zero. So, this is one and if the kill wire is one this is one this is a NAND

gate.

So, the output of the NAND gate is 0. So, pretty much pretty much the ready bit gets set

to 0 and also the timer gets set to 0 in the sense the timer also gets reset. So, that is the

important thing that the both the timer and the ready bit both get reset if we are asserting

the kill wire. So, the kill wire essentially says that look go through all the operands in the

instruction window, for any other operands in the timer is non-zero then set its ready bit

to 0 which means that squash it.

So, which means that the operand becomes non ready and the instruction hence becomes

non ready right if there is such a word. So, this is the basic broad idea of the non

selective replace schemes. So, non selective replace scheme kind of does not look at

whether the instruction is in the forward slice or not, but straight forward goes and does

this.

So, what is the key idea of the non selective replay scheme? The key idea of this scheme

is that we assert the kill wire when we detect a MIS speculation and the kill wire then

goes and does this via this logic which is a NAND gate. So, let us now look at all of

those entries for which the timer is 0. So, I have not discussed that case. So, in that case

what will happen is that if the timer is 0 regardless of the kill wire this will be 1 because

a NAND gate if any one of the inputs is 0 the output is 1.

(Refer Slide Time: 18:55)

So, this is a special piece of logic where essentially what happens is for this piece of

logic of the input is 1. We do not do anything in a sense we do not touch the timer we do

not touch the ready bit. So, pretty much this circuit gets in activated if the input is 1.

So, recall that for both of these logic blocks at the same inputs if its 1 we do not do

anything only if it becomes 0 which is if both the kill wire is a circuit and the timer is

non-zero in that case what we do is that this is when this circuit gets activated. So, it sets

the ready bit to 0 and it resets the timer.

(Refer Slide Time: 19:45)

So, how do we do this? Well with each instruction if there is speculation we attach the

expected latency which is essentially the value of n. Let us say there is an additional

delay in sense this threshold of n gets breached maybe because we are doing latency

speculation and we predict that it will hit in the d cache, but it actually misses in the data

cache in that case it is a time for a replay.

So, what do we do? Well as you can see the monster over here we assert the kill wire.

So, each instruction window entry will have a non-zero timer that has a non-zero timer

will reset this ready flag which basically means a squash. So, this is happening at the

operand level not at the instruction level. So, we now have a set of instructions that need

to be replayed how do we replay? Well we will discuss this in the next two slides where

we discuss methods of replay.

(Refer Slide Time: 20:47)

So, the simple method of replaying which we call method 1 is keep instructions that are

already been issued in the sense that they have left the instruction window because they

were woken up and selected we still keep them in the instruction window. So, we do not

remove them. So, in a simple version of the pipeline when they got selected. So, what is

issue again? Well issue let us define us the entire process of wakeup and select. So, after

which it goes to the execution units.

See if it has not been issued which means it is still lying around in instruction window

then there is no problem, but if it has been issued we still keep it in the instruction

window we let the instruction flow through the pipeline stages and then we verify. How

we will verify? Well we will discuss it is different for different schemes, but at least for

this specific scheme what we will do is that, we will we can definitely verify for the load

instruction if its speculation has been correct or not.

For the instructions in the forward slides that have been issued there is no quick fire way

of verifying right now, but that does not matter. For any issued instruction once the

timers for all of its operands becomes 0 it can be removed from the instruction window.

So, this we can treat as verification.

So, what we can do is that for this particular scheme. So, of course, for other schemes it

will differ, but for this particular scheme any issued instruction if the window of

vulnerability is passed which means the timers are 0 for all of its source operands, it is

verified. So, we can have a small separate circuit to check that or periodically we can

check. So, it depends on the implementation.

So, as I said we can either have a periodic passes every 10 cycles we look at all of the

instructions that have been issued and they are not within the window of vulnerability

none of their operands are within the window of vulnerability they can be removed. So,

whatever logic we choose this is the verification logic that an instruction has correctly

executed for this particular scheme.

