
sArtificial Intelligence 

Prof. Masum 

Department of Computer Science and Engineering 

Indian Institute Technology Delhi 

 

Lecture-21 

Informed Search: Pattern Database Heuristics*-Part 7 

 

We should get started, I have 2 other things I would like to do, I would like to a talk about this 

very important phenomenon, which is how expensive should my heuristic be? That is actually an 

important question that we need to answer. 

(Refer Slide Time: 00:31) 

 

So in this graph, this is not a real, you know, graph drawn by empirical data, but this is intuitive 

graph. So on the y axis; we have the cost of computing the solution, so it is running time. Let us 

say it is basically running time. And I am showing you 2 graphs. And what I am wearing on the x 

axis is how informative the heuristic is. So most informative heuristic is the as we have discussed 

h star heuristic, and most uninformative heuristic is the h 0 heuristic. 

 

So what h star, I know the exact optimal solution cost, and what is h 0, I know nothing, and I feel 

I am the goal. And so ideally what will happen is that the cost of computing the heuristic is going 

to increase, obviously. Because here I have to do no work whatsoever, I would say every 

heuristic is 0, that is 0 work, and so I will not spend any time in actually doing the computation. 

If I have to do h 1, then I have to at least count the number of misplace styles. 



 

If I have to do h 2, then not only do I have to count the number misplaced, as I have to add the 

distances and figure and add them a little bit more work not too much. Of course, like in the 

previous example, if I have to do shortest path that it is been kind of an algorithm, if have to do 

minimum spanning tree then it is a different kind of an algorithm. I may end up doing something 

even better that it might be even more expensive algorithm. 

 

So, what is happening is that as I increase the informativeness of the heuristic the cost to 

compute the heuristic increases and you can sort of assume that it increases somewhat 

exponentially. Because eventually the problems that we are solving and be hide at least and 

therefore, in practice, you know, they will be more exponential at least today. So, this cost is 

going to go up very fast. 

 

On the other hand, if I give you a good heuristic, your cost of searching is going to reduce we 

just discussed that A star with h 1 to 39000 expansions with A star with h 2 only 6000. So, 

therefore, the cost of actually searching is going to reduce and then you have to ask the question, 

well, what is the right heuristic to compute and, in fact, the total cost that you will finally 

incurred is going to be something like this. 

 

This will be the total cost, because in total cost, you also have to do heuristic computation plus 

you also have to do search. And so it feels like the right point, the right amount of heuristic 

computation is something like this. Of course, this graph is never given to you, you have to use 

some intuition, but this is an important intuition. That terrible heuristic is terrible but really good 

heuristic is also terrible. 

 

The really good heuristic is terrible because you will spend a lot of time computing it even if you 

end up spending your time searching for it and vice versa. So, therefore, but the question is 

where does this minimum occur? And, you know, search, researchers have sort of asked this 

question about sometimes, and sort of the conventional wisdom was that a global minimum is 

close to cheaper heuristics. 



In practice, you always want your heuristic to be polynomially computable because if the 

heuristic itself is exponentially computable, then it is a much more expensive algorithm. But 

even the polynomial algorithm, what this is saying that the conventional wisdom is that not only 

should it be polynomial it should be lower order polynomial, you know, maybe linear advanced 

quadratic, almost never do you take time algorithms for us to competitions in practice. 

 

But, there are some new insights that have come out in the last 10, 15 years, which have made 

people question this conventional wisdom. And in fact, people have found that cheaper heuristics 

may not always be the best idea, sometimes somewhat more expensive heuristics may be a better 

idea and the examples there is pattern databases that we will study and plan a heuristics. That we 

will not study planning after the heuristics are actually very important set of heuristics for 

planning problems. 

 

I wish we could discuss this it is an area I did my PhD in so it is close to my heart, but we will 

not talk about it. But I will briefly talk about pattern database heuristics because it is an easy 

thing to learn, and it gives you a lot of value. So let us quickly talk about pattern database 

heuristics. 

