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Local Search: Hill Climbing With Random Walk and Random Restart part 5 

 

Today in the next class we will be looking at many, many different algorithms in this fold and in 

fact local search is sort of very intuitive. So, you can start making your own algorithms and most 

likely either somebody has made it or there is some problem where this is helpful. So, you know 

just think about it that way so what is a possible problem with sideways move like an immediate 

problem, yes moving in the wrong direction that is probably the whole of local search.  

 

I do not know whether we can fix it unless we have additional information, yes algorithm might 

not terminate, why am I did not terminate? It is just going on and on looking at the same stage let 

us say with from state A I can reach state B and from state B I can reach state A and both of 

them have the same value. And suppose I do not impose a length of 100 limit then what would 

happen it will keep doing AB-AB-AB but it does not have to be. 

 

Suppose A goes to B, C and D, B goes to C, D and E, D goes to and so on there is this fully 

connected kind of a shoulder what is going to happen? I will keep just oscillating between among 

these states what is a simple fixed limit on number of moves sure that is a that is a simple fix that 

we have already tried to add in sideways move.  So, limit the maximum number of sideways 

moves. What else? One at a time, yes keep a track on the last node and keep a track of the last 

node and do not repeat it. 

 

What is your name?  Shreya, Shreya keep a track of the last node and do not repeat it.  The last 

node is a specific example up until now we had complete amnesia. We had no idea where we 

came from so what Shreya suggests let us have a little idea where we came from let us remember 

the last node, we can generalize it to last k nodes whatever.  
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And so this algorithm is called Tabu search and this spelling is not mistaken this just how the 

algorithm is called. So, you create a Tabu list and Tabu list is a fixed length queue it basically 

says these were the nodes that were visited recently. Let us say the last 100  and you basically 

say you are not allowed to go back to the same node that is already in my Tabu list that is it. So, 

add most recent state to the queue drop the oldest. 

 

Never the step that is currently the Tabu, now if you think about it as the size of the Tabu list 

grows, as you have a huge size of the Tabu list almost the full search space size of the Tabu list 

then you are essentially doing a systematic search you are saying do not repeat a state no 

redundancy whatsoever do not repeat a state look at all possible states that way. So, eventually 

this will become systematic search if my Tabu list becomes extremely large. 

 

But in practice people use a small constant size Tabu list and that is about a 100 or so. Now we 

can extend, extend this idea why do we need a constant size Tabu list. Let us let us say that we 

will keep exploring until we hit a better optimum.  
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So, that particular algorithm is called enforced hill climbing the idea enforced means I am 

enforcing that I will always climb the hill what does that even mean. So, it means that I hit a 

local optimum I start doing great first search. So, now notice what are we doing from a point of 

complete amnesia that I do not have any memory of where I came from I am starting to add 

some memory in the system. 

 

Initially I added a Tabu list which is a small memory and now I am saying let us start doing 

breadth-wise search. Let us start doing systematic search. So, I am doing hill climbing I do hill 

climbing I do hill climbing I reach a local optimum from the at local optimum I start doing 

breadth wise search in all directions I keep doing this bit for search what is going to happen is 

that at some point if I do this breath wise search long enough I will hit a state whose value is 

better than the root. 
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 Let us think about why that is going to happen that is going to happen let us say I am stuck in 

this second local optimum.  So, this particular local optima. or let us stuck in this flat local 

optimum third local optima. Now if I start doing breadth wise search from here I will be 

exploring states in all directions. So, at some point I will keep going keep going keep going and 

eventually hit this node on the second Hill whose value will be better than me and then I will 

jump. 

 

And then I will forget that first search and start doing hill climbing all over again. So, I have 

enforced that if I am stuck in a local optimum I am enforcing that you have the jump off of it and 

this algorithm is called enforced hill climbing. In practice what happens is that the exhaustive 

search is exhausting it takes a lot of memory it takes a lot of time. So, in practice what ends up 

happening is that I am spending a lot of time doing breadth-first search and then suddenly I have 

found a better solution I jump and I started doing hill climbing. 

