
Artificial Intelligence

Prof. Mausam

Department of Computer Science and Engineering

Indian Institute of Technology - Delhi

Lecture – 19

Informed Search: Iterative Deepening A*and Depth First Branch & Bound (Part – 5)

Alright now A star algorithm is like the any algorithm of best first algorithm and therefore the

number of nodes that you have to keep in memory is fairly high. In the worst case there are

explanation. And we have discussed in the last class that exponential space is not something we

really like we want to avoid it and remember we went to iterative deepening search in order to

deal with the memory problem.

So the next order of business is can we come up with the iterative deepening version of A star

algorithm? So what is the intuition? The intuition is that the A star algorithm expands all nodes

with a lower F value before it gets to the higher F value that is the high level intuition right. Just

like breadth first search would expand all nodes of a certain depth before going to the next depth.

And just like uniform cost search will expand all nodes of a certain G before it goes to the next

node.

So there all somehow incorporating the intuition that I have to exhaust all nodes up to a certain

bound but that bound depends on what am I working on. It could be depth it could be costs. So

far it could be total cost and so on and so forth. So that gives you a clue. So first of all if you

want to solve the memory problem will ever algorithm look like breadth first search or depth first

search come on depth first search.

Because iterative deepening search is essentially depth first search but with a cut off bound. But

iterative deepening search had a cut off bound on max depth and that is why we called it depth

limited search. But max depth worked there because breadth search goes in depth fashion. But

now max depth is not going to work for us. So what is going to work for us? Max.

“Professor - student conversation starts” What is going to work for us? Somebody raised their

hands. You have an answer please raise. What is your name? Shreya, max F value right. Because

I am expanding nodes intuitively in F order let me expand all nodes up to a certain max F value

and then increase the bound “Professor - student conversation ends”.

(Refer Slide Time: 03:10)

And that is exactly what is called the iterative deepening A star algorithm. Basically says just do

depth first search. But as long as my F increases as a certain bound stop backtrack. If I find goal

great if I do not find goal increase my F bound and that is called iterative deepening A star. So

for real problems that we encounter we often do not implement A star. We often implement

iterative deepening A star “Professor - student conversation starts”

Questions on this okay. Yes. So it will have much better space. Yes, yeah. So the question is

what are strategies to increase the bound? I am keeping this open sometimes those strategies are

determined by the problem of it. I mean the least you can do is increase it with the least cost

right. So that should mostly work. But you can do probably better if you want right. So that will

be problem dependent “Professor - student conversation ends”.

Okay now ID A star is 1 algorithm but I want to do another algorithm. This is not often. This is

not typically done in an AI class but I like this algorithm and this becomes important as a basis

for game playing later and so I would like to do this algorithm called depth first branch and

bound. It is possible that you did some other course somewhere where you did a branch and

bound algorithm. It is the same thing okay.

(Refer Slide Time: 04:47)

So branch and bound algorithm is also depth first search. But it has 2 mechanisms one is called

the branching mechanism, one is called the bounding mechanism. A branching mechanism says

which of my children are better? Let me go there. So you can think of it as depth first search with

some preference on which node to visit first which node to visit later. It is okay. This is not a

fundamental difference.

You can add this branching mechanism in most other depth first search algorithms. It is a

heuristic strategy. So branching mechanism in depth first branch and bound is sort of like a

heuristic strategy which child do I go first? However, the bounding mechanism is the strength of

branch and bound and bounding mechanism says that I will be able to terminate branches if they

exceed a certain bound.

So let us see if we can understand this and we will understand this in the context of this

particular example. So this is an example of a graph.

(Refer Slide Time: 05:52)

Let us say we are in the tree search paradigm for now. We are going to go from A to G. We want

to find the optimal solution. Can you see the optimal solution? What is the optimal solution? B

What is the next node? B sorry A it starts with A of course what am I doing? A, B, H, G, A, D,

F, G correct. Alpha, delta, friend and goal A, D, F, G 2+1+1 4. This is what we are looking for

okay.

And of course we can add IDA star if you want. But for now let us do depth first search branch

and bound as an alternative mechanism. So this would be the search tree that we would be

expanding. We would go from A to BCD, from B to EX, from C to EF, from D to FH and so on.

And let us talk about the branching mechanism here. So let us take you can have any branching

mechanism.

(Refer Slide Time: 07:09)

Let us take a simple branching mechanism of lowest cost edge first. Now this is just an example.

We can take a different branching mechanism. But in this example we are going to go to the

lowest cost edge first. And let us say we have the heuristic function as the lowest cost edge

coming out of this node. So heuristic of B would be 3 because we will at least have to pay 3 to

reach the goal. Heuristic of C would be 3, heuristic of D would be 1 okay.

So now let us start exploring it using depth first search with the branching strategy. Now initially

I do not know what is the cost of the solution. So I can say that the cost of the solution can be

infinite. My bound my upper bound is just infinite. I do not know. It can be really bad. I will

maintain this global upper bound. This global upper bound initially is infinite because I have not

found a single path to a goal.

However, let us start executing. So let us say I use my branching mechanism. So from A I go to

you have to do this with me. If you do not want to do this, then that means you are not following.

