
Synthesis of Digital Systems
Dr. Preethi Ranjan Panda

Department of Computer Science & Engineering
Indian Institute of Technology, Delhi

Lecture – 08
Language front-end & Design Representation

So, we introduced some of the major tasks of high level synthesis in the previous lecture.

(Refer Slide Time: 00:27)

One important thing to note is that for the same specification in the form of an HDL

there may be a very large number of implementations. Where were all the different

variations come from? So, they are not all equivalent. So, somehow the job for high level

synthesis should be that we pick up at the end the best out of all the choices that exist,.

But where are the choices, in this example that we started off with we constructed an

FSM and a data path this is the output of the behavioral synthesis, but where did we have

a choice or was this the only possible output from the synthesis process.

Student: Sir, because constraints we had that we have to.

Constraints were externally imposed to the synthesis what are the inputs we said that the

primary input of course, is the behavioral description in the HDL, but there are other

inputs. The constraints in the form of resources or delay those are inputs we do not have

a choice it is assumed that the designer through other means may be through whatever

external means there are these constraints that are imposed. So, we have to operate

within the constraints, constraints have to be respected, but within those constraints we

may still have a large number of choices did we have any choice in this example, small

example that we built up where was the choice that was excessive in the FSM did we

have a choice.

Student: Yes.

What was the choice?

Student: Started dummy states.

(Refer Slide Time: 02:21)

Could you have inserted dummy states what in the behavioral synthesis process

influences the creation of the FSM they should make sense they should arise naturally in

some way. What choice did we have?

Student: To be optimized everything so that we can finish things in 3 cycles.

Right.

Student: We can designer has given the maximum usage of the adders, but we can

choose.

Yes, latency which is 3 cycles in this case was not a constraint there are some constraints

that it is not clear what they were perhaps.

(Refer Slide Time: 02:57)

But I did say that in that library when we started off right these were constraints that you

have one adder of each type and two memories one multiplier and so, those were the

only constraints, but on delay there was no constraints.

(Refer Slide Time: 03:10)

So, the schedule that we were working with which is this one that finished in 3 clock

cycles that was our decision this is not the only valid schedule. Why did we choose this

schedule?

Student: Earliest.

We assumed that constraint that you have one pink adder and one orange adder in this.

So, with that as the resource constraint it seems as though you perhaps do not have too

many choices here. So, two add additions have been mapped to one adder and that is

those two and the other two additions have been mapped to. This adder this is the

function unit binding step right that is the function hundred binding that is been done for

this graph did we have a choice. What other binding could have been done.

Student: Swap orange and pink.

You could have done this kind of sharing right, maybe this kind of a sharing. That would

also have respected the resource constrained and also this the resulting schedule that we

already decided make sense in the first step. What difference would that have made to

the data path?

Student: (Refer Time: 04:41).

Different hardware what different hardware would have been generated we are still

operating under the same resource constraint which means that these function units of

course, would have still been there, but the muxes and the connectivity might have been

slightly different. In this example it is not clear that it makes a qualitative difference to

the result, but in general you actually have a very large number of choices you have a

very large number of operations and some number of resources, but the moment the

number of resources is more than 1 you have the resource sharing decisions to be made.

We also made register sharing decisions here we said that we will take two registers it

seems as though this makes sense for that particular design, but when you have n

variables and r registers actually here register is not a constraint how many registers you

use is inferred by our algorithms. So, we did not take that as a constraint although you

could formulate the synthesis problem also in a way that the registers is a constraint.

So, here we just wanted to minimize the number of registers that we are using and a

certain sharing of variables into registers was used to generate this part of the circuit let

the number of registers and also the select circuits at the input of the registers. So, it

seems as though in this small example there were not too many choices some choices

were there, but a large number of choices were not there. But the moment the number of

operations becomes large and number of associated variables becomes large then we

have to make major choices with respect to the register allocation with respect to the

function in it binding, but to begin with the shuttling you have resource constraints that

need to be respected. But otherwise you have a large number of operations and they have

to be mapped onto clock cycles it is not as though you have only one choice we have a

very large number of choices to exercise with respect to scheduling.

Actually all 3 problems would fall into what are called n p hard problems when you

analyze their computational complexity. Scheduling of course, is a classical problem that

is valid in many different contexts. Instances of the scheduling problem arise in a large

number of different applications this is just one such application. But the others function

unit binding register allocation and so on they too are difficult problems to solve in

general.

What do we mean by difficult problem? It is not as though you cannot come up with an

algorithm to solve the problem, but you cannot guarantee optimality in the algorithms

that you come up with on. One hand these are practical problems and therefore, we need

algorithms that are practical which means that they should run reasonably fast on large

size designs, but what you are compromising is that you are giving up on the claim of

optimality that you cannot say you have the best possible solution.

Student: Are these polynomial class or exponential class?

Are these polynomial class or exponential class of algorithms. We did not get to the

algorithms of course, in the subsequent discussion we will talk about specific algorithms

for scheduling and register allocation and binding and so on. So that is that the time to

discuss the complexity of the respective algorithms. But we are warning ahead of time

that you cannot expect optimality from practical scheduling problems. So, you want

them to be polynomial in their complexity because that is more manageable in a practical

tool, but you do give up on the claims of an exact solution.