So as I say it will vary depending on the scheme, but regardless of this we have a generic

verification conceptual block over here and once an instruction is verified to be correct it

can be removed from the instruction window. So, this is one approach.

(Refer Slide Time: 24:10)

The other approach that we are calling method 2 is that, we move the instructions to a

dedicated replay queue after issue. So, after we issue we remove the instruction and we

move the instruction to a dedicated replay queue. So, as the instruction moves to the

pipeline stages after the instruction window we also send it to a dedicated replay queue

and the verification logic is the same.

So, assume that it gets verified which means that there is no miss speculation it’s not in

the foreword slides of any miss speculated instruction, then what we do is that we

remove from the replay queue if verified. So, we just remove it throw it out and let us see

if there is a replay then instructions from the replay queue will enter the pipeline via this

mass.

So, the replay queue does two things it is a temporary storage area for instructions that

have been issued, but not yet verified to be fully correct. Fully correct basically means

that they are not in the forward slides of any missspeculated instruction. So, this is a

temporary staging area once they are verified they are removed and if we need to do a

replay, then from the replay queue we can replay these instructions like this that is why a

multiplexer has been provided.

So, this replay question we did not answer for the previous design which is method 1. So,

I will start by first erasing the ink on the slide and then telling you that if we have to do a

replay, then what will happen is that since the instructions that need to be replayed are

already there in the instruction window, they will simply proceed to the rest of the

pipeline stages instead of the instructions that are not being replayed.

So, we will give higher priority to the replay instructions the instructions that are being

replayed and they will move through the pipeline stages and this time the verification

will be successful because they are guaranteed to be on the forward slice of at least that

misspeculated load. So, in this case the temporary staging area is within the instruction

window and they do not leave the instruction window unless it is guaranteed that they

will never be a part of a miss speculation and the replay proceeds from here.

Whereas in this case the replay proceeds from a dedicated replay queue. So, in most

designs this is kind of preferred because it is simpler it is more scalable it’s easy to create

it in hardware and also there is no need to increase the complexity of the instruction

window given that it is so, complex as it is. So, we made it even more complex with this

mechanism.

So, typically using the replay queue was more common, but again I do not want to take

sides for the purposes of simplicity the instruction window can also be used.

(Refer Slide Time: 27:28)

Now, we need to discuss one important corner case with the non selective replay scheme.

So, let us look at this scheme in somewhat more detail, let us now look at a very very

important corner case.

So, this corner case is present in a lot of replace schemes that consider a superset of the

forward slice and clearly one such scheme is this scheme the nonselective replay scheme.

So, in this case, this is the first instruction that we are speculating and we are speculating

let us say the value of the load which is the value that will be loaded into register r1.

Let us further assume that these three instructions are in the window of vulnerability. So,

these three instructions will get squashed. So, let us say you assume that whatever

speculation you are doing either the latency or the value it does not matter, but the

speculation is that within a certain time period the value will be there with us. If this is

not happening let us say for a cache miss, the add sub and xor instructions will need to be

squashed and subsequently replayed.

So, one thing that is rather clear is that the add in sub instructions the tag will be

broadcast and they will be replayed in the natural course of actions. Why?

(Refer Slide Time: 29:08)

Well we can clearly see a dependence. So, the, so this is the WV instructions and r 1 is

basically the value whose tag will be broadcast is the register whose tag will be

broadcast. So, the second instruction over here the add instruction both of its source

operands are r 1, we can clearly see a read after write dependence over here. Now, if we

take a look at the next instruction.

(Refer Slide Time: 29:48)

Then that would be reading r 2 again there is a read after write dependence. So, we can

clearly see that instruction 1 will wake up instruction 2 which will wake up instruction 3

which here is the fun part that is xor instruction xor r 5, r 6, r 7 the xor instruction is

independent of the first three instructions.

So, there is clearly no read after write dependence as a result in the entire forward slice

of the load the xor instruction is not there. So, it is one of those instructions that is a part

of the WV, but not a part of the forward slice of instruction 1. So, in a certain sense if for

some reason this get squashed why will it get squashed? Well, it is possible that the

operand the source operand corresponding to r7 that was woken up in the window of

vulnerability.

