
Artificial Intelligence

Prof. Mausam

Department of Computer Science and Engineering

Indian Institute of Technology-Delhi

Lecture - 91

Deep Learning: Deep Reinforcement Learning

Good. So today we are going to wrap up the whole story, right. So if you think about

it, we started some time back. We defined a Markov decision process. We said ah we

can, if you are given transition and reward we can do value iteration. Great, life is

good. Then we said but you know sometimes transitions and awards are not known.

What do we do? We do Q learning, reinforcement learning, we do exploration

exploitation trade off, we do all of that.

We still compute what is the best action and while we are taking actions in the

environment, we learn reinforcement learning. Awesome, life is good. But then we

said no, that does not work either. Why? Because we are maintaining a table of state

action pairs for example, in Q learning. This is an s cross a table, your actions may be

small, but your state space may be extremely large.

In fact, so large that you cannot even write it out forget even computing a Q table for

it. Forget, you know visiting it infinitely often. So that is just not going to work. So

we said okay, what can we do? Well, not every part of the state space is important,

you know some features are not important some features are more important. Let us

see if we can approximate the Q function as a function approximation over the

features of the state as opposed to the state itself.

So we said okay, we can define a linear basis function representation, where the basis

functions are given the features are given by the domain designer, we did this. But the

problem was a linear is too not very expressive and b we required features from the

domain designer. So what did we do? We said forget that. Let us do a better function

approximation. So we learned deep learning.

Deep learning says give me the raw input data, like a computer image, a vision image,

sorry a digital image for example, a video or whatever. And the model will compute

an approximation of the function to as closeness as possible, given the target and the

parameters of the model. So great, we did that too, in the context of you know

separate function approximation. Now all of this has to come together today.

What are we going to do? We are going to say look, now we can do Q learning with

function approximation, where the approximation is a deep network. Exactly. Okay.

And there is no way there is no magic going to happen today because it is a fairly

advanced area of research. The first Q learning paper, deep Q learning paper came in

2015.

So think about 1977 Bellman’s Markov decision process and now we have reached a

point in 2015 in terms of our trajectory of AI. So we have come very close to the

current state of the art, but that also means that it is fairly sophisticated. So I am going

to touch upon it, I am going to just describe it at a very shallow level, I do not expect

you to understand it deeply.

But you know later you can take an RL first and then you will have a better

understanding of what is happening, okay.

(Refer Slide Time: 03:25)

So we have we are not going to do a lookup table of Q s, a. Instead, we are going to

approximate Q s, a with the parameter w. So we have set of parameters think basis

function representation. The idea is same, but we will think deep networks. So we

have parameters w for the deep network w are the weight matrices and bias terms at

different layers and so on so forth.

And essentially what is going to happen is that a state will go as input, a state action

will go as input, and the deep network will do its magic and come up with a value, the

Q value. It will not be the exact Q value, it would be the approximate Q value. That is

why we call it Q, Q predicted or Q hat, right. And we are going to train this deep

network. Of course, deep network needs training because the weight need training.

We are going to train this deep network such that it predicts the right Q values. Now

how do we typically do Q learning and how do we typically do deep learning.

(Refer Slide Time: 04:32)

So if you remember, Q learning was nothing but give me a new target value. In this

case by let us say one step look ahead. So the target value is typically the current

reward plus max over a prime Q s, a prime a prime and this would be your current, the

target value. And the old value was Q s, a and you want to nudge Q s, a towards the

target. So you basically say old value plus alpha times the difference.

This is the standard temporal difference formulation for Q learning or TD learning or

anything like that. On the other hand, you know that deep Q networks or sorry not

deep networks basically are optimized for a given loss function. They make a

prediction y hat, and they have the true value y the target, and they basically say, give

me a loss function, let us say squared loss. So they say sum of squared of y minus y

hat whole square.

Now let us reconcile them, it is not very hard. So basically, we now have the old value

Q s, a but not the one that we were using in the lookup table, but the one that is

computed by the deep network, so w parameters. And then we take some action a and

then when we take an action a we get some immediate reward and we get we reach

state s prime in the environment.

So our new target value becomes r plus gamma max a prime Q of s prime a prime like

in typical Q learning except that again Q s, a prime a prime will be computed by the

network. So now I have a new target value computed by the network while interacting

in the environment. And the old value computed by the network and I want to nudge

the parameters w such that the squared loss is minimized. This is called deep learning

at the core, okay.

(Refer Slide Time: 06:36)

Now there are many problems to this. So but we will come to the problems. The main

difference between a standard deep learning and deep Q learning or deep RL is that

here my target is also moving. So think about it. Suppose I changed my weights, such

that r plus gamma max a prime Q s prime a prime also became closer to Q s, a there is

a problem. What is the problem? Now the weights have changed.