We were here where we generated an FSM it is not as though there is only one possible

FSM. Here it seems as though the problem was simple enough and we scheduled

everything into 3 clock cycles and therefore, this is an FSM with 3 states, but in general

the number of states of the FSM and the structure of the FSM also these are all variable

these are the result of the scheduling decisions that have been made, but there are a very

large number of decisions to be made in the scheduling as also in the other steps of the

high level synthesis.

(Refer Slide Time: 09:25)

That is just to motivate the overall picture of a design space that exists for problems like

this what we have indicated here is a two dimensional picture in which you have area on

one axis and delay on the other axis considering that these are the parameters of

importance when it comes to evaluating our design.

What do each of these points represent? They represent a sample solution, solution

consists of all our decisions of scheduling resource, allocation binding and so on. It

would result in some delay some area delay here just refers to the number of clock cycles

area is the total area of the resulting circuit. So, a large number of possibilities might be

there or each of these is a possibility and I can plot all of them in an area delay curve to

understand where all the solutions stand particularly with respect to each other. Looking

at a distribution like this what can we say about the desirable solutions? Each is a

solution I have a large number of solutions can I throw out some of those solutions right

away just by looking at this distribution, I can throw it out if I can establish that there is

at least one other solution that is always better than this one with respect to every

parameter. What are examples?

Student: (Refer Time: 11:02).

The one that I have circled I can throw that out why.

Student: Because there were solution where like which is labeled as z that is more

efficient in delay as area.

Yeah. So, I have at least one other point if I compare these two points it is clear that this

is always better than that one. So, I can throw out so in fact, I can throw out all of these

points that are colored brown. Why can I throw them out because there is at least at some

point in this space that seems to be better than or equal to all those other solutions in the

interior of the feasible region. So, this region here we can call infeasible because there

are not any points in there you do need a minimum area and a minimum latency without

which a realistic solution might not be there. But there may be a number of solutions in

the other space in the feasible space all of which are not necessarily interesting. The ones

that are interesting we can cover in what is called a pareto curve, consists of design

points. That belong to this class where you do not have another solution that is clearly

better than that solution with respect to every axis.

But the relationship between these points in the set is that you take any pair of points

compare these two points y and x, y is better than x with respect to delay, but x is better

than y with respect to area. So, we can capture all of these in what is called a pareto

curve and all of those solutions would be called pareto optimal solutions. This is an

example of a problem domain where there is not a single best solution. Sometimes your

problems might be of the form that there would be a single the solution and the objective

would be to find it, but that might not be the case always.

Student: Should all of these points have been generated after running (Refer Time:

13:09).

How did this point get generated of course, this is an illustration with respect to

comparing a large number of solutions that does not mean that you must generate all

those solutions first and then pick up all the solutions that lie along the pereto curve. This

is just warning that is the design space is large and also an indication that some of those

solutions are interesting for us automatically. It is hard to at least given that your

parameters are just delay and area it is hard to say that one is better than the other. So, we

connect all of them and we could submit these as candidate solutions to a designer who

may make a manual decision with respect to which one is best. It could be that the final

decision is based on other parameters not necessarily just delay and area maybe there are

other parameters that come into the picture which might help in pruning the design space

down further maybe all of these are not interesting with respect to a third parameter

called power or security or whatever there may be a large number of other such

parameters. So, maybe we can boil the solution space down to just 3 of them and then

one can take a decision based on the relative importance perhaps of area and delay

between the selected designs maybe.

Student: Sir, if I have multiple parameters to look into let us say the area and power that

would mean that my data is an into multiple dimension then probably doing this kind of

analysis manually would be cumbersome.

This is not a manual analysis this like I said it is not as though our algorithms are going

to generate all of those design points and we are going to select among them. The

algorithms are of the kind that will usually generate one of these solutions the more

practical algorithms that we will be using will generate one of them, but perhaps they

will generate this one right. But of course, we want to understand that that there are other

solutions that are also pareto optimal that our algorithm might not be generating at all

that depends on how we have written algorithm we do want it to converge fast we do

want it to generate us a valid result first. In the rest of the space the points that I just

distributed they are implicitly being thrown out by whatever our algorithms are for these

things it is not as though they are being explicitly enumerated and the choice is being

made yeah.

Student: Report a member of area of the delay or any other matrix also (Refer Time:

15:51) point there are the way so far. Understand is as well as practical create the design

then compute the delay. So, or is there are an early estimation kind of (Refer Time:

16:05) where it does not do all these kind emphasis. In practical (Refer Time: 16:10) of

cases that some of these data points in the design space will have basically we come up

with the pareto come in too much faster.

HLS tool will always proven the design space and will select a subset out of the large

number of design points that are then there is no hope of enumerated all the possible

solutions. The space is just too vast even though I have shown a small number of points

in this graph here there is no question of enumerating everything it just blows up. So, a

large number of those points are getting thrown out by HLS. So, if there are some

solutions that it is generating for us to investigate further maybe take it down to physical

design or something like that it has already implicitly done a lot of pruning. That we can

easily see as we understand scheduling when you pick up one of those algorithms like

scheduling there are a very large number of choices that a scheduler needs to make and

in the interest of simplicity of the algorithm it has to throw out a number of those choices

who knows and among them it could be that the optimal choice actually got thrown out

yeah its certainly possible right.