Now the ready bit of this will be set to 0 and as we can see there is nobody to set the

ready bit of r7 to 1 which essentially means that there is nobody to wake up the xor

instruction and so, of course, I did not see the example here. So, instead of r7 we

consider r6 see it says that let us assume. So, let me go by what is written.

(Refer Slide Time: 31:29)

So, let us assume that r6 is ready bit is set to 0, then as we can see no other instruction

before it is actually writing to r6. So, it is very well possible that one of the early

instructions that let us say was writing to r6 that is committed a left the pipeline after that

there is no instruction to broadcast the tag associated with this register.

Hence, this instruction will become an orphan there is nobody to wake it up and unless

we do something it will remain in the pipeline forever. So, this needs to be understood

that this instruction over here is an orphan. We require another instruction to wake it up

that other instruction there is a possibility that it might not be there if that is happening

then this instruction will stay in our pipeline forever.

So, we have to deal with orphan instructions and why do we have orphan instructions?

Well we have them because our window of vulnerability. Let us say all the instructions

that were squashed in the window of vulnerability are essentially a superset of the

forward slice. So, it can be a superset or it can be equal right of the forward size slice and

this is causing the problem.

(Refer Slide Time: 32:59)

So, there are two ways of solving this. The first is an impractical method, but it

nevertheless should be discussed because it is the classic example of a bad idea. See in

this case what we can do is, we can devise a mechanism to keep track of the squashed

instructions.

One way of keeping track of the squashed instructions can be that we have some

auxiliary structure that is some kind of an appendage with the instruction window. So,

what we do is that whenever we squash instructions within the instruction window we

transfer them we essentially copy their id’s to an auxiliary structure.

And then basically we detect which ones are a part of the forward slides and which ones

are not and then we can identify the orphan instructions and then rebroadcast their tags to

wake them up or not kill them in the first place. So, even if let us say they have been

their operands have been set from ready to non-ready from 1 to 0, we can convert it to 0

to 1. If they have already been issued and remove them from the instruction window at a

later point in time.

So, even though having this auxiliary structure that can be used to temporarily store

some of the instructions that have been squashed that appears to be a feasible idea, but

this is very hard to implement. So, this can be attempted as long as somebody is willing

to do it and implement it correctly, but a far better approach which is simpler I am only

stressing about simplicity here is that we let the orphan instruction reach the head of the

rob.

So, we do not do anything then the orphan instruction will reach the head of the ROB at

that point we will find that this instruction is an orphan and it is essentially waiting for a

register operand which clearly means that it has been squashed. So, the instruction the

head of the ROB cannot wait for a register operand and the only thing that it can wait for

is that, it can wait for some value to come back from memory. But it clearly cannot wait

for let us say the result of an add, subtract or multiply instruction at that point we can

execute and commit it.

So, this is if you think about it this is something that does give us some simplicity of

course, we do sacrifice a little bit of LP because of it because we could have executed

this we could have woken up its consumers and done a lot we are not doing it. So, there

is clearly a trade off and something in the middle is also possible where maybe we lead

orphan instruction reached a certain point in ROB and then we initiate a check.

So, it is doable, but as I said that creating orphan instructions as it is either as they are

that is a problem. So, we should try to create as few of these as possible. So, let us now

look at another method that tries to reduce the number of orphan instructions and is more

efficient.

(Refer Slide Time: 36:43)

So, this method is known as delayed selective replay. So, here the idea is to replay only

those instructions that are in the forward slice of the misspeculated load, they are the

only ones that are executed once again and the rest are pretty much allowed to go

through we will see how? So, here also orphan instructions are created, but we will have

a new method a different method of actually dealing with them.

So, let us extend the basics nonselective replace schemes. So, we will still have the

nonselective replace came with all of its elements and the elements will be the kill signal

will be there, the window of vulnerability will be there everything will be there.