So the target itself has changed. See in typical deep learning the for an image the

classification is given to you, the gold is given to you that is called training data. Here

the problem is that the training data is generated by w and then that is being used to

update w. There is a circularity here, but we will come to some fixes, right. So this is

a major problem.

(Refer Slide Time: 07:35)

So first what is the final algorithm? The algorithm is you are in a state s you take an

action a you get to state s prime you get some immediate reward r. Then you compute

the new target. The new target would be r plus gamma max a prime Q s prime a prime

computed by w. Then you update weights to reduce the error. The error would be this

new target minus the old value whole square.

For that you would have to compute gradients with respect to w. And if you compute

gradients with respect to w it will come out to be Q s, a w minus y times the gradient

with respect to Q s, a w right and you will have a weight update which basically says

take the w opposite to the direction of the gradient because this is a minimization

option, right.

And because we are doing it one state at a time or a few states at a time, this would be

a stochastic gradient descent although we can come we will come up with the mini

batch version of it, okay. Did I talk about stochastic gradient descent in the when we

did, okay I did. Just check.

(Refer Slide Time: 08:45)

Now come the issues right. So what are the issues? There are many issues. This is not

an easy problem, right? What are the issues? Target values are not fixed. They are

moving. Moreover, when we take a mini batch or when we take the next data point

and take the gradient with respect to that data point, we assume that the data points

are i, i, d independent and identically distributed.

Unfortunately, when you take an action a in state s you reach state s prime. Now the

state s prime is highly correlated with s, because it is that state which you reached by

taking a certain action in state s. So therefore, these data points are not independent.

This is a highly biased data points, highly correlated data points and that also makes

the problem harder and moreover, they depend on w itself.

They depend on the policy, which depends on the parameters. And moreover, if you

have small changes in the parameters you do not know because it is a highly nonlinear

function how the policy is going to change. It is possible that policy changes

completely crazily, in which case training becomes highly unstable, okay. And this is

36,000 feet view. So there are two ways in which we deal with this.

So problem number one, target values keep moving. Problem number two successive

samples are correlated. And there are two different ways to solve this problem. These

are not very unusual. If you think about it, how we did Minimax that we fixed the

opponent, and then we do the best player and then we make the player the opponent

and then we make the best player, right. So this is how Minimax used to work.

And the same idea is going to work here. So we will fix the target Q network by

previous set of weights. It will say target does not move. Then we will come up with

new set of weights, which are very similar to the Q learning loss which we minimize

the Q learning loss. Then we will give this to the target and repeat the process. So that

would be one solution.

And the other solution is because my successive samples are identically, are

correlated, I am going to use a term called experience replay. It is like I have had

some experience, I will go into my memory and I will bring out the experience and

based on that I will learn. It is like that kind of a person who never loses memory.

So they remember exactly what they did at every point in time and now they know

more about the world, they will go back to that memory and improve their parameter.

Then go back to their memory and improve their understanding of the world. So that

would be the two ideas. Let us quickly look at them.

(Refer Slide Time: 11:32)

So in experience replay, we first create experience. So let us say we have a current set

of weight parameters, because we have a current set of weight parameters. We have

an epsilon greedy policy. We can use that epsilon greedy policy to all whatever

exploration exploitation trade off policy to take the action a t in the state s t. When we

do that, we get to state s t + 1 and get some reward in the environment.

We memorize it, we keep it in my experience buffer. So now I have lots of s i, a i, r i

+ 1, s i + 1 tuples in my experience. Now these are successively correlated. So s i and

s i + 1 is correlated; s i + 1and s i + 2 are correlated. But, if I randomly pick the first

and the 750th and the 973rd and so on tuples from this and create a batch then they

may not be exact, I mean the correlation has become much less.

Because you have come a long way from where you started from. So that is the

intuition that people use.

(Refer Slide Time: 12:52)

So essentially they say that, I will randomly pick some points from this experience

and I will call that my mini-batch. So my mini-batch is a set of s, a, r, s prime tuples.

And on each of those, I can compute my Q learning loss based on the target minus the

predicted except I do not want the target to move. So I will use my w minus which is

the previous generation of the weight matrix for the Q network there.

I will keep it frozen. I will not move w minus, I will only move w. So basically what

am I saying? I am saying find me those parameters w such that the one step look

ahead Q function as computed by old parameters computes the same value as I

compute with my current parameters w. Once I have found it I have got some internal

consistency.