Student: And eve in the whole design throughout typically a higher structure levels much

of let us say part of (Refer Time: 17:36) a kind of optimization would have been done

virtual (Refer Time: 17:38).

This happens at every stage of the space, space that is the way to keep it manageable and

the way to ensure that you do not submit every possible solution all the way to place in

route and detected that time that this design is better than the other. As you know we are

arguing here at a little higher level of abstraction when we say this area is greater than

that area we are just adding up all the component areas and are saying that this is the area

of the design, but that is not all like we have seen earlier when you actually do the

placement and routing there is a routing related area that we are not taking into account

when we just add up the component areas. But such simplifications have to be made in

the interest of a practical design scenario right. You cannot afford to go through go down

the entire path and generate masks for all the possibilities that are there. So, every tool is

implicitly making all of those choices and possibly at the end of its step it is submitting

for further investigation a small subset of the possibilities.

(Refer Slide Time: 18:51)

Let us look at a high level behavioral synthesis flow and put in perspective where the

algorithms that we will be discussing fits there. So, you have an input processing stage

where however, you have specified the input in the form of some kind of HDL whether it

be a VHDL or system see and so on. The file input is converted into some kind of an

internal representation early on there are some high level transformations that you would

be performing will study them immediately afterwards. These are somewhat independent

of the target architectures the details of the algorithms that you would be running in the

behavioral synthesis. So, they are sort of abstract and there is a lot in common with what

compilers do for instance because the direction is similar.

Then these are the core behavioral synthesis algorithms they consist of those tasks that

we already saw the scheduling and resource binding and register allocation. After all

these decisions are taken there would be maybe a conversion into an RTL format or some

kind of a netlist format depending on whether it is reasonably symbolic output like it

would be if it is an FSM or whether it is a more structural output of course, either way

you can write an HDL out, but you could also write an internal representation in the form

of some kind of database which as the final output.

(Refer Slide Time: 20:33)

Expanding on that first step which is the input processing we have an HDL input the

opening step is what is called a lexical analysis is in the lexical analysis you separate out

your VHDL model into tokens some of which as are recognized as keywords we have

entities a token and architecture the word is a token. And others would be classified as

identifiers that are not necessarily keywords and you would also have separators you

would have constant integers and so on. So, it is just a classification of the input into a

bunch of lexical objects called tokens.

These tokens are submitted to a parsing stage where what you have submitted what you

have written in the HDL is verified against a grammar of the language. So, every

language has an implicit grammar defined and the parser first establishes that what you

have written is grammatically correct, if not then you get what is called a syntax error

that is flagged at this stage you have violated the grammar of the language. If everything

is fine then if there are a few other simple things that we can do at this stage the semantic

checks include things like type mismatches this may not directly violate the rules of the

grammar, but a separate step usually would be performed after grammar is verified to

check whether you have any other errors of the kind of type mismatch.

So, if things are fine then we store the entire input description in some kind of

intermediate representation so that we can continue with the rest of the processing. So, it

is important to note that you do not get back to the input file. So, in a later stage you do

not go back to the VHDL file to see what was the port what was the architecture what

were the processes and so on. All of those are somehow captured into an intermediate

representation which of course, should be powerful enough to store within itself anything

that you could possibly write that is valid in the language.

Student: Sir, what is this r stream and token what is the token.

The token is what we are separating the input into. So, if you have entity A is port and so

on each of these is a token entity is a s token these are words, but that is the early stage

that is the first stage of a parcel right. So, this is a token, that is a token, that is a token,

this is a token if you have semicolon that is a token we are just separating out an input

stream into different tokens, each is a token.

(Refer Slide Time: 23:19)

That is language defined. So, the language says what is the separator that is permitted

here typical separators maybe space or a tab or a new line and so on that the language

defines what that is the lexical analyzers job it is to start with this to construct these

tokens and throw out all of those. So, for example, whether you have two spaces here or

3 spaces here or some tabs and, all of that is filtered out because as part of the

specification to the lexical analyzer you have said that the space is a separator. So, at that

stage all of those artifacts are thrown out.

Student: You makes that what is this tree this is.

The parse tree is what is the output of a parser where. So, it is at this stage in fact, your

entire design is stored in that parse tree format where the tree structure comes from it is

just that is an output that you construct as you do the parsing.

Student: Dependency is (Refer Time: 25:16).

No, no there is no debit there is no analysis at this stage this is purely a syntactical

captured right, the program has been written in some way this is by the way this is

identical to what happens in a compiler; when you write a programming language. So, of

course, as of now there is nothing that is hardware specific or dependent here these

keywords. So, there is of course, a distinction here between a keyword entity this is

expected so that is provided as an input to the lexical analyzer. Entity is, port these are

the keywords that are already provided so that it reads these things a character at a time

and it builds that word called entity.

