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Introduction to High-level Synthesis

Let us go on with the next topic. We will spend a few weeks on behavioral synthesis or

high level synthesis.

(Refer Slide Time: 00:27)

If you remember from our overall flow of the several levels of abstraction that we had of

the design behavioral synthesis takes us from what we said was the behavioral level of

abstraction we had defined it as one in which functionality is specified, but timing and

other details  may not be cleared,  particularly the mapping of functionality  two clock

cycles are control steps has not yet happened.



(Refer Slide Time: 00:28)

So that  is  what  the  main  job  of  behavioral  synthesis  is  we convert  from a  level  of

abstraction where the time and clock cycle level detail is not quite clear to one in which

it is explicitly clarified.

(Refer Slide Time: 01:26)

The inputs first of all it would be the set of HDL processes that we wrote. So, there is of

course, an entity and architecture and a bunch of processes inside that architecture that

HDL that we wrote is the main input to behavioral synthesis that is the starting point. But

it has to start from there and ultimately realize the entire synthesis process has to realize



a circuit a digital circuit that implements that design that we have specified. So, how will

it implement it? We have to provide a component library whose elements will constitute

the circuit ultimately right. So, that component library needs to be there.

Beyond that there are several other things we may provide most important of which is a

set of constraints so that will specify under what condition is this design occurring. So,

these constraints come from where they may come from area budgets that you want to

impose on the design it may come from timing requirements speed requirements of the

design,  power  requirements  and  so  on.  These  are  externally  imposed  these  are  not

inferred from the design itself like when you write a VHDL model it is not clear what the

power budget is, so these constraints are externally imposed and they are also inputs to a

synthesis tool.

Clock  period  is  typically  also  imposed  as  a  constraint  although  you  could  have  a

variation of the synthesis process in which you can ask the synthesis tool to come up

with a solution and along with the circuit it also gives a suitable clock period for the

design it could be. But usually the clock period is provided as an input. And what are the

outputs? At this level of abstraction the output is not that final gate level netlist that we

talked about remember that is a lower level of abstraction, but here there would be a data

path what it looks like will get too soon and there would be a controller at least these two

components are there in the output of the behavioral synthesis.

(Refer Slide Time: 03:48)



So, let us define a VHDL process that is behavioral or high level just for illustration we

are modeling essentially only the functionality here. So, you can see that this is sort of a

complex expression there is addition there is multiplication there is division that entire

expression is not going to be completed in one clock cycle obviously. But there is still

some value like we had argued earlier just like there is a value to 0 delay assignments

there is a value to these kinds of processes where complex functionality is specified and

we just have sensitivity to where clock.

No timing commitments means that we are not really saying when the addition should

happen, when the multiplication should happen, when the division should happen and so

on that should be the output of the behavioral synthesis process. But the input is just an

abstract description in which you have the functionality, but not necessarily all the timing

level details.

(Refer Slide Time: 04:54)

You could think of a refined behavioral process in which we actually explicitly make

these decisions. So, there is an A plus B there is a D plus E right you can see that these

two additions are independent of each other and could be performed simultaneously. If

you had the resources then both of these could be executed in the same clock cycle that is

what  the  refined  VHDL  model  here  looks  like.  This  is  actually  the  same  thing

functionally it is the same, but you can see that timing wise it is different what we have

done is divided time into 3 clock cycles and in the first one we are doing that part of the



computation that is highlighted here. We are waiting until the rising edge of the clock the

rising edge is just a simple function we know how to implement. The rising edge right

this is just a function that is doing the same thing we said clock event and clock equals 1.

So, such a thing would be what would be there in that function called rising edge.

Then I have the multiplication and the division. So, since this addition is complete I now,

need to do these two, I now have the operands for doing that multiplication and the

division right in the second clock cycle of course. This is still an abstraction you may not

finish a division in one clock cycle, but this is just an illustration. And finally, after this is

done the results are stored. So, these intermediate results are stored in t and s. So, we can

that is my t and that is my s after doing the multiplication the results are stored in p and q

and finally, I have that subtraction with the result right so that is the multiplication and

that is the division. So, this is what is going on here. This is a little more detailed what

you have on the right side is a little more detailed version of the same functionality in

which some synthesis decisions have been taken. What are those? These are scheduling

decisions these are the mapping between individual operations and the clock cycles.