It basically says that the previous set of deep networks one step look ahead I have

already encapsulated in my current w parameters. Now I will give this w to w minus

and repeat. And so basically, you can think of it as every time I do this, I am going

one more step in terms of my look ahead. So over time, I will increase my look ahead

span. And I will do better at convergence to the optimal or convergence to near

optimal.

Or we might even not be able to say whether it is optimal or not, because we may not

even be able to express the function which is the true Q function. So it is always going

to be an approximation, but in practice, it will have generalization. Now there are two

questions. So let us do one at a time. Divyanshu. Right. So Divyanshu says my

original problem was I cannot enumerate all states, but now my states are in my

experience.

Do I need to enumerate all states in my experience? And the answer is, well, I am not

giving a theoretical answer. But in practice no. The whole point was that I will be able

to generalize about state features. So by giving these states and by learning this

function approximation, I am hoping that the function approximation will try to

capture the salient parts of a state.

And so if I have, if I had the test time I get a state I have never seen before, it will be

still like some other states will have properties shared by some other states that were

seen in the experience in the past. And based on that my function approximation

would be able to give a good enough prediction to the value.

So hopefully, if we train this right and if the Q function is expressive enough, and if

we have done all the bells and whistles so the training stabilizes, etc., I would have a

much better value function than what I would have done if I did the basic Q level

path. Right. So good question. So Parth says how do you initialize these things, right

very good. So what happens in this is you start always with a random initialization.

So when you do this, initially you have a random initialization, you give that to w

minus. You freeze it. Then you do a different random initialization for w. You do this

internal consistency, you have a new trained w now. You give this trained w to w

minus, and then you randomly initialize w again and then repeat. Or you can choose

not to randomly initialize.

You can do small perturbations in the original w and then you start from there. So

basically you need a new starting point, think of it as local search random restart. So

you have to come up with a good starting point, you can say that the w minus

parameters are good, but I will just do some perturbation so that I can move away

from the slight local optima that I may have reached, things like that.

And then there are many things that people do in order to make these actually work.

So if you really care for deep Q learning or deep, sorry deep reinforcement learning,

deep Q networks are not the state of the art. In fact, I do not know exactly what is the

state of the art. But one algorithm that has become extremely popular and famous is

an algorithm called A3C. It stands for asynchronous advantage actor critic algorithms.

And you will have to read up a little bit on after Q networks, you will have to read up

on policy gradient after policy gradient you will have to read up on actor critic and

then you have will have to talk about what is asynchronous and what is advantage. So

there are multiple steps to go there. Again, that would be best covered in a Q sorry in

a RL course. Yes. How are we updating our experience? Well very simple.

After you have done one step you can recompute to experience working in the

environment, right? So you have now a new set of parameters w minus. Those w

minus define a new epsilon greedy policy. You recompute the experience by a epsilon

greedy policy we have, right. So that kind of stuff. And you do not have to throw

away the old experience. I apologize.

 You do have to throw away the old experience, right. Sorry. Yeah. Because the

distribution is different.

(Refer Slide Time: 18:27)

Okay. So this led to a nature paper and until 2014, you rarely saw a nature paper

coming out of the AI community. They may have been exceptions again, I have

limited time horizon. I started working in this field only in 2002. So but I did not see

many nature papers in the field of AI in the last 15, 20 years.

Except in the last 4, 5 years where these catastrophic, amazing, exponential changes

have been happening in the field. So this is work that came out of DeepMind.

DeepMind was a startup company at the time. I remember that it was sold to Google’s

parent company around 2014, 15. I think it was 2014. Because I remember teaching

my first course in IIT at that time.

And that is the time we had heard that Google has acquired these 20 researchers

sitting in London, who do some work, which nobody knows what. It was not

disclosed, who do some undisclosed work for an undisclosed amount. And in

hindsight, Google made a very valuable buy, right purchase by acquiring DeepMind.

Because today if there is one company, which is at the forefront of deep learning and

reinforcement learning, that would be DeepMind. Their nature papers was very cool.

They created an Atari simulator, which I think existed even earlier. I do not know if

you know Atari games, but when we were kids, there was a time we would play these,

you know simple games where there were very simple joystick controls.

And you know there were not very sophisticated graphics and very basic games, but

they were fun. And many of those basic games are now available as apps in your

phones and so on so forth. What did they say? They said, let me take the original

video sequence of the Atari game, not just one but all of them. And let me train a

network which learns to play each Atari game.

A single network which learns to play each Atari game using deep 2 networks. It was

unfathomable that we can do this. By that time deep learning had just started to come

out. It was not very famous. And the fact that you can train this network to play

games was amazing in and of, of itself. But by taking the original video input and not

even taking anything about the game, not even saying this is the object, this is

shooting, this is that.