How did it build that word? It took these things a character at a time it looked at that

separator and built that word entity and it is matching it against a set of keywords that we

have already submitted to the lexical analyzer and the output from that part of the lexical

analysis is this token number 5 that might correspond to entity. So that is all that is

happening here.

So, that is what is output here is it is essentially a stream of tokens. This entity is a

known token is not a known token. So, it may say that this is an identifier it is just some

identifier not one of the keywords and it also will pass what that string is so that

somebody later on can do something about it. That is all that is there when it sees a

semicolon it says that this is a semicolon. I am already informed that a semicolon is one

of the recognized characters of the language so that is also is a token. So that is all that is

here I have a stream of tokens as the output of the lexical analysis.

Now, that parsing stage consists of a verification of the grammar. So, just like we gave

some rules to the lexical analyzer those rules were these are the key words these are

some of the characters that I am expecting in this language they mean something to me.

So, so far it is not checking whether that character should be there or not at that

particular place that is the job of the grammar verification strategy. Here it is just saying

that I found that character right so that character means something that is part of this

stream of tokens that I am sending. But it is intelligent enough of course, to realize that

you have a p here that p does not match any keyword, but it will extend the matches will

try to extend that word until a match could be found. So, it will read the next one.

So, you see that the word terminates when that separator that we have already specified

we specified what the separators are when that is encountered that is when that word is

constructed and is first matched against the set of keywords that you have specified.

There is a little finite state machine that is built as part of that lexical analyzer we are not

going into that, but you can see conceptually it is just a stream of output tokens from

here. The meaning is not necessarily analyzed at this stages.

The next stage is a grammar verification. So, to this we somehow have to indicate the

entire grammar that is expected for the language what. So, for our entity specification

what would that grammar be. It would be let us say I have an entity that is a token. So,

the stream of tokens that are acceptable for a particular statement this is an entity

statement there are many kinds of statements here. So, let us say it is an entity

declaration and what would the entity declaration look like in the most general case, you

already know the syntax you you know examples of how to write entities how would you

describe it formally you start with the keyword entity then.

Student: (Refer Time: 29:24).

Then there is an identifier that identifier is something that the user is choosing right it

does not matter any as long as it does not conflict with one of our keywords we will

accept it or some rules might be there on what you will permit and what you will not

permit in an identifier so that could be this why I say entity and then identify then.

Student: Is.

Is should be there then.

Student: port (Refer Time: 29:56).

Port, remember I can have port and this, this is a token this is also a token parentheses is

also a token after that what. But I have some things that are that is a little more complex

right, I have to somehow carefully define what is there because that is not fixed you may

have any number of ports and my grammar rules should be such that it is able to

anticipate and correctly match and capture a list of ports that is of variable length. So, we

will get to that, but after that list is captured I would have a closing parenthesis and I may

have a semicolon let me just call it a port list. So, I will call this as an identifier I will say

that this should be followed by a port list. Let me just call this that list of ports that could

be a variable length.

Remember even though I have formatted it like this your own format and indentation all

of that is different so that is handled in a way that we inform the lexical analyzer that the

separator character is space or tab or new line and so on. So, this is not sacrosanct that I

wrote it in the next line that is immaterial here because we are just taking tokens here.

That you put 3 more lines in between is something that is lost at the interface of the

lexical analyzer and the parser the parser does not even see that you have put tabs or new

lines or 10 lines or 20 lines 20 blank lines right there is a port lists and.

Student: (Refer Time: 31:40) generic.

Then the generic parameters might have to be given. So, there would be an associated

generate list. Then, then I would have that end ID and if there was a semicolon you can

say that if there was a semicolon, semicolon is also one of our tokens. So, you can say

there is a semicolon here you can say it is a semicolon. Do you see that this is an

effective high level capture of what to expect in entity declaration. Any entity that the

language permits you to write I should be able to anticipate in what is called a grammar

rule. This is one grammar rule of the language. It is worth going into a little more detail

this is of course, not the complete description what is port list, what is the generic list

these two we have not defined so, but this is the rule for an entity. This is one rule of the

language let us say we start off with an overall loop rule what does a complete VHDL

model consists of what we just said is just the entity part of it, but your entire design

consists of what.

Student: (Refer Time: 33:20).

In addition to the entity there is an architecture so I say that there is a model a complete

model may consist of an entity followed by architecture.

(Refer Slide Time: 33:25)

Student: (Refer Time: 33:36).

But actually I may have any number of architectures remember that you may have

multiple architectures. So, you have you can maybe have a list of architecture. That is my

single line grammar rule for the highest level structure of the language. Of course, we are

developing this a little informally the language will have a reference manual where a

precise grammatical structure is outlined its worth taking a look at it if sometimes we are

not clear about whether the syntax should be this way or that way those rules are what

are sacrosanct for a language every language comes with such a bunch of grammar rules

that have to be clearly satisfied.

