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Good. So today we are going to wrap up the whole story, right. So if you think about 

it, we started some time back. We defined a Markov decision process. We said ah we 

can, if you are given transition and reward we can do value iteration. Great, life is 

good. Then we said but you know sometimes transitions and awards are not known. 

What do we do? We do Q learning, reinforcement learning, we do exploration 

exploitation trade off, we do all of that. 

 

We still compute what is the best action and while we are taking actions in the 

environment, we learn reinforcement learning. Awesome, life is good. But then we 

said no, that does not work either. Why? Because we are maintaining a table of state 

action pairs for example, in Q learning. This is an s cross a table, your actions may be 

small, but your state space may be extremely large. 

 

In fact, so large that you cannot even write it out forget even computing a Q table for 

it. Forget, you know visiting it infinitely often. So that is just not going to work. So 

we said okay, what can we do? Well, not every part of the state space is important, 

you know some features are not important some features are more important. Let us 

see if we can approximate the Q function as a function approximation over the 

features of the state as opposed to the state itself. 

 

So we said okay, we can define a linear basis function representation, where the basis 

functions are given the features are given by the domain designer, we did this. But the 

problem was a linear is too not very expressive and b we required features from the 

domain designer. So what did we do? We said forget that. Let us do a better function 

approximation. So we learned deep learning. 

 

Deep learning says give me the raw input data, like a computer image, a vision image, 

sorry a digital image for example, a video or whatever. And the model will compute 



an approximation of the function to as closeness as possible, given the target and the 

parameters of the model. So great, we did that too, in the context of you know 

separate function approximation. Now all of this has to come together today. 

 

What are we going to do? We are going to say look, now we can do Q learning with 

function approximation, where the approximation is a deep network. Exactly. Okay. 

And there is no way there is no magic going to happen today because it is a fairly 

advanced area of research. The first Q learning paper, deep Q learning paper came in 

2015. 

 

So think about 1977 Bellman’s Markov decision process and now we have reached a 

point in 2015 in terms of our trajectory of AI. So we have come very close to the 

current state of the art, but that also means that it is fairly sophisticated. So I am going 

to touch upon it, I am going to just describe it at a very shallow level, I do not expect 

you to understand it deeply. 

 

But you know later you can take an RL first and then you will have a better 

understanding of what is happening, okay. 
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So we have we are not going to do a lookup table of Q s, a. Instead, we are going to 

approximate Q s, a with the parameter w. So we have set of parameters think basis 

function representation. The idea is same, but we will think deep networks. So we 



have parameters w for the deep network w are the weight matrices and bias terms at 

different layers and so on so forth. 

 

And essentially what is going to happen is that a state will go as input, a state action 

will go as input, and the deep network will do its magic and come up with a value, the 

Q value. It will not be the exact Q value, it would be the approximate Q value. That is 

why we call it Q, Q predicted or Q hat, right. And we are going to train this deep 

network. Of course, deep network needs training because the weight need training. 

 

We are going to train this deep network such that it predicts the right Q values. Now 

how do we typically do Q learning and how do we typically do deep learning. 
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So if you remember, Q learning was nothing but give me a new target value. In this 

case by let us say one step look ahead. So the target value is typically the current 

reward plus max over a prime Q s, a prime a prime and this would be your current, the 

target value. And the old value was Q s, a and you want to nudge Q s, a towards the 

target. So you basically say old value plus alpha times the difference. 

 

This is the standard temporal difference formulation for Q learning or TD learning or 

anything like that. On the other hand, you know that deep Q networks or sorry not 

deep networks basically are optimized for a given loss function. They make a 

prediction y hat, and they have the true value y the target, and they basically say, give 



me a loss function, let us say squared loss. So they say sum of squared of y minus y 

hat whole square. 

 

Now let us reconcile them, it is not very hard. So basically, we now have the old value 

Q s, a but not the one that we were using in the lookup table, but the one that is 

computed by the deep network, so w parameters. And then we take some action a and 

then when we take an action a we get some immediate reward and we get we reach 

state s prime in the environment. 

