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Welcome to chapter 5. In this chapter, we will discuss Alternative Approaches to the Issue 

and Commit stages. So, issue and commit stages, the way we have described in chapter 4, 

this has kind of been described in a very simplistic manner. Say modern out of order 



processor is way more complicated than the basic description that has been provided in 

chapter 4. 

Nevertheless, the aim here is to basically look at some of the corner cases and then, move 

on to a simpler design which of course, is less efficient and then discuss. 
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So, I have the schedule over here and so, then we discuss first we complicate our design, 

then we simplify it and discuss something which is less efficient and finally, we discuss 

compiler based techniques where of course, we discuss a diff erent paradigm, where we 



discuss how to use software based techniques that includes smart compilers and profilers 

to generate efficient code. 

So, in this chapter, we do require some background and the background is of course chapter 

4 on the issue execute and commit stages. So, we will start with out of order pipelines. 

This is something that is required. So, the, for the background; then of course, we need to 

know the wakeup select mechanism in great detail and finally, precise exceptions on the 

instruction commit. So, the requirements for this chapter are these three things which you 

will get in chapter 4. 
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So, in chapter 5, the main thing that we look at is called aggressive speculation, where we 

complicate things. As you see this nice looking painting over here, even with three or four 

simple crayons a complicated picture has been drawn; something very similar will be done 

in hardware, where with our basic mechanisms. So, what are the basic mechanisms? Well, 

when you think about it in hardware, we always joke that hardware essentially has a set of 

registers and a set of wires. That is it. 

So, whatever we do is just with registers and wires and with nothing else. So, with that we 

implemented a host of stuff. So, the biggest attraction in that sense, in the previous chapter 

which was chapter 4 was branch prediction which is one form of speculation, where if we 

detect that a branch has been mispredicted, we flush the pipeline. So, we flush the pipeline 

and when do we do that? 



We wait for the mispredicted branch to reach the head of the reorder buffer, at that point 

we detect it and we flush the pipeline. This is not the only form of speculation; we have 

other kinds of speculation as well, which we will discuss in this chapter. So, these other 

kinds of speculation are low latency speculation and value speculation, which we will 

discuss in this lecture. 

So, the idea here is simple with low latency speculation it is that we have different levels 

of memory. We have an L 1 cache, L 2 cache, main memory and so on. So, the we have a 

memory hierarchy basically. So, the pipeline is connected to the uppermost level of 

memory which is fast, so which we have assumed take 1 or 2 cycles, but that does not 

contain all the memory locations. 

So, then we have an L 2 cache which contains a superset. So, we can make a guess that we 

will find the value in the L 1 cache; but if we do not find the value, we will have to go to 

the L 2 which takes more time. But from the point of view of the pipeline when we do an 

early broadcast, we can as we shall see in some cases, in many cases rather we can make 

a guess that we will find the load in the L 1 cache and proceed. But what if our guess is 

wrong? Well, we will see what needs to be done. Similarly, we can also predict values. 

So, recall that for read after write dependencies which were true dependencies, we have 

not done anything. We said that look, it is a read after write dependency, we have a 

producer, we have a consumer; the producer produces the value, the consumer consumes 

the value, we have nothing to do that was our stand. But if we have a producing instruction 

over here, let us say I p which produces something that the consumer instruction consumes. 

So, if this is let us say a memory location or a register, we can have a value predictor if it 

is possible to predict the value. In this case, we can run the producer and consumer in 

parallel and the dependency is broken; of course, if the value prediction is wrong. So, in 

this case is speculation because we not only predict, but we also move forward. So, that is 

speculation. 

Say this speculation is wrong, then of course, there is trouble; we need to do something. 

So, what do we need to do? Well, we will see, but the problem at hand is that in an 

aggressive processor, we do a lot of guesswork. Based on that, we wake up our instructions 

and we execute them. Sometimes the guesswork turns out to be wrong and in that case, we 

need to do something that is the crux of our discussion. 



(Refer Slide Time: 06:21) 

 

What are the types of aggressive speculation? Well, there are many many types, but these 

are clearly the most common. One is address speculation, where we try to predict the 

address of a load and we dispatch the load early to the memory system such that all the 

instructions that are dependent on the load can be woken up. This is slightly more specific, 

where we predict the dependencies between loads and stores. 