So, I had model consisting of entity and arch list entity is what we just developed so that

is my entity. So, similarly architecture I would have another rule within that architecture

I would allow a number of concurrent processes or signal assignments right. Each now

getting to a signal assignment you can see how this is recursively developed right, I can

say that a signal assignment should consist of in the very simple case I have a signal or

an identifier where as of now it is just an identifier you have less than or equal to this is

also a token I should have alerted the lexical analyzer to expect such a thing that looks

like less than or equal to, but depending on where it is used it should be able to correctly

disambiguate the meaning of that symbol.

Then I will have an expression let me just call it an expression right this is the equivalent

of a is equal to b plus c that is an architecture statement concurrent signal assignment at

the architecture level and that is anticipated by this kind of a rule that is specified to the

parser that is part of our grammar. So, I have signal this assignment operator and

expression, that expression I should be able to capture any kind of expression you may

have 100s of operations in there and that is also a valid expression right there is no limit

to how complex that expression is there is one more thing this also needs to be specified

this grammar has to have everything so that semicolon token also goes there. That is

simplified version of a concurrent signal assignment for us.

And so that is one in the architecture as part of the architectures grammar I should be

able to say that I can have any number of such constructs, each of which is either a

concurrent signal assignment or a process right because we said that they are all allowed

at the architecture level and they are all operating independently with respect to one

another.

Then what so, this is simpler, but the expression in turn I should have another rule that

says expression means what, yet what might that translate to each needs a rule. So, for

expression I need a grammar rule what might that be.

Student: (Refer Time: 37:02).

Ending in semicolon actually that is not true the statement ends in a semicolon

expression is this part of it only right. So, expression does not end in semicolon in this

particular language other languages it might be different what might a rule be for an

expression.

Student: Operands and operators.

Yes, it would be some sequence of operands and operators operands are what here there

they are those identifiers right. So, an example would be I have an identifier, I have an

operator and another identifier perhaps that is an example.

Student: Unary operator in beginning.

Yeah, you actually have to allow for many different kinds of operator this is a binary

operator that we just said, but that is I should be able to expand that expression rule to all

the kinds of operators that you may have. So, if you have something like a NOT a equals

NOT b that does not fit this format. So, you need a different so that maybe has this

operator actually in the general case it is an expression right an operator followed by

another expression. So, it is recursively specified in that way and then among the rules of

the expression would be that you just have an ID that is also an expression that could be

used to hierarchically compose complex expressions because let us say I specified two

things I have expression could be expanded as just a simple ID or I say it could be

expression operator expression.

(Refer Slide Time: 38:41)

Using that just these two rules let us see if we can reconstruct an expression like this a

plus b plus c plus d or may make it minus right. So, this part of it is not defined yet I

need a separate rule for me to tell me what is allowed as part of that operator. So, I add

another rule that says operator could be plus it could also be minus both are binary

operators where did that plus and minus come from we have to instruct the lexical

analyzer to return that token it is just a token that if you see plus that character then you

should return that plus token if you see the minus character you should return the minus

token these are just tokens fine. Identifiers of course, is a another token.

So, can we construct this complex expression from multiple applications of the

expression rule you see that at an elementary level a b c d these are what these are

recognized as identifiers by the lexical analyzer itself. So that is an identifier, that is an

identifier, that is an identifier.

The plus is an operator these so that rule that I have here for the operator that would be

matched for me to get an operator from that plus character right. So, I have an operator

that is what it looks like. Then let us proceed left to right and finally, we want to

recognize that this whole thing is an expression right so that is the job of a parser you see

that this part means. So, expression being the simple identifier means that all of these

guys right I all of these identifiers can be. So, let us say recognized as expressions by

themselves right. So, this could be recognized as an expression this and this is

recognized as an expression.

Now, that rule for the binary operator could be matched because you say that an

expression could be composed of an expression an op and an expression I have fine this

is recognition of an expression. So, far we are proceeding just left to right. After that I

have this I have that operator and I have this expression these could be matched to

generate a new expression finally, this and this could be matched to final expression and

in the process what I have done is there was a complex specification of an expression

you can see how they generalizes to any number of operators and any level of

complexity of a single expression.

So, essentially we have recognized that whole thing as an expression the tree structure

comes about from this recognition process. So, this whole thing is what would be called

a parse tree. The grammar itself has a tree structure in the way it is specified and the way

it is recognized a tree is explicitly built out of this recognition process. So, we did there

that in formally here, but this is a formally what happens in a parser that you have a large

number of these kinds of rules that are specified that constitutes the grammar of a

language and you have specified the model in a file with some syntax this kind of a

process can be used first of all to check whether your syntax is correct or not. If it is

incorrect then some rule will fail in its matching it started the matching process, but let

us say you input a recognized operator you put some garbage symbol out there.

This recognition process that we just informally went through now that will notice the

violation and will report what is called a syntax error, that you provided something and I

was not expecting that token at that time those are the syntax checks that are first done.

Yeah.

Student: Sir, in this representation.

Yeah.

Student: In the flow chart, it seems r lexical analyzer will not build the final IR data

structure to started here or do not do anything about it.

Right.

Student: But will just create the parse the entire thing to be parse (Refer Time: 44:12).