 

So our new target value becomes r plus gamma max a prime Q of s prime a prime like 

in typical Q learning except that again Q s, a prime a prime will be computed by the 

network. So now I have a new target value computed by the network while interacting 

in the environment. And the old value computed by the network and I want to nudge 

the parameters w such that the squared loss is minimized. This is called deep learning 

at the core, okay. 
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Now there are many problems to this. So but we will come to the problems. The main 

difference between a standard deep learning and deep Q learning or deep RL is that 

here my target is also moving. So think about it. Suppose I changed my weights, such 

that r plus gamma max a prime Q s prime a prime also became closer to Q s, a there is 

a problem. What is the problem? Now the weights have changed. 

 



So the target itself has changed. See in typical deep learning the for an image the 

classification is given to you, the gold is given to you that is called training data. Here 

the problem is that the training data is generated by w and then that is being used to 

update w. There is a circularity here, but we will come to some fixes, right. So this is 

a major problem. 
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So first what is the final algorithm? The algorithm is you are in a state s you take an 

action a you get to state s prime you get some immediate reward r. Then you compute 

the new target. The new target would be r plus gamma max a prime Q s prime a prime 

computed by w. Then you update weights to reduce the error. The error would be this 

new target minus the old value whole square. 

 

For that you would have to compute gradients with respect to w. And if you compute 

gradients with respect to w it will come out to be Q s, a w minus y times the gradient 

with respect to Q s, a w right and you will have a weight update which basically says 

take the w opposite to the direction of the gradient because this is a minimization 

option, right. 

 

And because we are doing it one state at a time or a few states at a time, this would be 

a stochastic gradient descent although we can come we will come up with the mini 

batch version of it, okay. Did I talk about stochastic gradient descent in the when we 

did, okay I did. Just check. 
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Now come the issues right. So what are the issues? There are many issues. This is not 

an easy problem, right? What are the issues? Target values are not fixed. They are 

moving. Moreover, when we take a mini batch or when we take the next data point 

and take the gradient with respect to that data point, we assume that the data points 

are i, i, d independent and identically distributed. 

 

Unfortunately, when you take an action a in state s you reach state s prime. Now the 

state s prime is highly correlated with s, because it is that state which you reached by 

taking a certain action in state s. So therefore, these data points are not independent. 

This is a highly biased data points, highly correlated data points and that also makes 

the problem harder and moreover, they depend on w itself. 

 

They depend on the policy, which depends on the parameters. And moreover, if you 

have small changes in the parameters you do not know because it is a highly nonlinear 

function how the policy is going to change. It is possible that policy changes 

completely crazily, in which case training becomes highly unstable, okay. And this is 

36,000 feet view. So there are two ways in which we deal with this. 

 

So problem number one, target values keep moving. Problem number two successive 

samples are correlated. And there are two different ways to solve this problem. These 

are not very unusual. If you think about it, how we did Minimax that we fixed the 

opponent, and then we do the best player and then we make the player the opponent 

and then we make the best player, right. So this is how Minimax used to work. 



 

And the same idea is going to work here. So we will fix the target Q network by 

previous set of weights. It will say target does not move. Then we will come up with 

new set of weights, which are very similar to the Q learning loss which we minimize 

the Q learning loss. Then we will give this to the target and repeat the process. So that 

would be one solution. 

 

And the other solution is because my successive samples are identically, are 

correlated, I am going to use a term called experience replay. It is like I have had 

some experience, I will go into my memory and I will bring out the experience and 

based on that I will learn. It is like that kind of a person who never loses memory. 

 

So they remember exactly what they did at every point in time and now they know 

more about the world, they will go back to that memory and improve their parameter. 