It kills the nothing. Let the model figure it out completely from video. They just did

one small thing.

(Refer Slide Time: 21:43)

They said that this is my Atari simulator. It will send an a sequence of images to the

deep network. The deep network will send an action. The action will go to the

simulator and this will repeat. The only thing they did, only thing was that t the top

where there is score, 1, 2, 5 written in characters, vision character, I mean pixels.

They read that and explicitly fed that. That is it.

So the reward signal was a scalar. It was not an image. Otherwise humans read the

rewards using image also but that is the only bit they did not do. They used the

original sequence of videos and the reward signal and said, let us train this network.

And of course, because the original input is an image or a sequence of images, you

have to use a convolution neural network.

(Refer Slide Time: 22:37)

And they also did a little bit of thing like for example, you have to make sure

somebody is moving in the right direction, right or left direction. So just the image

will not tell you that. So they use the last four images basically. The last four images

will tell them what is the sequence, how things are moving, and that is it. And then

everything else they did the model to figure out completely automatically.

So it was end-to-end learning of Q s, a. The word end-to-end comes from I am giving

raw input and nothing else. I am not giving additional features. I am not curating the

model myself. It is completely end-to-end just the data driven. And output would be Q

s, a with for 18 joystick button configurations. And I do not know all the 18 but it was

up, down left, right, you know some button with something whatever, right.

So 18 Q s, a values they will output. And as I said, input state is a stack of raw pixels

from the last 4 frames. And the network architecture is nothing but a CNN.

(Refer Slide Time: 23:40)

And this is what they found. Given enough resources after enough training, they were

able to show that for most games, a deep network was able to surpass human

performance, human performance. Now this human performance may not be the

human champion performance, average human performance, average performance of

a human who plays this game for a reasonable amount of time and get somewhere.

But whatever and sometimes, the improvement over human performance is 2,500%.

This is the line that separates machine better than humans versus human better than

machines. These are all the Atari games on the x axis. And of course, there was one

game, which was the hardest for them. And that was do you know do you guys know?

It is called the Montezuma’s revenge.

So later, people started saying, okay why is Montezuma’s revenge so hard? And they

figured out that it required lot of long-term planning and there are no intermediate

reward signals. Like if you think about a car racing thing, then at every moment you

are getting some reward. As you move forward, your reward is increasing. But as you

crash, your reward goes down or whatever it is.

But in Montezuma’s revenge, you had to solve a set of complicated steps and puzzle

to reach the goal, only then you get the reward. So when the reward signal was so

sparse, and problem so requiring so high level reasoning, that is when it could not do

this. So even today, there are a lot of people who work on reasoning problems,

because deep networks are not the best for reasoning, but they are amazing for

perception.

Perception means just looking at the image and understanding what is going on,

looking at the speech signal and understanding what is being said, looking at

whatever, right. So just understanding, basic shallow level understanding of what is

happening in an image, or audio sequence or a text, that they are very good at shallow

patterns.

But they are not very good at taking those patterns and piecing them in very

complicated ways to do these reasoning for a long-term task, okay. That is what a lot

of people have been, in fact thinking about how to make deep networks do it, how do

deep networks combine with other reasoning methods together, etc. Let me show you

one quick demo.

(Refer Slide Time: 26:07)

So this is a playing breakout. And I am sure this is after 100 iterations notice that it is

missing the ball completely. So it has not been able to learn this very well. After more

training episodes, you know it starts to do slightly better. It is sort of chasing the ball

much better. But there is a trick in this game. What is the trick? Do you know the trick

of the game?

You create a tunnel on the left or on the right and let the ball go up and then let the

ball stay. So after one step if you do this right, the ball will remain there and then it

will you know give you lot of scores. So after many training episodes by chance at

some point it hits on this by chance, because this is exploration, and it will hit on this

by exploration. And once it hits it, it realizes, wow, this is a great way to do this.

Let me so now you see how it has learnt how to play. It is constantly, it has learnt

exactly how to send the ball on the oblique at an angle, so that it gives you lot of

rewards with one particular action. And these kinds of videos are not just for one

game, but for all games at the same time. So it actually blew us away. I am not

kidding you. I mean, I would say that this purchase, howsoever hundreds of millions

of dollars they spent for these 20 researchers is very, very well justified.

(Refer Slide Time: 27:49)

Because you know and then they did not stop. They went on from this MDP kind of

an environment to deterministic MDP kind of environment to Go which is a

adversarial game and I think you all know what happened. It is a deterministic

environment. It is a known environment. But so therefore Go is equal to just you

known search actually Minimax search by its huge state space, huge action space,

long sequences, fast rewards.