Yeah, but just correct the lexical analyzer is not building it lexical analyzer is only

sending a stream of tokens to the parser, it is the parser they are not concurrent they are

sequential the output of you could implement it concurrently with that the output is just a

bunch of numbers and strings from the lexical analyzer. It is at the parser level that we

are first going through this recognition process, but you can see that as part of that

recognition process I can build that data structure.

Student: Yes, that is what I was telling (Refer Time: 44:50).

Right, that parse tree is my data structure that is being built of course, if there is an error

then everything is abandoned it does not make sense to build at the parse tree if your

program is wrong right. But at the end of it if everything is recognized and a correct

model is recognized this you can see this is nothing to do with VHDL. It is just that this

same process would be followed irrespective of what your language is the rules would be

different for different languages type. But at the end of it if the parsing is successful then

you have constructed along the way elements of that parse tree and then, there is no

separate parts that is needed for actually creating the representation you do have a valid

representation that is what we are calling this intermediate representation at this stage.

Student: Sir, in hierarchical representation this was flant (Refer Time: 45:42) in the sense

getting hard entity inside entity called inside entity. So, let us say we have a (Refer Time:

45:48).

We did not have an instantiation.

Student: Yes.

Of an object S.

Student: In case we have hierarchical sense in it in the input data.

Yeah.

Student: Then would it make sense to create IR as soon as we are done with one of the

hierarchy that the.

Ok.

Student: (Refer Time: 46:04).

There is an interesting question of should you put more and more intelligence into that

parsing process as of now we are saying that the job of the parsing process is just this

recognition part at the end it creates some data structure for us and in a later stage we

will analyze that data structure. Semantics checks is that to find a type mismatch what is

the right time; according to this diagram it is you are completely doing the recognition

process building the parse tree and then moving to the type mismatch which might have

been there in the first line itself right. So, your question is why do not I just do that

immediately and that would save me some useless work because I could have come back

and said this is your that.

Student: (Refer Time: 46:55) it is also.

Yeah, yeah.

Student: (Refer Time: 46:56).

It is an interesting question, it is not as simple as this. So, some elementary checks are

performed along the way this is just a conceptual picture, but simple checks that are

essentially of a local level those are ok to perform as you are building it remember there

is a trade off involved this is one side of the argument. The other side is as you put more

and more intelligence into the parsing process you are delaying the parsing there is a

large file to be processed and an error is there in the late stages then you are necessarily

doing a lot of useless work which leads to a an engineering solution of the kind that you

do simple very simple checks during the parsing, but you do not do complex checks. So,

and it is possible that at the end of the parsing there would still be some kind of errors

that are not locally detectable you have to do a lot of traversal to find that there is a

mistake of somewhere, but simple type errors you could also detect (Refer Time: 48:00).

Student: (Refer Time: 48:02) one is working the next.

These things could be arranged as independent processes that are working as soon as, but

yeah there is a level of there is some argument for simplicity of the design also you do

want to reserve most of the time for later analysis and optimization this step you might

not want to spend too much time on right yeah.

Student: Is there any kind of optimization in the front end for example, let us say there is

some dead code (Refer Time: 48:38).

Optimizations are almost never performed at this stage not because they do not make

sense, but it is just that you may have to throw out everything just because there is a

syntax error much later yeah. So, right it might be worth it, but then if everything is then

maybe you perhaps you might save some time also in the process. But just in the interest

of simplicity they do not do too much of occupation.

There are some things that are done to optimize this step the lexical analysis and the

parsing step, what happens is when you have a syntax error, you could abort the whole

process immediately but you can try to patch up that process or somehow your entity

specification or declaration did not match. So, there was a syntax error in the entity

declaration itself. You could abandon everything and just say that this is an error, but it is

often considered useful from a users point of view to give you all the errors that are there

in your program not one at a time you may if you have 200 hours you want to fix all of

them together its irritating to run the compiler again and again to be informed that there

is a semicolon that is missing and then you go back and said comma is missing so on.

So, from a users point of view it is a nice thing to say I want all my errors to be reported

at once, but you see that actually imposes some, it creates some very serious technical

challenges. How do you optimizations, we talked about a while this was not a formal

exposition on how parsing is done, you got the sense of how it is done right the rules are

there if we try to match the rules and depending on what you have specified we pick the

appropriate rule. This is a simplification, but a proper how do you decide the appropriate

rule is an interesting question, but either way you see that you run into technical

difficulties when the rule is not matching then what happens how do you progress the

user wants all the errors to be determined when in fact, we have got completely off track

because that the entity rule itself did not match right.

So, they do lot of smart things to recover from errors that are specified by a imperfect

users like us. Often one can recover in a reasonable way like a semicolon is missing, you

can patch it up assume that the semicolon was there and just go ahead even though this

the statement rule did not match you assumed that it matched and then anyway proceed

to the next statement and so on. That explains sometimes when you compile a program

you get all kinds of errors that you have no clue about your reaction is I do not have all

of these things in my program why is it reporting, but what happened is that it got

confused because inappropriate patching up could not be performed and it went into

some other rule where it was expecting something else and you are saying where are all

those things in my program there are they are not there.