Then go back to their memory and improve their understanding of the world. So that 

would be the two ideas. Let us quickly look at them. 
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So in experience replay, we first create experience. So let us say we have a current set 

of weight parameters, because we have a current set of weight parameters. We have 

an epsilon greedy policy. We can use that epsilon greedy policy to all whatever 

exploration exploitation trade off policy to take the action a t in the state s t. When we 

do that, we get to state s t + 1 and get some reward in the environment. 

 



We memorize it, we keep it in my experience buffer. So now I have lots of s i, a i, r i 

+ 1, s i + 1 tuples in my experience. Now these are successively correlated. So s i and 

s i + 1 is correlated; s i + 1and s i + 2 are correlated. But, if I randomly pick the first 

and the 750th and the 973rd and so on tuples from this and create a batch then they 

may not be exact, I mean the correlation has become much less. 

 

Because you have come a long way from where you started from. So that is the 

intuition that people use. 
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So essentially they say that, I will randomly pick some points from this experience 

and I will call that my mini-batch. So my mini-batch is a set of s, a, r, s prime tuples. 

And on each of those, I can compute my Q learning loss based on the target minus the 

predicted except I do not want the target to move. So I will use my w minus which is 

the previous generation of the weight matrix for the Q network there. 

 

I will keep it frozen. I will not move w minus, I will only move w. So basically what 

am I saying? I am saying find me those parameters w such that the one step look 

ahead Q function as computed by old parameters computes the same value as I 

compute with my current parameters w. Once I have found it I have got some internal 

consistency. 

 

It basically says that the previous set of deep networks one step look ahead I have 

already encapsulated in my current w parameters. Now I will give this w to w minus 



and repeat. And so basically, you can think of it as every time I do this, I am going 

one more step in terms of my look ahead. So over time, I will increase my look ahead 

span. And I will do better at convergence to the optimal or convergence to near 

optimal. 

 

Or we might even not be able to say whether it is optimal or not, because we may not 

even be able to express the function which is the true Q function. So it is always going 

to be an approximation, but in practice, it will have generalization. Now there are two 

questions. So let us do one at a time. Divyanshu. Right. So Divyanshu says my 

original problem was I cannot enumerate all states, but now my states are in my 

experience. 

 

Do I need to enumerate all states in my experience? And the answer is, well, I am not 

giving a theoretical answer. But in practice no. The whole point was that I will be able 

to generalize about state features. So by giving these states and by learning this 

function approximation, I am hoping that the function approximation will try to 

capture the salient parts of a state. 

 

And so if I have, if I had the test time I get a state I have never seen before, it will be 

still like some other states will have properties shared by some other states that were 

seen in the experience in the past. And based on that my function approximation 

would be able to give a good enough prediction to the value. 

 

So hopefully, if we train this right and if the Q function is expressive enough, and if 

we have done all the bells and whistles so the training stabilizes, etc., I would have a 

much better value function than what I would have done if I did the basic Q level 

path.  Right. So good question. So Parth says how do you initialize these things, right 

very good. So what happens in this is you start always with a random initialization. 

 

So when you do this, initially you have a random initialization, you give that to w 

minus. You freeze it. Then you do a different random initialization for w. You do this 

internal consistency, you have a new trained w now. You give this trained w to w 

minus, and then you randomly initialize w again and then repeat. Or you can choose 

not to randomly initialize. 



 

You can do small perturbations in the original w and then you start from there. So 

basically you need a new starting point, think of it as local search random restart. So 

you have to come up with a good starting point, you can say that the w minus 

parameters are good, but I will just do some perturbation so that I can move away 

from the slight local optima that I may have reached, things like that. 

 

And then there are many things that people do in order to make these actually work. 

So if you really care for deep Q learning or deep, sorry deep reinforcement learning, 

deep Q networks are not the state of the art. In fact, I do not know exactly what is the 

state of the art. But one algorithm that has become extremely popular and famous is 

an algorithm called A3C. It stands for asynchronous advantage actor critic algorithms. 