And moreover, there are some lot of vision things that if you create a wall of a certain

kind, then you do better, and so on so forth.

(Refer Slide Time: 28:18)

And there they came up with the algorithm called AlphaGo, which was the next

logical step from deep 2 networks, it had deep networks for value function like Q

value or V value. And it also had what is called the Policy Network, which computed

the policy and they were all parameterised by some weights w. And Policy Network

was trained by supervised training on large amount of human games.

So they had a huge record of human games. And then they use that to train a policy

network. And then they did self-play to train the value network. And then networks

were not just deep learning, but also had some search in it. And that is not equal

search, like in depth first search or breadth first search you are going in all directions.

It was unequal search. Some moves were highly evaluated till the very bottom and

some moves were not evaluated because they did not look good.

(Refer Slide Time: 29:10)

Of course, it was a the visual part of it was handled by a convolutional neural

network. And of course, we know what happened. Lee Sedol was defeated by

AlphaGo in this very seminal game in 2016, I believe, right. And he was defeated 4,

1. And in fact, there was a amazing game where everybody thought that AlphaGo has

made a mistake. And Lee Sedol had thought that AlphaGo had made a mistake.

It was not a move that anybody had ever seen in the past. And Lee Sedol played very

well. I am going to win, I am going to win. And then suddenly, the value function

started to show that oh, he is losing because it was an unusual move. It was a great

move, actually, right. And later down the line AlphaGo also defeated the world

champ. So Lee Sedol is like Roger Federer but not like Novak Djokovic.

So the world champion was defeated. I think he was a Chinese person I forgot his

name, the next year, I think in 2017. That did not make that much press because by

then, it was clear that this can happen.

(Refer Slide Time: 30:20)

They also later released AlphaGo Zero. So one of the criticism of this work was that it

was initialized by supervised learning on a huge number of human games. So they

released a patch called AlphaGo Zero an algorithm, which were not a patch, but an

algorithm which would train without any prior knowledge.

(Refer Slide Time: 30:38)

Okay, so let me summarize. So we have now completed the full story, at least at the

first level of first cut. We have talked about deep learning where the strengths are that

it is a universal approximator. It can learn non-trivial functions, nonlinear functions,

very highly nonlinear function. They also had layers one after the other. And that

model is similar to human brain because we also think compositionally, and our brain

also works somewhat in many layers.

It is also being considered as a universal representation across modalities. Because

now audio gets done by recognition gets done by deep networks. Natural Language

Processing gets done by deep networks. Computer vision gets done by deep networks.

And now people are even starting to come up with logical inference and shortest path

algorithms which can be done in deep networks. But they have not been super

successful.

But you never know that 5 years or 10 years down the line everything is done by the

deep networks and nothing is done by symbolic. There is also a set of people who

believe that, that is not a good idea and they said look, symbolic algorithms are good

at something, they are good at reasoning, they are good at manipulating variables in a

human interpretable way.

And deep networks are really good at you know final accuracy but not interpretability

and not long-term reasoning. And so how do we combine these two seamlessly. So

there is a lot of work that is going on in that space also. One of the strengths in my

opinion of deep networks is that it discovers features automatically in a task specific

manner. And therefore features are not limited by human creativity.

So even if you think about this particular deep Q learning earlier, you would come up

with some features you will say okay, a king with a checkmate, sorry with a check has

some, is a feature. A king, which can get a checkmate in one step is a feature. If I

have a queen, it is a feature. If they have a queen, it is a feature, etc. And those

features come up from human pockets, they come from human insight.

And they can be great and they may not be great depending upon how good the

human designer is. So therefore, AI gets reduced to human intelligence in some ways.

Whereas now the model itself comes up with features and those features are trained in

ways that we cannot understand, but they are these vectors of numbers, but they are

trained so that you do really well on the task, okay.

At the same time, deep learning has weaknesses. It is highly resource hungry, it needs

a huge amount of data. Typically, it also needs huge amount of compute power. So

people find it really hard. I have been told that some of these large organizations

sometimes burn a million dollars per month on just computational power, just. That is

too much. So academicians are finding it harder and harder to catch up with some of

the research that is coming out of you know larger organizations.

And also these are uninterpretable. So we do not know why the model is doing what it

is doing. We will talk more about that in the ethics topic. And deep RL is, the basic

idea is replace the value in policy tables by deep networks and have had great success

in Go, Atari and many other areas. Okay, so that completes that chapter.