So, it is useful most of the time, but sometimes might throw you out. In C++ compiler

sometimes you might have seen examples of all kinds of errors that you do not know

where it came from, but that happens because of two things, one is this other is because

you are using libraries from somewhere and it says that this operator is not overloaded

for that object alright yeah.

Student: Sir, input (Refer Time: 52:17) destroys any standard HDL language is there any

standard for this intermediate representation as well or.

(Refer Slide Time: 52:31)

Yes, yes, but that is the topic for the discussion. Yes, we do want that intermediate

representation to be language independent.

(Refer Slide Time: 52:33)

Because languages may change, but those changes may be of a very superficial nature

because it is just laying sort of entity you have module or something like that, but your

synthesis mechanisms are not going to be changed just because the language changes.

So, usually you would design that intermediate representation in a way that you are

shielded from changes in the language. You cannot be shielded hundred percent because

of course, you know that if you add a new keyword to the language then of course, the

parser has to change that keyword has to be accommodated hopefully with a very minor

change the representation also has to change, but hopefully the changes will be minor.

The design is such that it is intended to be generic and would stay through iterations of

language or variations of language newer and newer versions of the language and so on.

We try to make it independent as far as possible just so that our analysis and later steps

are not influenced by change of language or changes of that nature.

Student: Syntax error and (Refer Time: 53:46) what kind of check is sematic checks.

Type mismatch is a semantic check you say a equal to b right, if I have a statement that

says a equal to b plus c and so on right this is of some type and all of these guys are of

different types. You know the type of that an expression may not be obvious to start with,

this you know the type of you know the type of b c and so on at the end of this. So, some

analysis would be needed to find what is the type of that entire expression because you

may promote some types one is a an integer and the other is a floating point number the

rules of the grammar have to explicitly permit this which they do, but it would also be

that at the end of this you add an integer to a float what kind of expression do you get,

what is the type of the resulting expression that this results in a float is a language

specification we do not make that assumption its specified in a way that is reasonable,

but you have to actually do all of this to find out what the type is for an expression and

the a equals something. So, this might actually from the point of view of matching the

grammar rule this statement might be ok right, but from a type point of view there might

still be a mismatch that is an example of a semantic check. There is more to the language

than just the grammar rule. So, those other things need to be verified also.

So, a number of other things would also fall in this category for example, re-declaration

of a variable right. So, you have an int a, some other stage you also have an int a right

both of these are valid statements by themselves, but the second declaration is in error

because you had already declared that variable first. That is not obvious from the rules of

the grammar because the grammar will correctly recognize both the statement and these

statements there is no harm in the statements itself. But they are linked in a way that

there is an error that is created because of this, so those kind of errors would fall in the

semantic chain. They are do not necessarily performed sequentially like we are saying

this kind of an error is easily detectable at the time that you get to the second statement

get to this declaration you should be able to detect that in the current scope there is an a

that is already visible it has already been declared. So, you could if you want to this kind

of semantic check during the parsing.

So it is important that the design representation be almost language independent to the

extents possible. There will be some features that are there in one language that are not

there in the other language and so for those who do need the intermediate representation

to be able to capture also. But it is to have that representation that you are using being

somewhat of a superset of a particular language right. If in a particular language a feature

is not there then it is alright you do not create elements of that nature when you create

your representation.

What else. So, it should be easy to add a new front end for a new language normally this

analysis techniques synthesis techniques and so on, they might last longer than a

particular language, new languages may involve they do not redesign everything from

scratch tools from scratch when languages evolve because most of things that we are

doing might still be the same. So, it should be of the kind that ideally I should have only

a new front end when the language changes which means that the parser and all of that

an those things would change, but the synthesis steps hopefully would not do not need to

change those are elementary requirements.

Then what is expected within that IR itself, it should be relatively easy to do

transformations. Why transformations are important? We will get to as soon as we talk

about optimizations we perform as part of the synthesis process all kinds of

transformations on the code transformations means you read it in the form of a tree

structure at the end of the parsing, but we do not keep it in that way depending on what is

it that we are doing we modify that representation in various ways.

Either way I should have easy ways to traverse the design I should have insertion,

deletion, replacement those kind of features these are tree or graph kind of structures

anyway. So, I should be able to traverse tree or a graph I should be able to replace some

section of a graph with a new section that I have created that would represent an

optimization of a transformation.

The right representation would be different in different parts of that overall flow. So,

early on it would be what is called an abstract syntax tree that is the tree the parser

creates, but that structure may or may not be best in later stages of the design of course,

we will be talking about these representations in more detail. But the idea of a control

data flow graph or some variation of this is something that is often used through large

parts of the synthesis process.

(Refer Slide Time: 59:30)

Let us just try to understand what that control data flow graph looks like because in

various algorithms later on we may be using implicitly this c d f g that the what we have

written in the HDL is captured in the form of a c d f g so that other algorithms operate on

the c d f g. They do not operate on the file that you have written they operate on this

intermediate representation.

So, this is a combination of a two things, one is a control flow graph that is responsible

for capturing sequencing conditional, branching and looping structures wherever control

flow exists in our specification. Data flow graph is somewhat of an orthogonal structure

it captures computation essentially. These are easier to illustrate with an example.