 

I quickly looked go up the hill for hill climbing and then I am stuck and as soon as I am stuck I 

start doing breadth first search again and there is a prolonged period of breadth-first search 

before I get to the next. This is you can think of it as a middle ground between local search and 

systematic search. In systematic search the search space will become so large that you will not be 

able to make progress and memory requirements can be very high. 

 



In local search memory requirement is nothing there is no memory requirement in practice. But I 

may not lead to an optimal solution and so there is a middle ground here where I will do local 

search and I will do systematic search then I get to a better local point I do local search and I get 

to systematic search then I get to a better local point and I came doing this. And this is a better 

middle ground where I will improve my solution but I will not be using a full memory and time 

as a typical systematic search solution. 

 

And this algorithm avoids the algorithm of choice for a very well-known AA planner called the 

FF planner. FF was a planning system where the idea was to reach a start state to the goal state 

and output would be a part. Now the output is a part how can I do local search well I will be 

searching in the path space. Now I will be making local moves in the path space I will be 

removing one edge and adding another edge kind of a local move to my part, each state will be a 

full part. 

 

And then on top of this I will do local search but I will be stuck in lots of local optima there were 

lots of local optima and so they came up with the info still climbing algorithm and that enforces 

climbing algorithm led to the best winning planner. By the way this idea that assignment should 

be competitions is very, very common in the field of AI. Pretty much all fields have competition 

all these research communities on that in that particular field participate their software in their in 

those competitions and whoever wins their technology becomes most famous. 

 

So if you want to make an impact in any field look at what competitions they participated and try 

to win those companies. For example I worked in planning so we also submitted some 

probabilistic planners in the past and we could not win but we were close second. So, you know 

we had some influential was in a little 2010 on problems. The most famous planner for 

deterministic planning not probabilistic where the solution is a part there is no probability was 

the FF planner in the early 2000s  from about 2001 to up to about 2010-11 FF planner forms 

Yogh Hoffmann. 

 

He is now add I believe Max Planck and so group in Germany both the planner that everybody 

used to try to compete. Again it was using enforced hill climbing local search algorithm. Yes 



question very good question. The question is when you reach the global maximum you will keep 

doing breadth first search and you will never find a solution. So, what do you do at some point 

you will just say okay I am done with my time I am done with my memory I cannot search any 

further, so this is the solution I am going to return. 

 

So in practice do you know when to stop local search now that you are doing so many variations 

of this it will never be clear. The best setting in which local search performs is I give you 2 

minutes of time and your job is to come up with the best solution. So, your goal is not to think 

about when to terminate your goal is to say how do I use those 2 minutes most effectively and 

that is where local search shines because you can just search and you can do some tricks and 

search further do breadth-first search, search local, search further and before your 2 minutes are 

up you output the best solution found. 

 

So far the best optimum found so far. But yes we have not discussed very much on termination 

condition in fact what we do next will completely take away termination condition. So, let us see 

what we can do next. Now let us up until now we have been doing mostly deterministic versions 

of local search there was a very little source of uncertainty which was in tiebreaking but modulo 

that we were always choosing to go greedy and no non determinism no probabilities no 

uncertainty. 

 

Now very early in the class we discussed 2 algorithms which were asymptotically complete. 

Local search, greedy local search on the other hand is not complete it may stuck it may be stuck 

in local Optima what were the 2 algorithms trivial algorithms that we did which were 

asymptotically complete. 
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Those trivial algorithms were random sampling and random walk random sampling basically 

said give me a next give me a new state, give me a new state, give me a new state randomly and 

we discussed that eventually it may hit the optimum. Random walk however said let us just 

randomly the neighbors without thinking about the objective function and even that was 

guaranteed to hit the optimum eventually if the space search phase is connected. 

 

So these algorithms were asymptotically complete but they did not have the intuitions of 3D such 

hill climbing greedy hill claiming on the other hand is not asymptotically complete. So, can I 

come up with some hybrid which is both asymptotically complete and has similar properties as 

greedy local search.  
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These would be called stochastic hill climbing algorithms. The goal is to avoid getting stuck in 

local optimum. What do you think we can do any suggestions, yes what is your name Prashant 

yes Prashant whenever we are stuck in local optimum randomly sampled a new neighbor or the 

new state, very simple. Whenever I am stuck in a local optimum the randomly sample a new 

neighbor if I say this what am I merging I am merging greedy local search with random sampling 

or random walk. 