So, that is at an elementary level what is going on here at least that is one of the major

decisions that has taken place in the synthesis and the output of the HLS looks something

like this there is an FSM and there is a data path that data path would consist of those

components that we pick up from the library that of course, should be able to implement

those operations that are there in the HDL.



(Refer Slide Time: 07:25)

Then there is a controller that should make the decisions of which of these operations

should happen in which clock cycle the output should be at least this much it can be

more. So, you do not necessarily have to have only one data path and one FSM there

could be multiple data paths and FSMs and so on, but this is what the picture might look

like of the output of the high level synthesis process.

So, I have a bunch of these are arithmetic circuits there are multiplexers here there are

registers to store intermediate data. There are control signals that go from the controller

into the data path what is their job their job would be if they are going into the muxes

these are the select input of the muxes that they are going into they would tell us whether

this operand should be passed into the adder or the other operand should be passed into

the other. So, such control goes from the FSM into the data path there may be some

status signals that go in the other way from these computations that we have we may

send some signals out back into the FSM. So, there may be signal flow in both directions

between the controller and the data path that is what the output is likely to look like of

the HLS process this is just a high level picture let us go into some detail and.

Student: Sir, in the in the system there will be created as files FSM.

In the system will they be created as files. You can think of this as an HDL model the

input was an HDL, but the output is also another HDL, but now, it is a lower level of

abstraction  you can think of  the  FSM is  still  VHDL. But  lower level  of  abstraction



maybe the FSM is one entity and the data path is a different entity right or it could be the

whole thing is one entity, but the FSM is one process and the data path is more structural.

So, you have instantiation statements composing the data path part of it, but as of now,

the FSM as you can see is still little symbolic as of now, right this is not a structure the

data path part of it is structure, but the FSM part of it is still symbolic, but you can think

of that as two different entities one of which is the FSM and the other is a data path.

But that was just a very high level picture. Let us go into one more level of detail in high

level synthesis.

(Refer Slide Time: 10:20)

What is that resource library? We said that the HDL is an input is a primary input for the

synthesis tool to start off, but the resource library is another input why is this another

fundamental  input  because  the  output  is  going to  be  composed of  elements  that  are

picked from this resource library. So that library would look like this I have a bunch of

these components maybe they are added RCA as it is a ripple carry adder this is a carry

ripple  adder  indicating  that  the  library  may  have  multiple  components  for  what  is

essentially the same operation in the HDL right. You just have a plus in the HDL, but that

could be realized in terms of different architectures in the implementation it could be a

ripple  carry  adder  it  could  be  carry  (Refer  Time:  11:17)  adder,  these  different

implementations have different properties therefore, the synthesis tools job it is to decide



which one to pick up right. Multiplication, a memory and so on, these could be a bunch

of resource library elements that you are taking up from.

These  numbers  here  could  tell  us  for  example,  how many  such  resources  are  there

sometimes we may have a constraint on what resources are there and how many of each

resources we are able to use. So, it could be that we also have this information of how

many resources of each type are available for us.

Our function units would be adders, multipliers, comparators, ALUs and so on I would

have  perhaps  the  number  of  them,  but  also  important  is  the  distinguishing  features

between those components would be visible to the user of that library the synthesis tool

is the user of their library. It could be that I have a memory and that memory would be

characterized in terms of what parameters how many memory elements are there that

could be 1, but the size of the memory the width of the memory, how many ports are

there and so on those are some of the basic features of the memory modules that needs to

be exported to a synthesis tool so that the appropriate decisions could be taken.

Beyond that there would be other typical information that I would store along with my

library elements that would be first of all what function is it implementing. So, if it is

adder or a multiplication or some ALU and so on that has to be encoded in a way that the

tool is able to understand and make the association between operations in the HDL and

the appropriate components in the library.

Area of the component, delay of the component, power dissipation and so on these are

typical properties of those components that would be there as part of the library. Yeah.

Student: Since we are doing a high level synthesis (Refer Time: 13:29).

Yeah.

Student: The area delay which will be differing across multiple resources would they

motional or they be not to a technology.