 

And you will have to read up a little bit on after Q networks, you will have to read up 

on policy gradient after policy gradient you will have to read up on actor critic and 

then you have will have to talk about what is asynchronous and what is advantage. So 

there are multiple steps to go there. Again, that would be best covered in a Q sorry in 

a RL course. Yes. How are we updating our experience? Well very simple. 

 

After you have done one step you can recompute to experience working in the 

environment, right? So you have now a new set of parameters w minus. Those w 

minus define a new epsilon greedy policy. You recompute the experience by a epsilon 

greedy policy we have, right. So that kind of stuff. And you do not have to throw 

away the old experience. I apologize. 

 

 You do have to throw away the old experience, right. Sorry. Yeah. Because the 

distribution is different. 
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Okay. So this led to a nature paper and until 2014, you rarely saw a nature paper 

coming out of the AI community. They may have been exceptions again, I have 

limited time horizon. I started working in this field only in 2002. So but I did not see 

many nature papers in the field of AI in the last 15, 20 years. 

 

Except in the last 4, 5 years where these catastrophic, amazing, exponential changes 

have been happening in the field. So this is work that came out of DeepMind. 

DeepMind was a startup company at the time. I remember that it was sold to Google’s 

parent company around 2014, 15. I think it was 2014. Because I remember teaching 

my first course in IIT at that time. 

 

And that is the time we had heard that Google has acquired these 20 researchers 

sitting in London, who do some work, which nobody knows what. It was not 

disclosed, who do some undisclosed work for an undisclosed amount. And in 

hindsight, Google made a very valuable buy, right purchase by acquiring DeepMind. 

 

Because today if there is one company, which is at the forefront of deep learning and 

reinforcement learning, that would be DeepMind. Their nature papers was very cool. 

They created an Atari simulator, which I think existed even earlier. I do not know if 

you know Atari games, but when we were kids, there was a time we would play these, 

you know simple games where there were very simple joystick controls. 

 



And you know there were not very sophisticated graphics and very basic games, but 

they were fun. And many of those basic games are now available as apps in your 

phones and so on so forth. What did they say? They said, let me take the original 

video sequence of the Atari game, not just one but all of them. And let me train a 

network which learns to play each Atari game. 

 

A single network which learns to play each Atari game using deep 2 networks. It was 

unfathomable that we can do this. By that time deep learning had just started to come 

out. It was not very famous. And the fact that you can train this network to play 

games was amazing in and of, of itself. But by taking the original video input and not 

even taking anything about the game, not even saying this is the object, this is 

shooting, this is that. 

 

It kills the nothing. Let the model figure it out completely from video. They just did 

one small thing. 
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They said that this is my Atari simulator. It will send an a sequence of images to the 

deep network. The deep network will send an action. The action will go to the 

simulator and this will repeat. The only thing they did, only thing was that t the top 

where there is score, 1, 2, 5 written in characters, vision character, I mean pixels. 

They read that and explicitly fed that. That is it. 

 



So the reward signal was a scalar. It was not an image. Otherwise humans read the 

rewards using image also but that is the only bit they did not do. They used the 

original sequence of videos and the reward signal and said, let us train this network. 

And of course, because the original input is an image or a sequence of images, you 

have to use a convolution neural network. 
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And they also did a little bit of thing like for example, you have to make sure 

somebody is moving in the right direction, right or left direction. So just the image 

will not tell you that. So they use the last four images basically. The last four images 

will tell them what is the sequence, how things are moving, and that is it. And then 

everything else they did the model to figure out completely automatically. 

 

So it was end-to-end learning of Q s, a. The word end-to-end comes from I am giving 

raw input and nothing else. I am not giving additional features. I am not curating the 

model myself. It is completely end-to-end just the data driven. And output would be Q 

s, a with for 18 joystick button configurations. And I do not know all the 18 but it was 

up, down left, right, you know some button with something whatever, right. 