So you have to help me. So my branching strategy is go to the lowest take the lowest cost edge.

So from A I go to B, from B I go to H, from H I go to yes I found a path to the goal. Now this

may not happen initially I may have to backtrack etcetera.

But they will come a point where I will find a path to the goal. Is this optimal path? No reason

for it to be optimal. Why? Because of a branching strategies heuristic. But as soon as I find a

path to the goal a path to a goal I can look at the cost. The cost here is 5 and I can update my

upper bound. Now initially I taught my cost to the goal is less than equal to infinity. As soon as

they find a solution my cost to the goal the best cost is <=5. My upper bound has become 5.

This may be the optimal, we do not know or we may find a better solution. But we know that the

better solution will always be <5 if it is better. If it is as good it maybe 5. If it is worse, it will

may be >5. So I have reduce my upper bound to 5. Now what am I going to do is that as I go to

my nodes I am going to also maintain a lower bound okay. So once I backtrack to B what can I

say? Well I cannot say much right now. My cost to B so far is 1 right.

And my best cost later is 3. So my I cannot prune away anything from B at this point. But as

soon as I take this edge my cost has become 6+ the heuristic of E which is 4. So I know that

whatever those solution. I am going to get from E it will at least be length 10 and if it is at least

lengths 10 do I need to explore it any further? No because I may find goal, I may not find goal,

but if I find goad it will at least be 10 and I have already found a path of length 5. I do not care

for what happens in the future and I backtrack.

As I backtrack I come back to A and I want to assess D next. Now can I prove that I will not find

a better solution through D? What is my lower bound here? It is 2+1 because my heuristic is only

the lowest cost going forward. So my bound is only 3. I cannot prove anything. So I have to go

to D. So I go to D. Now from here I my branching strategy says check F. The bound for F is 3+1

4. So I cannot say anything. I have to keep going.

And when I go to G, I have found a new path to the goal and in fact I have found a better path to

the goal and because I found a better path I am going to reduce my upper bound. So I have now

made my upper bound 4. Now as I come back when I try to go from D to H my cost becomes

9+1 and now I can prune it so I can get it off H. What is even more interesting is I can get rid of

full sub trees.

So if you think about C what can I say is my lower bound of going through C 3+3 6 and 6 is

already greater than 4. So there is no way I am going to get the best solution through C. So I

prune it. I do not even visit anything beyond C and therefore I have reduced some of the

competition that I have to do. And this algorithm is called depth for search branch and bound.

(Refer Slide Time: 13:01)

Intuitively what is happening is I maintain a global upper bound and I maintained the lower

bound for my expanding nodes whatever I am expanding so far. The upper bound has come from

a feasible solution, a solution that I have already found. It not be the optimal solution and lower

bound is I am looking for a better solution and usually lower bound is going to be less than upper

bound.

But whenever lower bound is >= upper bound I can stop I do not need to go further. I have

pruned anything else that happens in my sub tree I can backtrack. Everybody okay with the

algorithm. Now comes a difficult question. What about depth first search branch and bound

versus IDA star. Now first of all are they optimal. Let us say I am talking only about heuristics

which are admissible.

(Refer Slide Time: 14:01)

So if my heuristics are admissible, are they optimal? See whenever I am pruning anything? Am I

going to miss the solution at all? No I am not never going to miss a solution if I am pruning

something. So both of them are optimal if they finish right. It is possible the depth first search

never finishes and we will talk about that in a minute. However, and both of them have what

about memory properties? Memory is not explanation necessarily right.

Because I am doing depth first search in both situations my memory never becomes exponential.

Look you guys need to be able to do this analysis yourself. I have a cost bound and IDA star. I

done everything to depth first search pruning nodes and at some point I stop. My memory never

becomes exponential because I am only maintaining the path so far. Similarly, in depth first

search branch and bound I am only doing depth first search.

So my memory is going to be no worse than the memory of depth first search. So I am never

give an exponential memory regime. So this is good. Because I do not like exponential memory.

However, I claim that one algorithm is systematic and one algorithm is not systematic. Which

algorithm is systematic? Branch and bound because it is doing depth first search whereas IDA

star has a bound. So whenever it increases its bound it needs to restart so it will visit the same

node twice right.

So IDA star is not systematic. At the same time, it never expands a where f is > optimal cost.

IDA star is guaranteed to never expand a node beyond the bound and whenever I hit the optimal

cost bound that is when I will find the goal. But I will never expand any node where f > optimal

cost. Is the same property 2 for depth for search branch and bound? No it is not. It is systematic

but it may expand a lot of terrible nodes.

Because my initial upper bound can be infinite can be terrible. So it initially it may expand a lot

of just random nodes before it hits a solution. Yes, it should do. So if there is an infinite depth

graph, which algorithm is better? IDA star is better if there is an infinite depth graph because it is

possible that I go into some breadth hole again and never come back. Very good so this is when

IDA star will be better “Professor - student conversation starts”.