So, are the area delays technology is specific the resource library is typically technology

specific yeah. This is still only part of the delays remember there are other parts that are

not necessarily visible at this time, but components are characterized for the maximum



delay from any input to any output that is the kind of information that would be available

here when you pick up elements from a library.

(Refer Slide Time: 14:10)

Let us define one very elementary operation that in some ways is the starting point of the

high level synthesis that is called scheduling. You have operations we have indicated a

graph over here which in some ways violates the definition of a graph remember you

cannot have hanging edges every edge needs to connect two nodes, but the meaning

should be obvious hopefully here what is being shown here is just a part of a larger

graph.  But  there are  some operations  and that  structure  what  does  it  mean the  node

represents some operation that is there in our HDL you can always try to map these

pictures that we are seeing with HDL that you would write we do not necessarily point

out the HDL all the time, but sometimes it is important to keep that in mind.

Where did they come from, where did this graph come from? It came from an HDL that

we  originally  specified.  What  does  the  edge  represent?  It  represents  a  dependency

between the operations. You may have these operands as a b c and d alright and you may

have an s and t and 1 and your statement in the HDL from which such a structure might

have been inferred or the set of statements could be that you have s equals a plus b and t

equals c plus d y equals s plus d. So, some such set of statements might have been there

from which we derived that graph. But often we will skip the HDL part of it and will



directly show the graph and show the operations and the algorithms that are working on

the graph. But remember they all came from an HDL that we ourselves wrote.

What is scheduling then? The scheduling is taking these operations and associating a

clock cycle with them associating a timing with those operations, we did not specify any

timing in these assignments right these were zero delay assignments that we specified,

but of course, finally, these things have to be mapped into clock cycles all the operations

do not necessarily fit into the same clock cycle. Whether a new clock cycle is necessary

or not how many clock cycles are necessary this could be part of the scheduling tools

decision making process it is an important part of the high level synthesis tasks.

So all that we had we have done here is on the right we have divided the operations into

clock periods saying that these two operation these two nodes will be scheduled in two

clock cycles 1 and that other node here the third node would be scheduled in two clock

cycle  2.  Of  course,  this  is  possible  assuming  some  knowledge  about  a  resource

constraint. So, in order to realize this it is essential that we should have two adders; these

are all adder circuits that are necessary in order to perform both of those operations in

parallel. So, same clock cycle means that the operations are being performed in parallel

and therefore, you need access to two adders in order to realize that circuit. So, somehow

that resource constraint was available to the scheduler that is why it took that decision.

But what if it had 3 adders could it have scheduled all the 3 into the same clock cycle.

Student: (Refer Time: 18:03).

If the clock period was wide enough maybe all of them could have been scheduled into

the same clock cycle right the whole thing would have been just one big combinational

circuit  and as long as the delay fits in the clock period it  is ok. But if  not as is the

example here where let us assume that the delay of one adder is the clock period that we

are given then the  other  operation has  to  follow the first  two operations.  There is  a

dependency  that  is  inferred  from the  specification  itself  that  cannot  be  violated  you

cannot schedule the third operation in parallel with the first two here to wait for the first

two operations to conclude why do we do this schedule.



(Refer Slide Time: 18:43)

Remember our objective in high level synthesis is to go closer and closer to the lower

level  of  abstraction  right.  So,  remember  this  timing  was  left  out  in  the  abstract

description that was the input and we are trying to add more and more timing level detail

into the design.

Schedule as you can see if I had that graph here and I took this decision of these two

operations in the first cycle this in the second and this in the third because of various

reasons all of which are not indicated here, but it is primarily dependent on the nature of

the dependencies in the HDL itself. But also what resources are available delay of the

individual adders and the clock period that was given to us using all of those as the input

the scheduler decided on such a schedule.

So, we have this information that in the first clock cycle. So, I need only 3 clock cycles

to implement my design in the first clock cycle I should enable these two operations in

the second clock cycle I will enable that operation and in the third clock cycle I will

enable this operation. This is essentially an important piece of information from which

the FSM can be composed that what is the FSM anyway. So, you can see that in an FSM

what kind of information goes. We can associate with the state or with transitions some

actions right. So, there are conditions and actions associated with these transitions.