That allows us to do many things, we can send loads early, we can forward data between 

stores and loads by passing unresolved stores. Next is latency speculation, where we 

assume that a given access will hit in the either in the load store queue or in the data cache. 

A hit means that we will get the value. So, a memory access will take 1 cycle or 2 cycles; 

in the sense, we know the latency. 

Then, we have a value prediction which of course is the hardest, but it is the only way of 

working around read after write dependencies. So, there is no way of actually solving read 

after write dependencies, this problem. The only way that we can actually still get a high 

I pc in code that has such dependencies, if we somehow make the producer and the 

consumer instructions run in parallel. 

This is possible if let us say the value that the consumer instruction reads, that value is 

predicted and on the basis of that we proceed. So, this is known as a speculative execution 

and modern processors do embody many many kinds of speculation like this. But mind 



you, with any kind of speculation, there is a chance of a mistake. In that case, something 

needs to be done. 
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So, let us look at our address speculation. So, we have seen this before. So, this diagram 

over here, we had seen something very similar, while we were predicting the outcome of 

branches. So, the predictor is generic. So, we had discussed this there also that is a generic 

structure of a predictor. So, let us say for a given memory address if you want to predict 

the address of the load or a store, we can use exactly the same structure where we use the 

n least significant bits. 

We use it to access a table of 2𝑛 entries, wherever there is a hit, if let us say there is a 

match over here, then there will be an address over here and this, we will use as the load 

address can be the store address as well. But since loads are on the critical path, we 

typically do the prediction for loads. So, this is a very simple scheme, where you predict 

the last address and unlike branch predictors, we cannot use saturated counters over here. 

Because this problem is not amenable to saturated counters. So, it is not fundamentally a 

counting problem. We are storing an address; so, in this case, we store the last address. So, 

as we had discussed the branch predictor gives the generic structure of a predictor which 

of course can be used in many many different cases scenarios. 
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So, let us now look at a different kind of predictor called as stride based address predictor. 

So, in this case, let us take look at the C code first. The C code is doing something that is 

rather simple; the C code is just taking an array of 10 elements and adding all the 10 

elements and producing a sum. 

So, what we have over here we is that we have sum + = arr(i); where i is varying from 0 

to 9. So, we are adding the first 10 elements. So, that is what we are getting, the sum of 

the first. See if I were to do it in assembly, I can convert it to simple disk assembly, where 

I might I map i to r1, sum to r2 and the base address of the array r is stored in r 0. 

So, what I do is that I compare r1 with 10 every cycle. If the comparison fails, if there is 

no equality, if there is inequality, then I load the value of the base of the array to r3 and 

then I update the sum over here and then, what I do is I increment the memory address 

which is the base address of the array over here, I increment the loop index and then, I 

jump back over here. So, this line is what I want to draw your attention to first. In this case, 

we increment the base address by 4. 

Why 4? Because we are assuming that the size of an integer is 4 bytes, so, that is why we 

are incrementing it by 4. Now, let us consider this load instruction which is the most 

important. So, it is so important that I am erasing the ink on the slide. Whenever I do that, 

it should be very important. 



So, here what I am doing is that I am loading a value from the address store in register r0, 

this line should be read along with this line, where we are incrementing the value of r 0 by 

4. So, the address stored over here is getting incremented by 4 every iteration. So, we can 

think of this as a stride based pattern, where if I have an address predictor over here. 

Then, the address predictor will have to explicitly take into account the fact that every time 

we access this instruction, the address is getting incremented by 4. And 4 in this case, it is 

stride. 
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So, what do we do? Well, we use a different stride based predictor because in this case, 

the last address based predictor will not be useful. So, we need to use a different kind of 

predictor called a stride-based predictor. So, the last address, let it be A. Let the stride be 

S and the pattern be P. So, what we have is that we have a similar table as over here, which 

of course is addressed with the n LSB bits of the program counter. 

Each entry looks like this, where we have the address, the stride and the pattern. So, in 

each entry, what we store is the memory address computed the last time, along with that, 

along with the memory address computed the last time, the this instruction with this PC 

was executed, we store to additional pieces of information. 

So, we store what is the stride, which means historically what the memory address has 

been getting incremented with and whether we follow a stride based pattern or not. So, let 



us see for the sake of prediction, if let us say the pattern bit is 1 which means that we can 

conclude that we follow a stride-based addressing pattern we can predict A + S as the next 

address. 