When would branch and bound be better? No that is not true. The suggestion is, what is your

name? Parth says when you want only 1 solution, only 1 feasible solution we do not care for

optimality. That is not true we are let us say looking for optimality in both the cases. But when

would depth first search branch and bound be a better algorithm? Sorry very good what is your

name? Divya says when I have a better estimate of an upper bound sure very good.

But initially I do not know anything. So initially unless I have some domain knowledge from

where I am getting an estimate of the upper bound. Initially we can say without doing anything it

is infinite. What else? It is a correct answer. But it requires additional domain knowledge. What

else? Say that again when the paths to the goal have less deviation from the optimal. So if the

cost of many different paths to the goal is not too different from the optimal then this would be

better okay.

But this what are they implicitly saying? If fanon on the goal is very high okay that is a very

specific property. You are not you are both saying various ways of the same thing. If I have

many different paths to the goal and they are easy to find in terms of like there are no infinite

depths and so on and so forth. Then breadth first search will branch and bound do really well

“Professor - student conversation ends”.

So in other words if it was easy to find a suboptimal solution, then branch and bound would be

very good because you found 1 suboptimal solution that reduces your bound. Then you can

prune a lot of nodes and once you start pruning you will search much faster. But if your first

solution was very hard to find then life is tricky for branch and bound. But it is okay for IDA

star. Because IDA star when it finds the goal that is when it stops whereas branch and bound

finds many goals before it say I am done.

So it is a different way of looking at life. One of them is going in F order, one of them is going

somewhere randomly with the branching strategy. Once it finds a goal it feels like oh, now I can

do a much better search whereas IDA star has looked at all other possible ways to get to the goal.

Sorry not possible ways to get to the goal. But a sort of proven that once I remove the first goal I

will be optimal.

So I have looked at all possible estimates of different paths to the goal. But I am not reached the

goal right. So this is a difference in their strategies. If the search tree is bound and depth branch

and bound might do all right. If it is an infinite search tree IDA star might do much better. If it is

easy to find a suboptimal solution branch and bound might do better. If it is difficult to construct

a single solution IDA star might do better okay. Very good.

So I need to do only 1 algorithm further which is a very small simple algorithm. And then we

will now move on to then move on to how to compute heuristics? So the one algorithm that we

need to consider is called weighted A star.

(Refer Slide Time: 20:38)

So weighted A star says I am going back to the suggestion from this side, let us do alpha gn +

beta hn. This fellow new weighted A star in their mind. So basically weighted A star says that

instead of doing gn + hn, do gn + w times hn and w is called the weight in the weighted A star

algorithm. And in fact do we want weight to be >1 or <1?

See what is the problem with A star algorithm? If you think about it from a practitioner

perspective not in theoretician’s perspective. From the practitioner’s perspective it explores a lot

of partial paths and stops exploring them only where it can prove that they will not lead to the

optimal solution. But that ends up be doing a lot of extra exploration and you want to reduce it. If

you remove gn from here, then it is a problem because greedy best first search is not even

complete right.

So you want to emphasize the importance of a heuristic but you do not want to weigh them

equally. You want to say heuristic is really important maybe more important. But gn is also

important. So that is sort of what you are saying. So in practice what people do is they keep w to

be >1 typically 5, 7, 10 things like that often 5. And if they can prove that if you are doing gn +

w hn then the paths that you would find will be no worse than w times the optimal.

So if you use w = 5 and you find a path to the goal then it will be up within 5 times the optimal

right. So you have a optimality bound there but in practice it finds excellent paths and it finds it

much faster. So it does not explore a lot of these side states and sort of goals more directly

towards the goal. This algorithm is called the weighted A star algorithm okay.

So this is a good point to take a pause. We started out with the agenda that we want to develop an

algorithm that can somehow add some intuition in it is full. I also said that intuition can be

wrong so we cannot trust it completely. The algorithm their trust set completely is greedy best

first search. It says heuristic order let us just go in the heuristic order and expand. But of course it

you cannot trust it completely.

So we came up with the A star algorithm which says what happens in the future needs to be

balanced with what has happened in the past. And if a lot of costs has already been paid in the

past then this node should not look very good even if goal looks close and we devise the A star

algorithm but of course it had bad memory properties in the worst case. And so we looked at

memory efficient versions of A star.

So we talked about IDA star and we talked about depth first search branch and bound and then

we said optimality is a gift. It is luxury. It is something that God has created but it is very hard to

achieve. So let us let go of optimality. Yes, we want to find a path to the goal. We want to

maintain completeness but optimality is too big a price to pay for computation. So let us do some

suboptimal algorithms.

And we have so far done only 1 suboptimal algorithm and that algorithm is called weighted A

star. And in this weighted A star we trust our intuition more and trust what has happened less but

still they are balanced in some way balanced with the weight of w. And we even have an

optimality bound here later we will do algorithms there we will not have any optimality bound

whatsoever.

Now the key question that we need to answer. Is in general how do we find heuristics? Is there a

general principle here or we just have to come take it out from our pocket somehow and say for

this problem I can propose a heuristic which will be less than equal to the optimum and therefore

it is a good heuristic we use in the A star algorithm? There is believe it or not a little bit of

understanding of how to create admissible heuristics which is what we are going to do in the next

segment of the class. We can stop here. Thank you.