So,  let  us  say  for  now, that  the  state  s  one  corresponds  to  clock  cycle  1  state  S  2

corresponds to clock cycle two and s 3 corresponds to clock cycle 3. So, such a schedule



leads in an immediate way to a finite state machine which of course, we said is one of the

main outputs of the synthesis process. This is not the entire FSM right, so let us draw that

FSM here I have S 1 and S 2 and S 3.

(Refer Slide Time: 20:51)

That is the FSM that is inferred from this schedule in the picture. This tells us about the

structure of the FSM, but some information is missing words missing.

Student: In the transition condition.

Yeah. So, there is associated with this transition there is a condition. What else is there in

the FSM? You have states, you have these transitions, you have the conditions. So, I need

to specify these conditions  and there are actions.  What  would the actions  be for the

FSM?

Student: (Refer Time: 21:34).

So, these are the conditions I need those conditions,  but there are also actions. I can

associate actions with the transitions or with the states themselves depending on whether

I choose a mealy style machine or a more style machine. So, there are actions here right.

What actions are we talking about here in this example?

Student: (Refer Time: 22:06).

What is the output of one state?



Student: The result of the calculations (Refer Time: 22:12).

Result of the calculation. The calculations themselves are not taking place in the finite

state machine so that is the go back let us go back to that that picture of an FSM and a

data path. The computation part of what we have specified with the if there are addition,

there are multiplications and so on those are part  of the data path.  The FSM is only

controlling the data path it is the controller right. So, the calculations that we have given

the computation part of HDL they go into the data path, how do you do the calculations

here there are  additions  right.  So,  those additions  that  we have in  this  diagram they

would be actually occurring in the data path part of it.

So, what is there in the controller? The controller has this key information of when the

additions should happen right, but the additions themselves happen in the data path. So,

given that is the model what would be there in the actions controller.

Student: (Refer Time: 23:19).

What are those control signals?

Student: Special.

Yes, we already saw that. Remember the same adder might be doing different operations

in different clock cycles; I can reuse that same adder to do different things in different

clock cycles. So, the inputs may come from different sources for the same adder where

they come from that can be controlled by the finite state machine. It is the FSM that

knows whether we are currently in cycle 1 or cycle 2 or cycle 3 and it can send the

appropriate sellers signals to the muxes. So, these actions would essentially be control

signals to the data path. So, and what controls signals these are essentially these mux

select signals and similarly if there are other elements like registers then there also we

may need to send some signals of when to load a register.

Fine actions should be clear what about the conditions. In this example where we have

that graph, this is the graph that got synthesized into an FSM and a data path. What

condition would go into the FSM?

Student: Status signal (Refer Time: 24:47).



Status signal. What status signal?

Student: Computation.

We talked about this particular example. You can visualize what hardware we are talking

about on the data path side right for this particular example what kind of hardware would

it be two adders. Why two adders? Because we have two editions being simultaneously

scheduled into the same clock cycle I need two adders to realize this. However some of

those adders could be reused in the second clock cycle and the third clock cycles I do not

need more than two adders I could have, but I do not need more than two. What else

would be there in addition to the adders?

Student: (Refer Time: 25:27) registers.

I  have  an  adder  and  that  adder  that  I  have  two  adders,  but  the  inputs  come  from

somewhere and go somewhere, but important thing is that adder may be shared across

multiple  clock cycles.  So,  actually  mu inputs to  one adder  may come from multiple

sources that implies what else is there in the circuit other than the adder itself there may

be a mux right. So, if that is the adder that is being shared then I need muxes that have

their inputs coming from different sources right. How many inputs there would be to that

mux it depends on how many distinct places you are getting your data for as far as that

particular  adder  is  concerned so  that  is  certainly  there.  What  else  might  be  there  in

addition to the arithmetic components and the muxes?

Student: Register.

There could be registers why do you need registers.

Student : (Refer Time: 26:31).

Values need to be stored since the output in produced in one clock cycle is being used in

another clock cycle you would need register in this fine. So that is the kind of data path

we are talking about. There are other things the picture is not complete yet you have to

take some other decisions before the picture is complete, but there is an example of what

the data path looks like.



Fine, so for this kind of a data path the control signal should be clear. Each of these

muxes need to be controlled and they are controlled through the select lines which come

from the FSM so that is one interface between the FSM and data path. Is there anything

else that  needs to be sent from the FSM, that  register also needs a control  signal in

general there is a load not the clock, there is a yeah there is a load signal to the register.