But what we will do is that we will have something extra and this extra is what gives this

scheme its edge its advantage over the previous scheme say in this case whenever we

detect a miss speculation what we do is along with asserting the kill signal we plant a

poison bit in the destination register of the load.

So, the destination register instead of containing 64 bits in this case contains (64 + 1) bit

and this bit is known as the poison bit and this poison bit is set to 1. So, wherever the

value is stored this includes the register file wherever the value is transmitted this

includes the bypass paths we increase the width of the data path from 64 to 65 bits and

we also say that look this is a value which has been poisoned.

So, what we do is that we propagate this bit along the bypass path and the register file.

So, then in. So, in this case, what happens is let us say that we predicted that a load will

hit in the data cache. So, let us assume we did that and let us assume that after n cycles

we find out that the load value will not come from the data cache it will come from

somewhere else.

So, what we do is that, we basically create a dummy value which is the dummy value has

no meaning. So, this value is created and along with that is set the poison bit to 1, we

write this dummy value to the register file and we also broadcast this dummy value on

the bypass paths. What is the need for doing it? Well the need for doing it is that we

would have speculatively woken up instructions.

So, we would have speculatively woken up consumer instructions and those consumer

instructions maybe would have gotten selected maybe would have proceeded down the

pipelines. So, they will anyway read the register file see if they read the register file

instead of reading an erroneous value, it is far better that they read a value for the poison

bit is explicitly set.

So, then what happens is that if an instruction reads any operand either from the bypass

path or from the register file this poison bit is set, then the instructions poison which is

set and then it kind of propagates it. So, its destination registers poison bit is set. So,

basically what happens is that the poison bit propagates via the instruction the

instructions destination register, it is passed to the consumer consumers and so on.

(Refer Slide Time: 40:58)

So, let me give an example let us say that we have a load instruction and this load has a

miss speculation. So, we set the poison bit is this, then if we have an add instruction of

this form, then we set the poison bit of r2 because it is reading r1. Then if you have a

subtract instruction of this form, we set the poison bit of r3 because it is reading r2 so, on

and so forth. So, pretty much along the forwards lies all the values get poisoned.

So, which basically says that all of these values are in a sense invalid, they are

potentially wrong and we say that all these values are poisoned. So, this is one way of

nicely keeping track of the forward slice it has its issues, but at least you can see that a

bit is being propagated along the forward slice of this instruction.

(Refer Slide Time: 41:59)

So, what do we need to do in terms of changes to the pipeline? So, when an instruction

finishes execution, we check if its poison bit set which means after the E x stage. So,

after the E x stage recall that we actually set a bit in the ROB indicating the fact that the

instruction has completed its execution at this point we check if its poison bit is set if yes

we squash it.

So, squashing it would basically mean that we set the ready bits in the instruction

window to 0 and we also stop ourselves from setting the ready bit in the ROB the

instruction completed bit in the ROB we do not set that. So, we basically squash it which

essentially means that this instruction is not completed.

If we go back to the replay queue where we talked about the verify logic, we can add one

more verify stage over here where it will verify this poison bit and if it is set well then

the instruction remains in the replay queue it does not go anywhere. Otherwise, we just

remove it we remove the instruction from the IW or the replay queue depending upon

either which scheme which replay scheme we are using.

So, what are the issues with the scheme? Well this scheme is effective in the sense that

as long as we know the value of n which we may not know all the time, but as long as we

know the value which is true most of the time the scheme is undoubtedly effective. So,

now, it is important to understand where do the advantages lie. Well the advantages lie in

the fact that if we consider the two kinds of instructions that are in the WV, but not in the

forward slice then we can see that at least one of the kinds of benefits.

So, let me. So, let me kind of explain this in different manner. So, let me consider all the

instructions which were there in the window of vulnerability, but were not there in the

forward slice. So, let me consider the difference. So, these instructions ideally should not

have been squashed, but since we do not explicitly have a way have a mechanism of

maintaining the forward slice where we still need this.