(Refer Slide Time: 05:24) 

 

So let us say so and some of these slides have been taken by Richard Gauze who is now very 

senior, but also extremely well known and famous researcher in the field of search. He was at 

UCLA; he still is probably at UCLA. And so he says that look, this is the size of search space. If 



I am doing Brute Force search, of course, we do not want to Brute Force search but just for 

completeness 8 puzzles is only 10 to the power of 5 nodes anyway. 

 

So it should be completed in about 0.0 and second not take these numbers with a grain of salt 

because these are older slides and 1015 year old slides, so somebody would have changed a little 

bit. But when we are talking about 2 billion years, it is possible that the numbers have changed. 

But they have gone to 2 million years. So we do not care. It is still equally bad, we cannot do 

this. So 8 puzzle 0.01seconds Rubik's Cube, 2 by 2 Rubik's Cube 2 by 2 by 2.2 seconds, 3 by 3 

by 3 Rubik's Cube. 

 

If you do not give me any information, if you do not give me an admissible heuristic. Or any 

heuristic 68000 years, that is why Rubik's Cube supposed to be a difficult problem. At least 24 

puzzle just an extension of 8 puzzle 25 cross 5 12 billion years. Of course, you would say who 

cares for you know, Brute Force let us talk about IDA star with some heuristics. 

(Refer Slide Time: 06:48) 

 

So here is performance of IDA star 15 puzzle random 15 puzzle instances solved by IDA star 

using Manhattan distance heuristics not bad optimal solution length is about 53 moves 400 

million nodes are generated on average, average solution time is about 50 seconds when they say 

current machines. I do not mean current, I mean 10 years ago, or so. But what about 24 puzzle? 

So here 15 puzzles was 6 days 24 puzzle was 12 billion years 15 puzzle with Manhattan distance 

becomes 50 seconds. 6 days to 50 seconds. 



 

Awesome, but what about 12 billion years to what in 24 puzzles. So let us talk about Manhattan 

distance where 24 puzzle. IDA star with Manhattan distance would take about 65000years, on 

average. Now, it is great. It is much better than 12 billion years. But you would not want to start 

a process right now. And wait for it to finish someday. Of course, what is the problem the 

problem is that the heuristic is good, but not great. It is not modeling a lot of things for example. 

(Refer Slide Time: 08:06) 

 

Let us think about a place where 3 1 needs to go to 1 3. What would Manhattan distance a 4 tiles 

1 and 3, 2 and 2. So, the contribution to Manhattan distance for these 2 is 4. Can you ever do it in 

4 you can never do it in 4. And the reason you can never do it in 4 is because there is a linear 

conflict in order to move through their shortest paths, they have to interact and once they have to 

interact 1 has to go around the other. 

 

So in practice, you will need at least 6 you will need at least 6 why because you will move 3, 

then you will move on, then you will move on, then you will move on. Then you will move on, 

then you will move 3 or any which way in this order, but you cannot get to the other position 

until you move the first one and I will go around it. So if you add some kind of a linear conflict 

in your heuristic computation, then you will get to a more a better number. 

(Refer Slide Time: 09:20) 



 

And more informed heuristic takes so this was developed in 1991 was given 2 tiles in the goal 

row but reversed in position, additional vertical moves can be added to Manhattan distance. 

Unfortunately, even though it is more than inform, it is still not accurate enough to solve the 24 

puzzle. So what do we do? Now we understand the intuition. The intuition is that look, we were 

considering these tiles to be completely independent. 

 

They could move on top of it, of course, they should not be allowed to move on top of it, they 

should only be allowed to move and there is a gap or at least if there are conflicts. And 

interactions those interactions should be taken care of. But unfortunately, if we start to take care 

of all interactions, then you will end up solving the original problem which will be extremely 

expensive to solve. And we have not gained anything. So, we have to carve this balance where in 

the heuristic computation we do something fast, but we still make it as informative heuristic. 