So, I put it there that load signal tells the register when it should load new data into the

register because you might not be interested in loading new data every clock cycle when

it is relevant that is when you would load the register. So, such a signal would also come

from the FSM. This forms the sort of the interface between the data path and the FSM

and clearly these are the signals that can be produced as the actions of the FSM.

So that part is clear what the actions are and what do they translate to, they translate to

control signals of the data path fine. That still leaves us with the condition, yeah. So, any

guesses what should be what should we have in the condition.

Student: Attention of the operation by the data path.

Student: It must be (Refer Time: 28:57) given as a feedback.

This is the condition that tells us when we should proceed from state S 1 to state S 2

similarly here to there is a condition right right. So, what is the condition under which.

Student: (Refer Time: 29:13).

We should transition from S 1 to S 2.

Student: It must be blocks in that a and added a in the clock (Refer Time: 29:20).

Of course for this circuit to work for this schedule to work it is essential that, what is the

relationship between the adder delay and the clock period?

Student: (Refer Time: 29:30).

Adder delay has to be less than the clock period otherwise this does not work. So, both of

those pieces of information what is the adder delay and what is the clock period must

have been known to the scheduler otherwise you would generate an illegal schedule that

the fact that we came up with the schedule means that we are aware and have taken that

decision after being aware of these delays which is we according to the methodology we



said that the clock period is an input to the synthesis process. And the library elements

the details of the library elements are also visible to us as part of the synthesis process

therefore, those that the respective delays are known. Brings us back to the question what

should that condition be.

Student: Clock, change in clock.

A change in clock does translate to us proceeding from one state to the other that is the

association between a finite state machine and clock. But what would you put there on

the condition.

Student: Changing (Refer Time: 30:34).

Student: (Refer Time: :) this.

For me.

Student: Carry this.

If carry exists what does that tell us a carry from the adder which is it would be in the

reverse direction. So, these were inputs the control signals were inputs from the FSM to

the data path how would the FSM know that there was a carry on an adder. It is the

reverse information you have to send that status information back from the data path into

the FSM, but the functionally what does it tell us if a carry exists then.

Students: Depends on the algorithm we are proceeding the operation is like carry exists

go to (Refer Time: 31:18).

But is that what is the meaning here we go from S 1 to S 2. So, does it do you think there

is  a  dependence on carry, the  addition  is  done which resulted in maybe a  carry and

perhaps there is no carry that depends on the operands and then we go in the next clock

cycle to S 2.

So, what is the, what condition do I put.

Student: (Refer Time: 31:42).

Student: The results of that.



The presence of a valid output on the adder. How do we know whether the adder output

is valid or not?

Student: (Refer Time: 31:54) change in the output value from the previous value.

Student: No, no.

Student: have a (Refer Time: 31:58).

Change in output value from the previous value does that. If there is no change what

does that mean we are still working?

Student: Yes, sir.

Can is the change in output on the, of the adder enough information to tell us that the

computation is done.

Student: No.

No, it might not who knows maybe if the output is the same for two successive editions

because the operands were the same operands did not change its still a valid addition it is

just that the output not change. I cannot rely on either the carry or the output the some

output of the adder. Yet it is an incomplete FSM if I do not specify a condition right.

Student: We have a separate status in a like in a processors status (Refer Time: 32:49)

said in the addition (Refer Time: 32:51).

What  status signal?  This is  just,  this  circuit  is  so simple  that  you should be able  to

complete it.

Student: (Refer Time: 32:59).

What status signal do I rely on?

Student: Sir, rising, rising edge of the clock.

On the rising edge of the clock right. But do we put the clock here as a condition have

you written an FSM. You have seen an FSM diagram right do we put the clock there.

Clock is implicitly a part of the finite state machine whether it is a state table or whether



it is the diagram we do not put clock explicitly there it is assumed that the system of

course, is running on one clock and all these registers and state registers of the flip flop

and so on they are working off that clock right maybe it is on the rising edge or of the

falling edge, but that is external we do not necessarily put that clock edge as a condition.

Student: Inputs.

Inputs, which input?

Student: Inputs to the adder.