When we actually compute the address of this load instruction, so let us say the computed 

address is A’. So, we subtract (A’ – A) and we equate that to the stride. So, I should use a 

double equal to because it is clear it is an equality and not an assignment. 

So, we pretty much equate that (A’ – A) == S. See if a stride based addressing pattern is 

indeed being followed, this will be equal to the stride. So, we update the last address from 

A, we update it to A’, the stride of course remains the same and the pattern bit is set to 1, 

if it is not already 1. 

But let us say that this stride based addressing is not being followed, then we have a choice. 

Say if this is a 1 bit from 1 0 or this can also be a saturating counter. So, it is important 

to understand that a saturating counter is a generic mechanism which is not just limited to 

branches right; clearly not. So, for example, if I were to consider the code that is shown 

here in slide number 7, again I want to draw your attention so I am erasing ink on the slide. 
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So, let us say that this was part of some high level function foo. We will find a stride-based 

addressing pattern over here. So, this is something that we will find. But after we exit the 



function and we come back again, so let us say we exit and a long time later again we 

come back, we will find that for the first axis the stride-based pattern will not hold. 

But that does not mean that the behavior has changed. This is essentially a temporary 

aberration. If we use a saturating counter, then what we can do is we can ignore that and 

we can still continue to predict on the basis that it is indeed stride-based and the rest of the 

predictions will turn out to be correct. 

So, that is why whenever we store something about the past history, we should think not 

once, but twice, but thrice that what exactly is the pattern that is being followed and how 

much of hysteresis do you want to give it. 
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If we want to tolerate these occasional anomalies, this should be a saturating counter that 

is number 1. And let us see if the stride changes, then we should see whether we should 

just treat it as an occasional anomaly and not change the stride or let us say there is a 

persistent change in the stride, then of course, the value of the stride S should be changed 

over here. 

Say much of this depends on actual simulation and actual engineering, but the key idea is 

that we store these three pieces of information and the prediction if a stride based pattern 

is followed is always A + S and whenever we resolve the address, we always compute (A’-

A), where A’ is the resolved address and compare it with the stride. 



If it is equal, well that is great we can increase the confidence of P. If it is not equal, we 

can do several things. Much of that depends upon whether P is the saturating counter are 

not. An amount of hysteresis that we want to give it and so, there is no hard and fast rule 

on how much of hysteresis needs to be given. So, typically, what happens is that we run 

hundreds, thousands of simulations on the programs that people are expected to use and 

we look at the behavior that these programs are following. 

(Refer Slide Time: 18:28) 

 

So, we have discussed address speculation now. Let us now discuss the load store 

dependence speculation. So, what has been seen is that if a given memory address, let us 

see it has a load. If there is a collision; collision means same memory address with a 

previous store in the pipeline. 

This tends to be in a sense a predictable steady state behavior and these collisions in a 

certain sense can be predicted, which means that if I have a load, I can predict with a 

reasonably high accuracy that look the value will actually come from a previous store that 

is there in the pipeline. In the sense, an LSQ forwarding will give the value and the value 

will not really come from the data cache. Why is this the case? 

Well, we will have to look at the nature of the code. Say a lot of code is essentially this 

register spill code, which leads to this behavior that when we spill a register because we 

run out of registers and then, we execute a function and restore it. In that case, what 



happens is that well we have a store and then, we have a load and as I said we can either 

spill because we run out or we spill it because of a function call regardless of the reason. 

We always have the store load pairs and since, they are not that far apart, they will still be 

in the pipeline. So, moment, we see this load, we can say with high confidence that look 

there is a previous store that will supply value to it and there are many other examples of 

coding patterns, mainly with respect to function calls or with respect to loading data and 

so on, where such a pattern holds. 

See if you can predict these collisions with good enough accuracy. So, let us say if we 

predict that there are no collisions, then we do not have to wait for unresolved stores. We 

just send the load directly to the cache, we get the value and we wake up the consumers or 

let us say if you predict that there is a very high probability of a collision between a store 

and a later load, even if there are unresolved stores in the middle, we need not wait for 

them. 

Because if you have predicted that look this store and this load are going to collide and 

nobody else, then we directly forward the value; do not wait for these and the load 

proceeds. So, this of course, is highly dependent upon the way that we write programs; but 

given that most assembly programs are written roughly in a similar manner and this pattern 

holds across language, across compilers, across processors. 