Now, what we do is that we can divide these into two types one type let us say would

have issued one type would have not issued. See if I consider all the instructions that

would have issued then we would have cleared them. So, why would you why would we

have cleared them? Well, we would have cleared them because we would have seen

clearly that their poison bits were set equal to 0. So, the instructions were clean they

would have gone through.

So, this would have reduced the number of orphan instructions right here because this set

would have been treated correctly. What about the other set of instructions which are

there in the window of vulnerability, but let us say for some reason they are not issued

for a long period of time. So, even after the window of vulnerability these were not

issued. It is very much possible that because of the kill wire one of their operands got

invalidated.

So, we need to worry about this set not about the other set. See if I were to consider this

set of the instructions which are there in the WV the window of vulnerability, but those

who have not issued they can become orphans and if they become orphans we will have

a similar problem.

(Refer Slide Time: 46:27)

So, what we can do is we can always wait for the instruction to reach the head of the

reorder buffer and at that point of time we can say that look this instruction is indeed an

orphan. So, we can execute it. But what was done in this paper which originally

suggested this scheme is that, they looked at a different idea they introduced a different

mechanism which as you will see is effective.

So, all such mechanisms do add their hardware overhead, but they are indeed effective.

So, let us say instruction J was orphaned because of one of its operands which was

woken up by instruction K was reset back to a non ready state. So, J is the one that is

getting orphaned it is getting orphaned because one of its source operands the ready bit

of that was set from 1 to 0 and originally instruction K which was clearly before J in the

instruction sequence had set the ready bit of the operand S 1 to 1.

So, let us look at this on the timeline ok. So, what will happen is that instruction I will

broadcast its tag and it will say that look I have been selected it will do early broadcast of

its tag. Then what will happen is that in this case n cycles later we will detect that there is

a miss speculation for instruction I.

So, we will assert the kill wire. In the middle what will happen is that instruction K will

broadcast and one of Js operands will this source operand is ready bit will get set.

So, then I am assuming it gets broadcasted and then subsequently J is operand wakes up

and after J is operand wakes up, J is kind of ready to get selected subject with other

operands, but let us assume that it does not get selected it remains within the window.

After the N cycle after the window of vulnerability is over because one of Js operands is

vulnerable it gets set from 1 to 0 well no problem. So, what you will see is we can add

one more bus where instruction K will come back later to rescue instruction J. So,

instruction K will again wait for N cycles.

So, instruction K of course, has broadcast and gone away, but after N cycles a timer will

elapse. Instruction K will broadcast the tag once again on the completion bus. So, this is

one way for instruction K to actually rescue all of those instructions like J which it had

woken up.

So, what does instruction K do? It actually broadcasts twice. It broadcasts once at this

point of time which is its regular broadcast and then it broadcasts once again which is n

cycles later in this case it is a new broadcast it is a fresh broadcast it is not something that

was there in an earlier scheme.

See we are assuming that along with the tag bus we add another bus called the

completion bus in which the second broadcast is made and in that again the ready bit of

this operand S 1 is set from 0 to 1 and instruction J can proceed subject to the ready bits

of other operands.

So, this is one example of a repeated broadcast where you kind of come back and rescue

those instructions which for some reason have kind of fallen in the shadows of some

window of vulnerability and who has kind of from a ready have gone to a non ready

state.

So, this is one way of taking care of operands as you can see in this method the important

operative point over here is that in this method we because of the poison bit we were able

to kind of split the potentially orphaned instructions which is this set into issued and not

issued. Issued instructions no problem their poison bit will not be set not issued

instructions we can either have the default scheme which is wait for them to reach the

head of the ROB or otherwise what we do is we have this repeated broadcast scheme to

rescue them later.

Now, let us have a slightly deeper discussion about the scheme and discuss a few of the

subtle points which would kind of tell you about some of the intricacies of having such

schemes and implementing a replay scheme in practice.

(Refer Slide Time: 51:49)

Let us now discuss a few subtle problems that will happen while constructing the

window of vulnerability. So, what was discussed in the lecture on non selective replay

was that, the window of vulnerability starts when we select the instruction that is not

wrong turns out we can do better.