Inputs to the adder are these right.

Student:  Right depending on the which input we are taking using mux the statement

(Refer Time: 34:03).

What are these inputs anyway I had a b c d if you relate them back to the HDL they are

variables  maybe  they  are  32  bit  integers  or  something  like  that.  Is  there  a  point  of

providing all those 32 bits to the finite state machine, this is just a 3 state machine which

would be realized using how many flip flops just two flip flops are needed. So, what is

the point of sending the all those 32 bits as inputs to the finite state machine. Remember

FSM is not going to do computation addition is going to happen in the data path.

Student: (Refer Time: 34:42) registers.

The register has the output of the addition stored there what would go from the register

to indicate to the FSM that you should move on to the next state.

Student: Sir, does the clock (Refer Time: 35:00) actually by default (Refer Time: 35:01)

is available.

Yes.

Student: For this transition (Refer Time: 35:05).

Yeah. So, what do I put I the FSM is incomplete without a condition.

Student: By all.



They specified always true means 1.

Student: Yeah.

What variable is 1. So, if there are inputs to the FSM right remember the state table I

have present state, next present state inputs, next state an outputs these are my state table.

Conditions are realized in terms of the inputs to the FSM and actions are in terms of

outputs of the FSM. So, you are right that I should proceed from state S 1 state S 2

irrespective of what else is happening yeah which means that what do I give here if the

inputs I should have do not care.

What are the other inputs anyway? Outputs are clear these would be the select signals of

the muxes, inputs as of now, we did not need it actually, but there may be some status

signal the carryout for example, might be useful as of now, it is not useful right. The fact

that the scheduler took the decision of scheduling an operation in a clock cycle means

that it is guaranteed that irrespective of what the operand value is the operation will

finish in one clock cycle. You do not need anything from the data path to tell you that

you should move forward into the next clock cycle there is nothing I need.

Specifically the values on the sum or the outputs of the adder do not tell  us that the

operation has finished or not finished, but in fact, the scheduler has made that decision, it

was  made  accessible  this  key  information  of  what  is  the  max  delay  through  the

component the adder component that was made accessible to the scheduler. So, there is

nothing else that is needed at least for this simple FSM that we have inferred from that

schedule in fact, you do not need any input from the data path and therefore, whatever

the  inputs  are  as  of  now, it  this  would  be  just  I  do  not  care.  That  transition  would

correspond to a transition corresponds to a row inside the state table right so that would

correspond to it do not care. So, this is a do not care actions are these. So, hopefully we

understand how to complete the FSM.

So, two things one is that at the end of the schedule you have the structure of the FSM it

is in the complete FSM, but you know for example, how many states are there and then

you have to complete it though we are saying that we need these values as of now, I do

not know what those values I have to do some other things to send the appropriate two

control signals here. So, the outputs are not yet decided, but if the FSM is linear in this

way then the conditions are all do not care, you always go from one to the next. You can



see that this is what kind of an FSM it is like a counter like you are just going from one

state to the next state without any a counter is an example of such an FSM the clock is an

input, but there is no other input unless there may be a reset kind of input, but otherwise

from state 1 you go to state to state 2 you go to state 3, but that is not all like we said a

few other things are missing let us complete those.

(Refer Slide Time: 38:23)

There is the step of function unit binding start from the schedule that we came up with

right and now, we have to take decision of how we will implement each of those nodes in

the graph. We have implicitly assumed here that the input will be stored in the form of a

graph what it looks like we will get to later on, but you can see that here just informally a

node  represents  operations  and  edges  draw  them  here,  but  these  edges  represent

dependency  structures  that  is  important  information  for  the  scheduler  because  the

scheduler needs to take this dependencies into account before deciding which one should

go into which clock cycle.

But I may have a choice given one of those nodes. I have to now, look at the resource

library and decide this one this node would be realized in terms of that component that

node would be realized in terms of that other component this they carry look ahead. How

to take that decision is a different matter so far we are just saying what is happening in

each  of  the  steps.  Of  course,  we  introduce  schedule,  but  what  is  the  algorithm  for

scheduling that we did not say that will come later on. What we are doing now, is quickly



going through the different passes of high level synthesis to understand what happens in

each pass. How it works is a different question that we will get back to later.