That is why processor design should be designed in such a way to leverage this pattern. 

So, there is an important philosophical insight over here. Almost all architecture and 

optimization, so in a sense, based on their learning based optimizations. So, they look at 

the way that programmers actually write their code and on the basis of that, they decide 

what kind of hardware will best take advantage of these patterns. If there were no patterns, 

no architectural optimization would actually work ok. 
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So, how do we find collisions? Nothing, we have a standard template that we have set up 

in our good old branch prediction days. So, given that we have learned that we just keep 

on using it. So, some loads do show a consistent behavior, they can be predicted as 

colliding or non-colliding. So, little bit of idea whenever you have these bulbs that is when 

we have an insight. 

So, we have a collision history table CHT which takes an n-bit PC n-bit program counter 

and then, well, it points to an entry same as a branch predictor we predict whether its 

colliding or non-colliding. And here, you can have a single bit or you can have a saturating 

counter; no problem at all. So, we can have a saturating counter which can take care of 

those occasional anomalies. How many bits to have? Well, a lot of those are outcomes 

outcrops of a simulation related study. 



(Refer Slide Time: 23:13) 

 

Let us now discuss how to use the CHT. So, the CHT is used like this that we can use it at 

two points. We can do the prediction itself at two points; the first is at the time of decoding 

which of course I am not showing over here, it is not can be done, also it can be done at 

the time that we resolve the address of the load. So, it can be done at two points. 

So, I am showing here that when we compute the address of a load, we access the CHT. 

So, this is of course at the time of resolution, but also it can be done at the time of decoding. 

So, in this case, it does not matter; but we will show other cases, where it actually does. 

So, if the load is predicted to be colliding, what it basically means is that in the load store 

queue, there is a store which has the same address with the load. 

See it does not mean that there are no intervening stores in the middle that would not have 

the same address, but there is at least one. So, what do we need to do? Well, we need to 

wait for all the prior stores in the load store queue to be resolved to get resolved. Once 

they get resolved, what needs to be done is two things. 

Either we get this forwarded value that is option 1, well then there is no problem at all or 

we send the value to the data cache. If it is predicted to be non-colliding which means that 

there is no forwarding that is going to happen most likely of course, then we send the load 

directly to the data cache and we are done. 



Once the address is resolved, so basically the address of let us say the store in consideration 

is resolved. So, if you do not know which one, then pretty much once the addresses of all 

the stores before the load are resolved and let us say all of them its known the entire state 

of load store queue before the load is known the store queue actually not the LSQ, but the 

store queue before the load is known, we are in a position to see whether there is a collision 

or not right. 

See, any of these addresses match, then there is a collision; else not. So, in this case, we 

update the CHT with this information and let us say that there was a collision, but we 

speculated fast it, there is a need to recover the state as simple as that. So, this essentially 

allows us to send some loads which are non-colliding to the data; to the data cache L 1 

cache without waiting for unresolved stores before it to get resolved. So, that wait time we 

avoid. 

So, which means we can send loads early, we can make up their consumers. So, this gives 

us more I pc. It gives us more parallelism and more I pc. This can be augmented with more 

information which is where when we predict becomes important. So, let us say that we do 

this prediction at decode time. 

So, what we can augment it? Augment it with is we can augment it with the store to load 

distance which basically means that if there is a forwarding, how many entries separate 

the store and the load. Howsoever, it is measured because we have separate load and store 

queues. 

See, it can be the number of stores before it, number of loads before it or a sum, it does 

not matter. For a load, it will typically be the number of stores before it. So, which will 

basically essentially be this distance, where these are all stores. Say if this distance is D, 

what we do is that a load waits still there are less than D entries before it in the LSQ. So, 

of course, this needs to be interpreted contextually. 

See in the context of this description, it is the number of entries before it in the store queue. 

So, the load basically just waits still the number of entries in the store queue are till they 

are < D which means until they are greater than equal to D nothing; but the moment it goes 

below D and no forwarding has happened. You are kind of sure that no more forwarding 

will happen because this is what we have predicted. 



So, load at this point can be dispatched to the data cache. It can be sent to the data cache 

because what we predicted is that we predicted a collision, but we predicted something 

more also. What we predicted is that the store to load distance can be measured in different 

ways, but let us measure it for the time being with the number of stores before the load. 