(Refer Slide Time: 10:13) 



 

Many more examples of this show up for example, if I have this set of red tiles, and I want to get 

to this set of red tiles, the Manhattan distance will say it will take 19 moves, but actually 31 

moves are needed, look how bad sometimes this heuristic computation can get. Similarly, if I 

have a configuration like this and I have to get to the same configuration, Manhattan distances 20 

but actually 28 are needed. 

 

And if I have to go from this configuration to this Manhattan's distances 17, but actually 27 

moves are needed. Now notice we have done something very interesting. I am showing you that 

tiles, 8 of them or 7 of them, but every other tile is not important. I have just called it white; I do 

not care for the number. Is these are the relaxation? I am in making sure that all the interactions 

of the red tiles are counted. 

 

But I care for the final position of the whites that is also a relaxation of the original problem. So 

if I actually solve this problem without completely ignoring what is happening to the whites, the 

optimal cost that I will get will still be admissible. And that is what is called a pattern database 

heuristic. Unfortunately, just solving this is going to be expensive. So we will do this expensive 

operation once. And all the heuristic values will put in a database. 

 

Here is where your database class comes in handy. And then you do an index on top of it so that 

your database is now quickly randomly accessible. And now when you actually do search you 



ask the database for the heuristic value you have cashed all the heuristic values you are not doing 

an on the fly competition. 

(Refer Slide Time: 12:10) 

 

This is called pattern database heuristic it was developed in 1996. A pattern database is a 

complete set of a set of such positions with associated number of moves. Example a 7 tile pattern 

database like the one that I just showed you, for 15 puzzles contains 519 million entries. So for 

all these 500 and19 million states, I compute the patented the heuristic once and in fact, I do it in 

a batch so that I can make use of the property that many of these states come together and so on, 

so forth. And so I can, I do not have to do the computation. I can just compute it in one pass. 

(Refer Slide Time: 12:53) 

 



(Refer Slide Time: 12:57) 

 

So, this would be one such a tile pattern, so entire database is computed with the one backward 

search that first search from the goal. By the way, I did not discuss in the last time but as we 

have A star in the forward direction, we can also do A star in the backward direction. And if you 

can also do A star in the backward direction, I can also do bi directional a star. And in fact, some 

of the one of the very recent, like 2, 3 years ago. 

 

Best paper award at a top AI conference was understanding the details of bi directional A star 

algorithm. So believe it or not A star which came way back in 60s, there were things to be 

learned about that are bi directional version of that even till the last few years back with the best 

paper award, it was a fundamental contribution in the field of AI. So if you are interested in bi 

directionally A star check, check that out. 

 

And note that here, all the non pattern tiles the whites are indistinguishable, but I am counting its 

moves I am not saying that you know, I will not count your moves, I will count the moves, I just 

do not care for the final position. Now once I have created this pattern database. I cannot just 

create one, but I can create many pattern databases. For example. 

(Refer Slide Time: 14:16) 



 

I convert my 8 puzzle problem into 2 sets of tiles, the red tiles and the blue tiles. And I have one 

pattern database for the 7 tile red tiles, and I have another pattern database for the 8 blue tiles. 

And now my pattern database number that says 31 moves are needed. And my pattern database 

blue says 22 moves are needed. So what will be the overall admissible heuristic? Is a good 

question I gave you 2 heuristics? 

 

The first heuristics was counting red tiles carefully counting blue tiles as if they are 

indistinguishable but counting their moves. I gave you the other heuristic h 2 which counted blue 

tiles carefully counted the red tiles as if they are indistinguishable but counted its moves. If red 

says 31 in blue says 22, what is the best admissible heuristic you could come up with the max. 

Why? Because if I do the sum, I will be double counting possibly, because I have counted some 

of the greyed out tiles moves. 