 

So 18 Q s, a values they will output. And as I said, input state is a stack of raw pixels 

from the last 4 frames. And the network architecture is nothing but a CNN. 
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And this is what they found. Given enough resources after enough training, they were 

able to show that for most games, a deep network was able to surpass human 

performance, human performance. Now this human performance may not be the 

human champion performance, average human performance, average performance of 

a human who plays this game for a reasonable amount of time and get somewhere. 

 

But whatever and sometimes, the improvement over human performance is 2,500%. 

This is the line that separates machine better than humans versus human better than 

machines. These are all the Atari games on the x axis. And of course, there was one 

game, which was the hardest for them. And that was do you know do you guys know? 

It is called the Montezuma’s revenge. 

 

So later, people started saying, okay why is Montezuma’s revenge so hard? And they 

figured out that it required lot of long-term planning and there are no intermediate 

reward signals. Like if you think about a car racing thing, then at every moment you 

are getting some reward. As you move forward, your reward is increasing. But as you 

crash, your reward goes down or whatever it is. 

 

But in Montezuma’s revenge, you had to solve a set of complicated steps and puzzle 

to reach the goal, only then you get the reward. So when the reward signal was so 

sparse, and problem so requiring so high level reasoning, that is when it could not do 

this. So even today, there are a lot of people who work on reasoning problems, 



because deep networks are not the best for reasoning, but they are amazing for 

perception. 

 

Perception means just looking at the image and understanding what is going on, 

looking at the speech signal and understanding what is being said, looking at 

whatever, right. So just understanding, basic shallow level understanding of what is 

happening in an image, or audio sequence or a text, that they are very good at shallow 

patterns. 

 

But they are not very good at taking those patterns and piecing them in very 

complicated ways to do these reasoning for a long-term task, okay. That is what a lot 

of people have been, in fact thinking about how to make deep networks do it, how do 

deep networks combine with other reasoning methods together, etc. Let me show you 

one quick demo. 
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So this is a playing breakout. And I am sure this is after 100 iterations notice that it is 

missing the ball completely. So it has not been able to learn this very well. After more 

training episodes, you know it starts to do slightly better. It is sort of chasing the ball 

much better. But there is a trick in this game. What is the trick? Do you know the trick 

of the game? 

 

You create a tunnel on the left or on the right and let the ball go up and then let the 

ball stay. So after one step if you do this right, the ball will remain there and then it 



will you know give you lot of scores. So after many training episodes by chance at 

some point it hits on this by chance, because this is exploration, and it will hit on this 

by exploration. And once it hits it, it realizes, wow, this is a great way to do this. 

 

Let me so now you see how it has learnt how to play. It is constantly, it has learnt 

exactly how to send the ball on the oblique at an angle, so that it gives you lot of 

rewards with one particular action. And these kinds of videos are not just for one 

game, but for all games at the same time. So it actually blew us away. I am not 

kidding you. I mean, I would say that this purchase, howsoever hundreds of millions 

of dollars they spent for these 20 researchers is very, very well justified. 
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Because you know and then they did not stop. They went on from this MDP kind of 

an environment to deterministic MDP kind of environment to Go which is a 

adversarial game and I think you all know what happened. It is a deterministic 

environment. It is a known environment. But so therefore Go is equal to just you 

known  search actually Minimax search by its huge state space, huge action space, 

long sequences, fast rewards. 

 

And moreover, there are some lot of vision things that if you create a wall of a certain 

kind, then you do better, and so on so forth. 
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And there they came up with the algorithm called AlphaGo, which was the next 

logical step from deep 2 networks, it had deep networks for value function like Q 

value or V value. And it also had what is called the Policy Network, which computed 

the policy and they were all parameterised by some weights w. And Policy Network 

was trained by supervised training on large amount of human games. 

 

So they had a huge record of human games. And then they use that to train a policy 

network. And then they did self-play to train the value network. And then networks 

were not just deep learning, but also had some search in it. And that is not equal 

search, like in depth first search or breadth first search you are going in all directions. 