So, this was predicted as D and the moment that the distance between a load and the earliest 

store in the store queue, this falls below D. You will find that this prediction pretty much 

does not hold which means that there are no more matching stores, there are no matching 

stores most likely of course. So, then the load can directly be sent to the data cache. 

So, this is an optimization no doubt. It uses more information which is the distance D. 

Whenever, we use more information, we use more space. So, we expect a better prediction, 

a more accurate prediction, a more informative prediction. In this case, the prediction 

indeed gives us more information and this information can be used productively. 
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Now, let us come to another idea which is one of the most sophisticated ideas in this space. 

So, this is a far more refined proposal so to speak. So, as compared to the basic CHT, this 

mechanism is known as store sets. So, we start out in the same manner. So, always our 

predictors will keep on looking the same, a right pretty much or basic branch predictor 

design. 



So, here our explicit aim is to remember both store dependencies and pretty much for a 

load, we should be able to say that which stores are kind of part of what is its stored set. 

For a store set is basically the set of all the stores that can forward their value to a load, 

pretty much like that store set is a set of stores. 

So, here is what we do. So, I will describe this kind of part by part because it is a kind of 

an intricate scheme, but once understood, it will not appear to be that complicated. So, 

given a load or store, we start in a conventional manner, where we extract the end least 

significant bits. 

We use it to access 2𝑛 entries table. So, this table previously was giving us direct prediction 

information, in this case it will not give us. It will instead give us a pointer to one more 

table. So, what is the first table? The first table is the store set identifier table SSIT. What 

we read over here is for a load or store we read it store set id. 

So, for every load in the simple design, we will have one store set that is associated with 

it and that will have a unique id. So, we will discuss slightly later how that unique id is 

given, but let us assume it has a unique id. So, then, the we will figure out this by reading 

this table. Similarly, the every store it is part of one store set. So, this of course, in the 

initial proposal, it was one store set; later on, it was extended to multiple store sets. 

But in this slide set, we are only discussing the simple idea which is a single store set. Say 

every store also if you read, then you will have a pointer to its store set id which is 

essentially the store sets that comprises that does not compile comprise; but that contains 

this store. 

So, what we do is we use the store set id regardless of whether it is a load or store, we use 

it to access the LFST table which is one more table. So, if let us say this is a 7-bit id, then 

this table will have (2)7 entries or 128 entries, each entry stores the last fetched store in 

the store set. 

So, as I said a store set is basically a set of stores and it will tell us that look a certain store 

which is there in a pipeline is the latest in this store set which means it will most likely 

forward the value. So, how do we identify an instruction? Well, we provide each 

instruction with a unique instruction number which pretty much if you read the book, it 

pretty much is a number which is twice the size of the reorder buffer. 



So, it can be a circular counter which can be I mean actually more than twice the size of 

the reorder buffer such that if there is one instruction before it or after it, you will never 

have the same instruction repeating; it is more than twice the size. 

So, then if we have a cyclic counter like that, we can generate a unique instruction number 

for every instruction in the pipeline, such that at one point of time there should be no 

repetition. So, basically if let us say in the pipeline, all instructions can have a unique 

number and furthermore, if there is one instruction over here. 

So, it will first start at the bottom of the ROV and gradually work its way up the ROV. 

Since, lifetime we should never see two instructions with the same number that are actually 

different. So, having an instruction number that is varies between let us say 0 and any 

number that >2 X ROV size, this to a certain extent solves this. 

So, the long and short of this story is that every instruction is allotted a unique instruction 

number and in the LFST table, we say that look in this store set what is the instruction 

number of the latest store that has been fetched. So, this when so this check mind view is 

done at decode time not at resolution time. 

So, the load basically knows that if I am the load, there are a lot of instructions that have 

been fetched before me. Out of these some of these stores are in the store set; what is a 

store set? The set of all the stores that can potentially forward their value to the load out 

of this store is the latest. It is a part of my store set and it is the latest which means this is 

the store that will most likely forward the value to me. 

The rest are important in the sense they are in my store set, but I do not care. I only care 

about the idea of the latest store because that is what is going to forward a value to me and 

that to me is the one that I should be concerned about and this is the last fetch store in the 

store set and how do I identify it? 