 

They may be repeated when they want to get to the current correct position. So, therefore, the 

overall atmosphere heuristics we can come up with is 31 moves. And people were not happy 

with this. Intuitively, you want to break your problems such that we finally get to the sum and 

that is admissible. Can you guess how you would do it with this red tile and blue tile setting with 

31 you add 7 why would you add 7 to 31?, but that is and interactions. 

 



It is possible that in the process of settling with the red tiles these blue quote unquote 

indistinguishable tile came in the right position. Then we will not be able to add anything there. 

So that something else yes, Shiva if we will first settle with the red tiles. And then come up with 

the positions of blue tiles but look at the time of solving red tiles blue tiles are indistinguishable. 

We make choices as if they are indistinguishable. 

 

In fact, if we knew the numbers, the state space will become so large that we will not be able to 

solve this. We have divided it so that we can solve the status. There is another trick. Yes? What 

is the name? Yes, while moving that guys do not count blue tiles at all, only count the moves of 

the red tiles allow you to make as many blue tile moves as you want, just do not count it. So 

individually you will come up with a lower heuristic value, but then it will be additive because 

you are never doing double counting you and never even counting the blue tile most. 

(Refer Slide Time: 17:42) 

 

So this is what is called additive pattern databases. We can only count moves of pattern tiles 

ignoring the non pattern moves. And if no tile belongs to more than one pattern like red and blue 

are separate. Then we can add heuristic values. In fact, Manhattan distance is a special case of 

this, where each pattern contains a single tile. Everything else is greater because you are not 

counting the other source. 

(Refer Slide Time: 18:14) 



 

So you can divide it in any which way you can say these are my red these are my blue or 

whatever. In this case, the 7 tile database will contain 58 billion entries in the 8 tile database will 

contain 500 and 19 million entries. 

(Refer Slide Time: 18:24) 

 

And for example, if the blue database says that the 20 moves are needed to solve red tiles and 25 

moves and needed to solve blue tiles, then you can come up with a better heuristic 45 which is 

admissible. 

(Refer Slide Time: 18:37) 



 

So now just the final slide to show you that it works. This gives you 2000x speedup vs 

Manhattan distance. IDA star with the 2 databases shown previously solved 15 puzzles optimally 

in 30 milliseconds. Maybe it is not counting heuristic the computation time so that is not fair but 

still it is fast, but Interestingly what happens in 24 puzzle whereas you would have needed 

65,000 years earlier, it can solve a random instance in 2 days. 

 

2 days is still not very good, but at least it is much better than 65,000 years. And also we are 

talking about you know, 15 year old papers. So, probably now we can solve it in a few seconds. 

For 24 puzzles they use 4 databases additive using this 6 tile, this 6 tile, this 5 tile and this was it 

this 6 tile and the 6 tiles so 4 6 tile databases. And that sort of gives us the final result that we 

were looking for. So, let me summaries. 

 

So, we have been discussing this whole idea of search algorithms. And we have now come to a 

nice landmark point where we have studied a lot of search algorithms which are going from the 

start state and developing a tree and sort of maintaining part of the tree in my memory or visiting 

it and backtracking it and things like that, there is memory implications, there are time 

implications whether you maintain the frontier or you do depth first. 

 

We have also figured out how to use addition heuristic function additional information to do 

things faster. And we have done several examples to think about how quickly they can solve 



some problems. If you have a good heuristic, we have discussed how to compute good heuristics, 

at least admissible heuristics you require domain relaxations, and then these relaxations can 

sometimes become large. 

 

So, sometimes you want to do them in a batch, compute all states and then put them in a database 

and sometimes you will state space is too large you cannot do this. So, you break the state space 

into multiple sub parts, compute heuristic on top of them, put it in multiple databases and max or 

add them. These are called pattern databases. So, this is our story up to now and in the next 

segment in the next class starting tomorrow. 

 

We will talk about local search a very different but in some ways, in my opinion, more practical, 

even more practical than these algorithms. A different mechanism for doing search and solving 

problems will stop you. 