So, this decision happens as part of the function unit binding step each of those nodes

that are being scheduled, each of those operations that are being scheduled we have to

map them to an appropriate component in the library that is the function unit binding. So,

here the decision that we have made is that there are two adders one of this type and the

other of this type and these two operations would be mapped on to the same adder that is

what that color coding is indicating say matter here is the ripple carry adder and that

other operations would be implemented on that other component. Why it is a different

matter? There is an algorithm that would be deciding it, but this is the end result of the

function unit binding step.

Student: Sir, there is only one adder or (Refer Time: 41:06) one add adder (Refer Time:

41:07).

Yes, but remember that I have scheduled some operation on that adder in the first clock

cycle. In the second clock cycle I am reusing that adder to do something else that is

alright right I still need only one component I am reusing it in time which is in space I

cannot reuse if in the same clock cycle I need multiple operations to be performed I need

them to  be  performed  on different  components,  but  across  clock  cycles  I  can  reuse

component.

Student: Sir.

Yeah.

Student: Is (Refer Time: 41:45) function blocks can we not just is just used to (Refer

Time: 41:48) in the same clock cycle.

You can it is just that for this particular example we decided that I will permit the tool

only one adder of this type and one adder of that type how many to use of each type is

also a decision that the synthesis tool has to make. We will talk about the actual problem

formulation for the synthesis tool, but we are just saying that as of now, this design was

chosen why it was chosen is a different matter; obviously, obviously that is not the only

way to realize their design.



Student: Excuse me sir.

Yeah.

Student: Now, like we are seen that synthesis outputs gives us a FSM and a data path.

Yes.

Student: So, but some somewhere down the line we will have to convert this FSM also

into some hardware.

Yes, indeed like we said the FSM is still symbolic that is not a circuit, but the data path

part of it looks more like a netlist this is instantiation of components from the library and

there is interconnection a lot of those parts are clear, but the FSM part of it you do need

to take it through further synthesis steps. But that would be a little lower level we can put

that in an RTL synthesis discussion. But yes there we do need to take that whether there

is a diagram or a state table; however, it is that we have specified the FSM we need to we

need another step that would take us from that symbolic specification into a netlist into a

gate level netlist in terms of flip flops and AND gates, but that is of course, coming. We

will be talking about how to synthesize an FSM later on of course.

But an important decision being taken here is which operation will be mapped to which

particular component that is what is happening in function unit binding.

(Refer Slide Time: 43:38)



You can see that this takes us closer to the data path architecture the schedule step took

us closer to the controller structure the FU binding step leads us to at least an outline of

the data path architecture. What kind of outline? It tells us the following first of all these

two resources are used right these two adders are used. Then remember there is a reuse

of that adder being implied by that sharing of that adder across time and therefore, that

may lead to a mux that is inferred at the inputs of that adder. The second adder does not

need a mux because there is only one addition being mapped to it anyway.

Now, I have the adders, I have these muxes again they are possible muxes, what else is

there what kind of multiplexing I need to do. This adder like, this adder needs to perform

a plus b in one clock cycle in the other clock cycle it needs to perform e plus f right so

that is what. So, I need to be able to send a and b in one clock cycle to the adder and I

need to be able to send e and f in a different clock cycle to the adder which means that I

could have a structure like this two muxes at the inputs and a and b are one input each to

the  two  muxes  so  that  in  one  clock  cycle  I  can  enable  that  path  and  I  can  also

simultaneously enable this path, leading a and b to proceed to the adder.

In the other clock cycle I need to send e and f the select inputs to the two muxes need to

be coordinated so that the correct set of operands are arriving at the adder in the same

clock cycle. I need to send e plus f, e and f in the second clock cycle. Now, where are E

and f, I performed these two additions right in the first clock cycle at the end of it I could

store them in a register with the outputs are stored in a register those are my e and f. So, I

need paths to be provided this path and that other path from the register into that second

input of the respective muxes so that e and f could be simultaneously forwarded to the

adder in the second clock cycle.

So, hopefully this design is clear I am performing only c plus d in the second adder. So,

there is no multiplexing that is needed there actually most of our design is completed

here so that if your binding is an important logical step that needs to be performed which

helps us get closer to the data path architecture.