Well, as I said, we have a scheme of providing a unique instruction number to each 

instruction and this is recorded in LFST given the store set. So, load basically reaches the 

LFST via single level indirect and it finds the latest store id and it stores it. So, every load 

basically if of course, it has a store set associated with it has the idea of the latest fetched 

store LFST which it will use. 
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How will it use? Well, so, this is kind of a loaded text of the slide, but let us go slow. So, 

what we have said is that for every load, we have an associated store set. Stores that have 

forwarded values to it in the past are members of the store set and a store in this case is a 

part of a single store set. But as I said, there are extensions to this idea where this rule is 

broken, but we are not considering that. 

So, what do we do for loads and stores? Well, for loads and stores of course we do different 

things. There is a first is that we read the store set id which is exactly what I am showing 

over here, this is step 1. The second is we get the instruction number of the latest store in 

the store set from the LFST, of course subject to the fact that it exists which is step 2. 

The load waits for store S to get resolved. So, the load basically locates the store S in the 

store queue or we can say that in the store queue whenever the load is resolved, it probe 

the store queue to find if a store with that instruction number is there. So, let us say this is 

the load which got resolved. 

So, once it does, it finds the actually this can be done before resolution also, the moment 

we enter a load, we if we know the LFST the latest store in the store set that this load is a 

part of, then the load can simply probe the store queue and find the entry in this that is the 

latest fetch store. 



So, then we can do several things; one is that if this has not been resolved, we wait for this 

to be resolved and we can check the addresses. The other is we do not have to check for 

the address, the moment we know what is to be stored, we can do a direct forwarding, even 

before the address of the load has been computed. So, several things are possible. 

So, but in all cases, we can ignore all the instructions between the store and the load 

because with very high confidence, we have predicted that there is a dependency between 

the store and load. So, let me explain this once again because this is a reasonably complex 

concept. So, should be explained in different ways till you were able to understand it rather 

thoroughly. 
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So, the idea if I were to explain it in a different way would be that let us consider the 

conceptual view of the load store queue. So, let us see that we add a load at this point at 

decode time and at that point, we read the SSIT and LFST and we are sure that there is a 

store before it in the LSQ, where we clearly have a store set based match. 

So, what can be done in this case is that if we really want to aggressively speculate, when 

the value that will be stored which is roughly also the time when it will get resolved 

because let us look at a store. A store instruction will be let us say of this type that store rx 

which is some offset let us say it is 8 ry. 



So, what we will do is we will read rx, we will read ry both from the register file roughly 

at the same time and then, we will add 8 to ry that will give us the address of the store and 

we will write both the values which is the resolved address as well as the value that needs 

to be stored at the same time. 

Why at the same time? Well, because if we do it a different time that will necessarily 

increase the number of ports that we require in LSQ. So, in terms of implementation it will 

be hard. So, at the time of resolution, we will write both. See the store has been resolved, 

then well we can directly take the forwarded data, even before the load has been resolved 

and continue. 

So, this will give us in a sense a certain speed up and we do not have to wait for the load 

to be resolved and this as far as we are concerned is a performance enhancing optimization. 

So, this is clearly a very powerful thing because what we are doing is we are ignoring all 

the stores and loads, where loads can be ignored; but all the stores in between and even if 

they are unresolved we are saying that we do not care. 

For a store what we do is we read the store set id and then, when are we accessing the 

store? Again, let us say write after decode we are accessing the SSIT. So, this store is 

clearly the latest instruction in the store set. So, we update the LFST with the instruction 

number of the current store and subsequently, we can speculatively forward data to loads 

that are there in its store set. 

Well, I would not say loads are there in the store set; but I would say that loads that are 

supplied value stores in that store set and so, this is how we can in a sense manage these 

fine grained dependencies and also, increase the ILP using this technique. When and where 

do we update the table? Well, the details are there in the book in chapter 5. 

But clearly, when we detect a load store dependence, then if a store set has already been 

allotted, we simply add the store set, we simply add the load to the store set or we just 

record that for this given load, this is the store set. And let us say if the store is not a part 

of the store set, then we add the store to the store set. 

We get rid of its previous mapping and we add it to the store set and let us say the store 

set itself is not there, let me create a new store set and we update the SSIT, SSIT such that 

both this store and this load point to the same store set. So, this bookkeeping is always 



done when we detect the dependence, we need to do this bookkeeping with the SSIT and 

LFST; but that said and done, this is clearly a very powerful optimization its clearly more 

effective than a CHT. 