 

It was unequal search. Some moves were highly evaluated till the very bottom and 

some moves were not evaluated because they did not look good. 
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Of course, it was a the visual part of it was handled by a convolutional neural 

network. And of course, we know what happened. Lee Sedol was defeated by 

AlphaGo in this very seminal game in 2016, I believe, right. And he was defeated 4, 

1. And in fact, there was a amazing game where everybody thought that AlphaGo has 

made a mistake. And Lee Sedol had thought that AlphaGo had made a mistake. 

 

It was not a move that anybody had ever seen in the past. And Lee Sedol played very 

well. I am going to win, I am going to win. And then suddenly, the value function 

started to show that oh, he is losing because it was an unusual move. It was a great 

move, actually, right. And later down the line AlphaGo also defeated the world 

champ. So Lee Sedol is like Roger Federer but not like Novak Djokovic. 

 

So the world champion was defeated. I think he was a Chinese person I forgot his 

name, the next year, I think in 2017. That did not make that much press because by 

then, it was clear that this can happen. 
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They also later released AlphaGo Zero. So one of the criticism of this work was that it 

was initialized by supervised learning on a huge number of human games. So they 

released a patch called AlphaGo Zero an algorithm, which were not a patch, but an 

algorithm which would train without any prior knowledge. 
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Okay, so let me summarize. So we have now completed the full story, at least at the 

first level of first cut. We have talked about deep learning where the strengths are that 

it is a universal approximator. It can learn non-trivial functions, nonlinear functions, 

very highly nonlinear function. They also had layers one after the other. And that 

model is similar to human brain because we also think compositionally, and our brain 

also works somewhat in many layers. 

 



It is also being considered as a universal representation across modalities. Because 

now audio gets done by recognition gets done by deep networks. Natural Language 

Processing gets done by deep networks. Computer vision gets done by deep networks. 

And now people are even starting to come up with logical inference and shortest path 

algorithms which can be done in deep networks. But they have not been super 

successful. 

 

But you never know that 5 years or 10 years down the line everything is done by the 

deep networks and nothing is done by symbolic. There is also a set of people who 

believe that, that is not a good idea and they said look, symbolic algorithms are good 

at something, they are good at reasoning, they are good at manipulating variables in a 

human interpretable way. 

 

And deep networks are really good at you know final accuracy but not interpretability 

and not long-term reasoning. And so how do we combine these two seamlessly. So 

there is a lot of work that is going on in that space also. One of the strengths in my 

opinion of deep networks is that it discovers features automatically in a task specific 

manner. And therefore features are not limited by human creativity. 

 

So even if you think about this particular deep Q learning earlier, you would come up 

with some features you will say okay, a king with a checkmate, sorry with a check has 

some, is a feature. A king, which can get a checkmate in one step is a feature. If I 

have a queen, it is a feature. If they have a queen, it is a feature, etc. And those 

features come up from human pockets, they come from human insight. 

 

And they can be great and they may not be great depending upon how good the 

human designer is. So therefore, AI gets reduced to human intelligence in some ways. 

Whereas now the model itself comes up with features and those features are trained in 

ways that we cannot understand, but they are these vectors of numbers, but they are 

trained so that you do really well on the task, okay. 

 

At the same time, deep learning has weaknesses. It is highly resource hungry, it needs 

a huge amount of data. Typically, it also needs huge amount of compute power. So 

people find it really hard. I have been told that some of these large organizations 



sometimes burn a million dollars per month on just computational power, just. That is 

too much. So academicians are finding it harder and harder to catch up with some of 

the research that is coming out of you know larger organizations. 

 

And also these are uninterpretable. So we do not know why the model is doing what it 

is doing. We will talk more about that in the ethics topic. And deep RL is, the basic 

idea is replace the value in policy tables by deep networks and have had great success 

in Go, Atari and many other areas. Okay, so that completes that chapter. 

 

 