So, consider this cycle this instant of time when the producer broadcasts. So, this pretty

much tells the rest of the world particularly the consumers about the existence of the

producer about the fact that it is broadcasting its tag.

So, it tells the consumers that look this is when you can get yourself selected and you can

enter the pipeline you will get the value either from the register file or the bypass path.

After that other producers executes other stages like reading from the register file

execution and so, on and then at one point of time the execution completes. Now from

the point of view of a consumer it is essentially this point of time that is important.

So, we assume that in this cycle either the execution completes or we are aware that the

execution will not complete. So, we assert the kill wire. So, either one of these two

events happen. Now from the point of view of the consumer when it receives the

broadcast let us say that it gets selected in the same cycle. So, in this cycle if it is getting

selected, then it needs to set its t = N let us say and in this cycle when it is it may receive

the kill signal it sets its t = 1.

and of course, for in a realistic pipeline sometimes the latency might be variable. So, this

might be the latest possible time at which we will get the value of the kill signal it could

be the latest possible time at which the value of that kill signal will be gotten.

So, then at if let us say we get the signal kill signal at any earlier point of time then of

course, the value over here will be nevertheless ≥ 0 because the value of the timer at the

latest possible t = 1. So, for us this should be the window of vulnerability which pretty

much starts with the producer actually broadcasting.

So, this is a slightly more accurate way of doing it as compared to when it can be at other

points as well it can be when the producer is selected for example. So, even that would

not be wrong see if I were to consider the select point which is an earlier point and define

the window like this, see it is possible that n will be higher it will be greater than what it

actually should be which means the WV we will slightly extend to the right.

So, this will just produce more squashes more orphan instructions, it will not be wrong.

So, the correctness criteria over here is that we should not allow an instruction to

complete if it should be squashed in the sense it should not be getting a wrong value. So,

this is one aspect one subtle aspect of the timing.

(Refer Slide Time: 56:11)

Another question that many times students ask is that, why have poison bits in the

delayed selective the replay scheme why have poison bits and the WV together at the

same time? What is the advantage of doing that? Well, if I just have poison bits just think

about it the forward slice can just become huge in the sense the forward slice will never

terminate.

So, let us see if I have one load instruction its value will be poisoned then so on and so

forth. it will just keep going on and on and on after a certain point of course, the correct

value of the register r 1 will come and after the correct value of register r1 comes again

we will start re executing them, but this forward slice will actually become very large

and it will just keep on growing.

So, the size of the forward slice has to be limited. So, one way of limiting the size of the

forward slice is to essentially draw a line which is the line at the end of the window of

vulnerability which is drawn by setting the kill wire. So, this is drawn by setting the kill

wire. So, in the kill wire what happens is that it abruptly terminates the forward slice. So,

it does not allow the forward slice to increase because all the instructions that are getting

that are in the forward slice with operands that wake up during the window of

vulnerability.

If they have not been issued they pretty much get killed. So, this terminates this limits

the size of the forward slice it cannot grow any further and whatever few orphan

instructions are there they can be taken care of. If you just have poison bits and if you do

not do something extra which we will see in a token based replay scheme the size of the

forward slice will become huge. So, the WV in essence limits that and hence it is

required.

So, for us the direction is to have something that exclusively uses poison bits, that we

will show that one bit is not enough we need more bits. So, there are two things. So, we

will show that look one bit is not enough because it is not distinguishing between the

forward slices of different loads because we might be speculating different loads at the

same point of time.

And the other is that we need to make changes at the level of the rename table making

changes at the level of the instruction window is not good enough. So, with this we will

proceed to the next scheme that uses token based replay.

(Refer Slide Time: 59:20)

So, let us now look at token based selective replay which extends the idea of poison bits.

So, let us first leverage a pattern that is found in most programs. So, what we see is most

of the misses in the data cache are accounted for by a very small number of instructions.

So, typically the 90/10 thumb rule is followed where 90% of the misses are accounted

for by only 10% of the instructions, again 90/10 is not hard and fast rule it can be 80/20,

but you roughly get the sense that most of the misses are accounted for by a minority of

instructions.