Because CHT just predicts a collision. In some cases, it can predict the collision and also 

have distance information. But again, that is not that accurate because the distance can 

vary; code can vary, behavior of the code can vary. But this is a far more accurate method 

of predicting which stores will collide with which loads, then we can explicitly wait for 

those stores and forward values and so on. 
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Now, let us come to the next which is load latency speculation. So, we do have a memory 

hierarchy much of this will be discussed in chapter 7. Hence, I really do not want to broach 

this topic right now. But all that I can say is that look, we have a hierarchy of memories 

for performance reasons of course, so there is an instruction cache which I am not showing 

this instruction cache provides instructions to the pipeline. 

The data cache is fast we have assumed a 1 to 2 cycles, it takes to access. It has a very high 

hit rate of 90% for all the accesses that go below. So, this 50% is essentially a local hit 

rate; in the sense that if 100 accesses come request come to the L 2 cache, only 50% of 

those are satisfied. This is a far slower structure, it takes 10 to 50 cycles and of course, if 

we do not find it in the L 2 cache, we go to the main memory, where we will find 

everything. 



Again, we will break this assumption, but let us assume it holds for the time being and this 

has a very long access time 300 to 400 cycles very long. So, we do not know for sure, 

where we will find the data for a given load right. So, we do not know. So, that is the 

reason, I buried my head in the sand. 
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But you can always make a guess. So, we love making guesses that is why we call this sub 

chapter aggressive speculation, where we guess as much as we can. In the hope of getting 

that last drop of ILP, it is like searching for water in the desert, we guess speculate as much 

as possible such that whatever we can extract in terms of slightly higher instruction level 

parallelism, we do that. So, for load instructions, we predict if it will hit in the data cache 

or not. If it will, we do an early broadcast. 

And so, let us say that if let us say a small predictor says it will hit in the data cache, well 

no problem. We broadcast, we wake up the consumers. If the prediction is wrong, we need 

to do something. We will see that in the next section. We can design a hit miss predictor 

for a load given the load PC, we can see whether it will hit or miss; the idea is very similar 

to a branch predictor. 

So, we will not discuss the same thing over and over again. Here, also we can use simple 

bits or we can use saturating counters. So, everything depends upon the nature of the 

workloads. So, a lot of architectural simulation has to be done, but the basic pattern is the 

same. 
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So, you know this by now. What else can we predict? Well, it turns out we can predict 

values as well. Say value prediction as we have discussed is the only way to break a read 

after write dependency between a producer and a consumer, the only way is if we can 

somehow predict the values that the consumer will use and clearly one of the slowest 

instructions in this category, one of the biggest culprits in this category is a load instruction. 

So, the load instructions value is something that we can predict. So, why are values 

predictable? Well, many times, we use this data redundancy. So, use the same values over 

and over again like let us say it is a scientific program, we use the values of e and pi over 

and over again. Bit masking many a times even if we are considering long values, we are 

only interested in a few bits. So, those bits in a sense are predictable. 

Many times, we are using constants in our code. Many times, we have checking code, 

where we almost never have errors; but a large part of the code is the same, a lot of values 

that it uses the same. Virtual functions; well, virtual function is an important virtual 

functions are important things in C ++. 

So, what they basically say. So, my aim is clearly not to introduce an object oriented 

language here, but clearly some introduction might be due that look let us say I have a 

vehicle class. Say it defines everything about a vehicle and let us see in this you have get 

type. 



Say vehicle will have a type and then, we have a subclass of vehicle let us say cars. So, 

cars will again have a definition for the get type function. With the get type for a car will 

be a car, but for the vehicle it might be undefined. So, we can always have this. So, this is 

the key of any object oriented program. 

We can always have a pointer to a car like let us say in a car star. So, as is the convention, 

car starts with the proper car star with a capital letter and a variable with a small letter. So, 

let us have a car and let us say that we have initialize the properties of the car. So, then, 

we can have a pointer to a vehicle and set this equal to car. 

Now, what do we do is that let us say we sent this pointer v across a set of functions; does 

not matter. So, let us say we send this pointer far away and then, we call the get type 

function. So, mind you, we are calling get type on a pointer to vehicle. But what will 

magically happen is that the car will also would have defined the get type function, what 

will magically happen is that instead of this function being called, actually this function of 

the car will be called because this vehicle is actually a car. 