(Refer Slide Time: 60:24)

Let us say this is what my HDL was looking like and I did not respect a particular HDL

here this looks more like c, but it does not matter. Remember this representation is

supposed to be independent of the language. So, we can use various HDLs at the input.

Let us say I have a conditional structure here and that is getting captured in the form of a

control construct that looks like this, this refers to a forking structures where I have two

different branches this corresponds to the then part and this corresponds to the else part

that is just a dummy node as of now it does not carry that information of what is

happening in that branch it is just carrying the information that there is a branch there

right. And this idea is called a basic block its terminology from a compiler you can think

of it just as a sequence of statements with no branching within it its more formally

defined separately, but it is like within the branch you have a sequence of statements

there is only one flow of control within a basic block.

Other elements that go into the definition of a basic block is that there should be only one

entry into that basic block and one exit from the basic block. How is that different from

just a sequence of statements? A language may permit you to go to a particular statement

from somewhere else when that happens you see that this definition is violated, if this is

my sequence of statements constituting a basic block then I have multiple entries this is

one entry that is the default entry the first statement by if you allow entry from

somewhere else to the middle of that sequence of statements then that is no longer a

basic block.

Why that is defined that way is that we want to be able to move a a basic block maybe

from one place to the other or something like that and some properties are not retained if

you allow jump from some part of the code to some other part. So, anyway that is what

the basic block is for now it is the longest sequence of statements that has only one entry

and one exit. So, this is one such basic block that is one such basic block. And so that is

not captured in the c f g, the c f g is only capturing in a dummy node like this that there is

a basic block. So, we have not yet completely captured in an intermediate representation

that HDL, but at least the control part of it we have captured.

(Refer Slide Time: 63:05)

Generalizing into a multi way branch if you have a case statement with multiple entries

then that is what that generalization is, there is a fork, but you have multiple branches in

that way all of these come together in a corresponding joint node before we proceed with

other elements of the control flow graph. This is just a sample you can think of other

constructs if you have a loop then what that might translate to and so on.

(Refer Slide Time: 63:43)

These can be composed with each other in a natural way. So, first of all that can be

hierarchy in the conditional structures that we write that could be translated to a

hierarchical control flow graph in this space. So, the inner if statements corresponds to

that part of the structure these are all graphs even though I have shown these using

different colors and different forms and so on, they are all nodes in the graph and they

will be distinguished from each other through properties of the node that properties that

we annotate on to the so that is the hierarchical structure there can be sequences of these

structures.

So, this is a basic block by itself, that is this part this corresponds to that part and that

switch that comes next corresponds to this part and these are dependencies the

sequentiality is maintained through the presence of edges like that. So, far we have not

said anything about what we do with it this is only a representation, as of now this is

what the user has written and we just have some intermediate graph based structure for

capturing the specification. We are not doing any optimization, but as part of an

optimization it is possible we restructure this graph in some way.

(Refer Slide Time: 65:11)

Completing this I can have a data flow graph I had the statement that as of now we just

had a dummy node, but the computation part of it we can capture in what is called a data

flow graph. So, I have nodes corresponding to these operators. There may be other nodes

corresponding to these operands depending on where they came from this is just the most

general form you might not need all of these nodes to read. And remember in the general

case maybe reading of an a corresponds to a memory operation or something like that so

that node might actually need to be created, but I have nodes corresponding to both

operands and operators output is going into y and these edges in the data flow graph

represent dependencies between nodes right.

(Refer Slide Time: 66:06)

If I have a sequence of statements like this, this part of it is the first statement right. I

have z equals y plus 1 that is the second statement, but there is an edge from the first

output to the second input so that operators output is an input to the second operator that

dependency is represented by introducing an edge between the two nodes.

The entire basic block need not be a one connected data flow graph there may be other

parts that are unconnected, but the whole thing together is a data flow graph. So, it

corresponds to one sequence of statements that you have. So, a basic block in a code

would translate to a data flow graph.

(Refer Slide Time: 66:55)

And with that I can compose a control data flow graph out of it where the high level

structure the control structure is captured in the form of a control flow graph, but what is

missing from here is the computation part of it. What happens in each basic block? That

is not captured. So, this basic block translates to a d f g that other basic block here

translates to some other d f g and in fact, the way we have written this the fork also has a

computation associated with it, so there is a different d f g. This is just by way of

illustration. You might actually move that computation out into the prior code so that

might actually become part of the previous basic block and that is where that d f g might

be absorbed right.

But a control data flow graph is an overall structure where you have a hierarchy of graph

structures the higher level is a control flow graph where you have captured control flow

and the basic blocks within that the computation that is captured in the basic blocks is

expanded out in the form of individual data flow graphs.

Let us stop here for today.

Student: Data is annotated as (Refer Time: 68:11).

Yeah, we just had the pictures here we did not label the edges, but there would be a label.

So, I have over here I would put that label here on the edge yeah. Sometimes those labels

are like we discussed the other day are explicitly declared variables, sometimes they are

implicitly created by us inside the synthesis tool, but this still have a name and we

annotate those names wherever we have information about the names.