So, we can design a predictor where given the PC the program counter we predict if it

will lead to a data cache miss or not correct. So, given a PC we predict whether it will

lead to a miss or not and we use a predictors similar to a branch predictor, we call this a

hit miss predictor at the. So, similar to the branch predictor the fifth stage this predictor

can be there at let us say the decode stage. Once we know it is a load of store and let us

say for loads we can use this predictor and we can predict if it is predicted to hit or miss.

(Refer Slide Time: 60:55)

So, what do we do? What we do is that we have a hit miss prediction that is similar in

principle to a branch predictor and that gives us a good idea of whether we will hit or

miss.

(Refer Slide Time: 61:12)

So, instructions that are predicted to miss will have a non deterministic execution time

most likely and will lead to replace let us call this set S1. So, most likely these

instructions will lead to replace other instructions will most likely not lead to replace the

ones that are predicted to hit. So, let us call this set S2.

So, let us consider the set S1. So, these instructions are where we would want to do some

kind of latency speculation or value speculation some kind of prediction basically. See, if

we do some kind of prediction and since there is a high likelihood that things can go

wrong we will have to provision for replace. So, let the instruction collective free token I

will discuss in a second what a token is at decode time and we save the id of the token in

the instruction packet.

So, essentially a token is a number. So, let us say if we have 10 tokens the tokens can be

numbered 0 1 2. So, we can take any free token let us say token number 2 and this for us

is the token. So, we will have a dedicated token allocator similar to a free list that we

allocate a token to the instruction which we are predicting to have a problem it might

need a replay and instead of a witness predicted if there is a different kind of speculation.

We can also use a confidence predictor where let us see if it is low confidence, then we

can either decide not to speculate or if we are speculating we should provision for a

replay. So, we give it a token.

(Refer Slide Time: 62:57)

So, assume the instruction load r1, 4[r4] is predicted to miss. So, then what we do is we

give it a token and we save the id of the token in the instruction packet of this instruction

as well as in other places, but let us first we store it in the instruction packet and we say

that this instruction is the token head for the token it collected. See if we let us say this

collected token number 5, we say that it is the token head for token number 5.

So, that is what we say. So, then what we do is that we propagate this information to all

the instructions that are dependent on the load which is similar to the way that we were

propagating poison bits. So, the consumer consumer’s consumer and so, on such that the

entire forward slice will have token number 5. So, the load of course, will have it and the

entire forward slice of the load will also have token number 5.

So, this can be propagated. So, now, if the load instruction fails in the sense that let us

say we were speculating that we made a guess that it will hit in the d cache and then we

did an early wake up for other instructions and as we are predicted there might be a

problem and there was a problem. So, it is very easy to identify the forward slice of the

load instruction just by this token id we can just squash them we will see how this is just

a high level idea.

(Refer Slide Time: 64:58)

So, what we do is to implement this we change the structure of the rename table. So, we

had discussed this load instruction right. So, in the rename table given a register as

important an architectural register as input, the rename table previously was yielding

only the physical register and of course, the available bit, but I am not talking about that

right now.

Along with that let us also store a token vector which is a bit vector of tokens and let us

see if token number 5 a given instruction has received the number the bits 0 1 2 3 4 and 5

and if it contains token 5 there is a 1 here, you can also contain multiple tokens if it

contains token 2 there is a one here the rest are 0.

So, if an instruction a token head we will save the id of the token that it owns an

instruction packet, we have already seen that. We assume that we have a maximum of n

tokens and token vec is an n bit vector which means that this vector is N bits for the

instruction that is the token head.

So, what we will do is that we will have a token associated here with each source register

and we will have a token vector associated with each source register and we will have a

token vector associated with the instruction.

So, consider any instruction of let us say this type. So, for r2 and r3 we access the

rename table. So, let us say the token vector that we get is T 2, then for r3 we get T 3

right then the tokens that r1 will contain which is also the same token that the instruction

will contain will be T 2 union T 3 which means that it is a part of the forward slice of

both the instruction that produces r2 and the instruction that produces r3 and of course,

now these are all the tokens that r1 contains.