Even though, in the entire code, we are using vehicle star; but this function will get called 

and this is a virtual function and the way it actually does happen is that we have a small 

table with each object, which essentially says that look for get type it just has a pointer to 

the PC and in this case, it is this PC. 

So, all of this code for virtual functions is predictable; similarly, register spill in which we 

have already seen. So, if we take a look at all of this, I would suggest the viewers to just 

take a look at this, these are all coding patterns. 
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So, for example, before object oriented code came along, virtual functions were not there; 

but once that came along and once let us say there was a big need for register spill in, 

hardware always has to take into account software patterns and virtual functions are clearly 

a big example of that once programmers started writing programs in a certain manner, 

hardware had to take that into account and then, hardware had to be redesigned to in a 

sense ensure that C++ programs run quickly. 

So, that this the market for C++ programs which was not there and let us say the mid-80s, 

by the late 90s had become huge. In fact, even now, most of the proper software is written 

in C++ and other dot net languages; but C++ is still big very big. 

So, this is where hardware designers have to step up and ensure that their processors could 

actually run these programs quickly and then, they realize that virtual functions are a very 

important object oriented programming concept and this needs to be supported. One of the 

key ways of supporting virtual functions is of course having support for function pointers, 

that is one in hardware which means that we need support for indirect branches, where the 

target is not hardwired, but it is stored in the register. 

So, this is undoubtedly required, but other than that, they also realize that many of the 

values that are used here are predictable. So, you need a value predictor. 
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So, value predictors pretty much follow the same pattern that we have been discussing up 

till now, which is either predict the last value or let us say the value increases with the 

constant stride predicted on the basis of a stride or you do it on the basis of profiling. What 

is profiling? Well profiling is like this that we take the program, we give it a set of 

representative inputs. 

So, give it a set of dummy inputs or representative inputs or whatsoever you want to call 

it and you have a lot of instructions that are embedded in your profile program; but they 

will not be a part of your final program, which will essentially write the results of values 

and write which direction the program is taking, write down the outcomes of branches a 

host of information to a file a regular file. 

So, this file can then be analyzed and then, important pieces of this information can then 

be used to actually kind of pre-program the hardware such that let us say for example, you 

can say that look for this PC, it most often takes this value. So, let us say if it is a load PC, 

it most often reads this value from the memory system. 

So, all of this information will come via profiling and all of this information in a certain 

sense can be fed to the hardware via special instructions. If the hardware has a value 

predictor and instructions have been exposed to software to program it, see in that sense, 

you will see that your accuracy will improve substantially. So, I would advise all the 

viewers to take a look at the program. 



What does g prof do? I will not tell you now, but you take a look at it, you will get to know 

what it does. So, it is something on these lines along profiling, but what it does you explore 

on your own. 

(Refer Slide Time: 54:03) 

 

This is the last slide in this section, where we discussed the use of confidence bits. So, as 

you have seen we have predicted a lot of things, but of course, that prediction should we 

predict all the time because many times unlike branches, where we are forced to predict; 

in many cases, we need not predict. So, we can have a separate confidence tables which 

will predict the confidence in a sense that how strong will the prediction be and this can 

use saturated counters. 

So, we can see that certain things can be predicted with high confidence. If historically, 

they have been very predictable; otherwise, we say that they are low confidence and then, 

of course, we will have a predictor table as we have seen we enter the PC, we get the 

prediction. 

So, we first use the confidence table to find out if it makes sense to predict, simultaneously, 

we also predict. The predicted table can use you know a single value, can use strides, we 

can have complicated predicted tables that use the last k values and try to predict on the 

basis of that. 



So, these things can be arbitrarily complicated, but the question is that whether we should 

use the predictive value or not, we can use the separate confidence predictor to actually 

tell us and this is an important augmentation to our predictive prediction mechanisms 

because we do not want to unnecessarily predict low confidence stuff and just lose cycles, 

that would be really bad. 

Once the results are available, we update both the confidence as well as the predictor table 

and of course, if the results are available, we also know whether we made a mistake or not. 

So, we recover with a replay flush mechanism. 

Next we will discuss replay mechanisms, where we show how we recover from these 

misprediction, misspeculator, misspeculation related faults. 