 

So, again if I am stuck randomly sampled a new neighbor, randomly sampled from one of the 

neighbors is this random walk or random sampling? Random walk on the other hand if I say 

whenever you are stuck randomly jump to a new state this would be random sampling. so we can 

try to add or both we can try to add ideas of randomness in hill climbing. So, we can do random 

walk hill climbing or random restart hill climbing or hill climbing with randomly start and 

random walk. 

 

The algorithms are not deep at all in fact if you had thought of it for two minutes you may have 

been able to come up with them very simple ideas. 
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So, the idea is that whenever state-space landscape have local optimum any search that moves 

only in the video direction cannot be complete random work is asymptotically complete. So, let 

us put random walk into greedy hill climbing so let us do very simple we can do what Prashant 

said or the nicer version of that is with probability P move to an greedy neighbor with probability 

1 - P move to a random neighbor. 

 

And for now we are keeping this probability P constant. But ideally what do you want should P 

change over time and if P should change should it increases should it decrease? It should 

increase, so as time goes on I should take more greedy steps and less and less non greedy steps. 

Initially it is ok to take many more non greedy steps why? Because I may have started in a bad 

Hill and I may need to jump off that bad Hill slowly. 

 

And that changing of probability over time is called one way of doing this is called simulated 

annealing which will come to just in 2 minutes. Yes, so, the question is why are we doing it 

every step and not only local optimum and that is a fair question. See the questions the main 

issue is that if you were stuck at a local optimum getting of that local optimum is harder because 

it requires you to take lots of suboptimal moves again and again and again. 

 

So, therefore these algorithms suggest that you should start taking suboptimal moves at every 

step just in case you mix left. So, now there are many algorithms that we will study but if you 



have to remember only one of them like absolutely only one algorithm you want to take back 

from this class people will disagree with me but this is my personal choice.  
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It would be this algorithm hill climbing with random restarts and probably this is the way you 

would have thought I should fix hill climbing in the first place. Do hill climbing get stuck at a 

local optimum then randomly sample and you state and do hill climbing again and then randomly 

sample a new state and then do hill climbing again. And always keep the best solution found so 

far. The idea is if at first you do not succeed try, try again that is it. 

 

So for each restart now there choices so there are lots of parameters in all these algorithms. So, 

one parameter is for each restart do you go up to greedy optimum or you stop in the middle and 

then restart that is a choice. How many restarts you do, you do a fixed number of restarts or do 

you run indefinitely now that is not really a choice that depends on the total amount of time that 

is given to you. And you can also do some analysis and given the interest of time I will let you 

figure out this analysis. 

 

But suppose each search has a probability P of success how many restarts would I need to do in 

order to hit a solution expected. How many expected number of the restart I will have to do  this 

is math 101 for college, would be 1 by P. And you can figure out why.  So, if it coincide ans 

succeeds 14% of the time and I am doing a random starting point every time in an expected 



number of 7 restarts that means 6 into 3 18 + 4 22 hill climbing steps I will hit my solution in an 

expected set.  

 

And as I said if you want to pick one local search algorithm to start with if you are given a new 

problem always you have to start defining your state space neighbourhood function to define 

your evaluation function you have to define a random function which will give you a new start 

stage random start state or possibly good random start state. But once you have done that the first 

algorithm I suggest you implement is hill climbing with random restarts and fine tune some 

parameters to figure out whether it gives you a good enough solution. 
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And of course you can do both so you can do hill climbing with both random walk and randomly 

starts at each step do one of the three either take a greedy move with some probability or you 

take a random walk move to a random neighbor with some probability or you do a random 

restart the resample a new current state. And a better algorithm which does this random walk 

with a slowly changing probability schedule it is called simulated annealing. 

 

But in the interest of time we will start from here in the next class. Okay so we will start from 

simulated annealing in the next class we will then go to local beam search and its variations and 

one of the significant variations there is genetic algorithms which we will study in the next class. 



After that our local search will be done and it will start with game playing as our topics next 

week okay let us stop.  

 