So, any subsequent instruction that uses r1 that will automatically inherit all the tokens

that r1 contains the tokens are propagated in that fashion. Now if we consider a load

instruction of this type well then the tokens that r1 will contain will be the token that was

assigned to r 1 because it’s a token head which let that bt union the tokens of r4 let us

call it T 4. So, this will essentially be the tokens corresponding to the load instruction as

well as the destination register of the load instruction.

(Refer Slide Time: 68:18)

So, this is shown nicely in a diagram over here let us assume that for r2 and r3 these are

the tokens shown with different colors. So, when we add r1, r2, r3 the tokens for the

instruction as well as the tokens for the register r1 are basically these. So, you can see

that all of these tokens show up here it is a clear union operation that we have.

So, then what we do is that in the rename table we read the tokens for r2, we read the

tokens for r3 we perform the union operation and then again we write back the tokens for

r1 and of course, let us see if this were a load instruction and there was a token head. We

would add that also and that would be the tokens of r1. So, what do we again do? We

read the tokenVECs of the source operands from the RAT table.

So, the RAT table is again being made more complicated. So, in any architectural

scheme some of these structures you know have to be made more complicated we merge

the tokenVECs of the source operands as you can see we save the merge tokenVEC for

the destination registered in the rename table as you can see. Additionally, this is also

stored in the instruction packet such that later on in the pipeline this information can be

used.

So, here what is the key insight? The key insight is that instead of having one poison bit

we actually have many poison bits. So, previously in the delayed selective replay scheme

we had one poison bit we do not have that here, we have many poison bits right not 1, we

have many poison bits and each one of them is a token and they are propagated.

(Refer Slide Time: 70:45)

So, after the token head instruction completes execution. So, after the load instruction in

this case we see if it took additional cycles. This is essentially the verification phase that

we have been talking about if yes well then it means that we have a problem. So, we

broadcast the token id.

So, token id is the id of that token head to signal a replay which is case 1 and as you can

see let us say that this was the token head of the load instruction it is broadcasted and this

signals a replay for these two instructions. Case 2 is that no problem happened then we

broadcast the token id to all the instructions, they turn the corresponding bit off. So, I

should have shown this animation. So, I am clearing of the pointer and I am showing this

once again that we broadcast the token id and we replay these two instructions.

(Refer Slide Time: 71:44)

But if there is no problem which is the second case then we can turn the corresponding

bit off which as you can see over here that we broadcast it to all the instructions in the

instruction window. And I said as I said the tokenVEC is a part of the instruction packet

and we will also store it within the entry of each instruction window.

So, once you broadcast it to all the entries of the instruction window and the rename

table all of them will turn this off. So, as far as we are concerned the token is released.

So, this was one problem we are having in earlier case that forward slices forward slices

used to grow and grow. So, this will not happen.

As soon as the token head instruction has executed correctly we will just release the

token, but for that first we will have to broadcast it to all the entries in the instruction

window and rename table such that they set the corresponding bit associated with the

token to 0 and then the token can be added to the free list of tokens.

(Refer Slide Time: 73:11)

So, this was for the instructions in which we are predicting a problem we made a

provision for a replay. S2 is the set of instructions for which we were not predicting a

problem like for example, if we are doing latency speculation, we are predicting that for

S2 there is a very high likelihood that they will hit in the cache, but then nevertheless it is

a predictor. So, assume an instruction that was not predicted to miss actually misses.

Well no token is attached to it we have not attached a token. So, the only thing that can

be done is we adopt the more expensive operation option over here which is to flush the

pipeline. So, we have had a fairly deep discussion of replay based mechanisms.

So, we will stop this lecture video over here the next lecture video we will look at a

simpler version of an out of order pipeline. And then of course, the last part of this

chapter will focus on compiler enhanced techniques for enhancing ILP parallelism

reducing the number of instructions etcetera.