Student: That will be (Refer Time: 46:29) constraints on muxes also like muxes and.

There could be constrained where do we get these muxes from we said that we pick up

the  adders  from  the  component  library  muxes  we  would  also  pick  up  from  the

component library. It would usually be parameterized in some way because it is hard to



decide in advance what kind of muxes I should use as it turned out here I need 2 to 1

mux, but if the you see that if the level of sharing was 3 way then I would need a 3 to 1

mux right. So, there would be different kind either the I have 2 to 1, 4 to 1, 8 to 1 and so

on explicit discrete components of the muxes, which are there in the library. It could also

be that I have a generator of a mux in the library to which I give a parameter that says I

need a 5 to 1 mux and it gives me the associated component, but the properties of that

component would also have to be generated say this is the a projected area of such a

component and this is the projected delay of that component.

We need to be aware of the delays of course, these are also combinational logic and they

add delays there, but we will get back to the implication of the muxes particularly as far

as timing is concerned it is a very interesting question. But for now, let us just say that

the muxes are just inferred from the selection and the sharing decisions that are made in

the FU binding step.

(Refer Slide Time: 48:03)

Finally, there is a register allocation step that needs to be done. So, let us assume that is a

b c d are inputs to the design. So, in the entity they are input ports. So, the values come

from somewhere  we  do  not  need  to  worry  about  it,  but  I  have  these  outputs  from

intermediate stages intermediate clock cycles that are used as inputs to operators in the

subsequent clock cycles. That means, that I need to store them in registers how do I infer

the presence of registers from a schedule essentially if you have an edge the dependence



edge like that crossing a clock cycle boundary then that implies there is a storage that is

required because I may be using that component for something else in the future clock

cycles I need to store the values that implies registers what kind of storage we are talking

about these are register storage.

So, I need in general to assign these variables remember these variables are inferred

irrespective of whether or not you explicitly had them declared in the code right.

(Refer Slide Time: 49:19)

So, you could have variables of this nature I have them as signals now, but in fact, even

if they were process variables the treatment would still be the same as far as the synthesis

is concerned. So, it could be that you have this e and f being explicitly declared in the

code it could also be that you have a statement like this. Let us say I have t equals a plus

b y equals t plus c plus d and you have the output which are not labeled here, but there

would be z equals t plus y changes to e instead of y, let us call it g to be consistent with

the picture fine.

So, I have the e and the g being explicitly named here as intermediate signals, but that f

which corresponds to just the c plus d right that is not explicitly named it is something

that is inferred it is just some temporary and variable that the synthesis tool has internally

created. That to needs to be stored, so I have variables that are either explicitly declared

or they are implicitly inferred if you have a complex computation all as part of a large



expression you need to break them down into smaller units some of which may need to

be stored.

So, if you have these dependencies crossing clock cycle boundaries then there is the need

for inferring register they need to be stored. The question of course, is that I have e f and

g being such variables that need to be stored here 3 variables, but there is an interesting

register  allocation  problem  that  arises  where  I  make  the  decision  of  storing  these

variables  in  registers  because  I  need to  ask this  question  of  how many registers  are

needed, in this example how many registers do we need to store those 3 variables I can

have 3 registers of course, but I do not need all of 3 registers how do I decide how many

I need, why would I be able to do with less than 3 registers.

Student: (Refer Time: 52:30).

Registers  can  be  reused  just  like  those  data  path  elements  those  ALUs were  reused

because they were freed up once they did their job in one clock cycle in a new clock

cycle you could use it for some other computation, the same logic applies to registers

also. The same register that was used to store f at that clock boundary for this duration its

freed up in the next clock cycle and can be used to store something else. So that leads to

an interesting problem to be solved. I have a bunch of variables in the design that has

already been scheduled and now, I need to infer a bunch of registers what is the mapping

between variables and registers that possibly minimizes the number of registers I use.

Could I have reused the same register for e and g, the same register could not have been

reused to store both e and g why?

Student: (Refer Time: 53:34).

Both of them need to be stored at  the same time. So, somehow I need to develop a

formulation where this idea is formalized a little bit when do you need two variables at

the same time. If you need two variables at the same time then they have to be in distinct

registers if you do not need them at the same time then you could share registers.

So, we started off with a scheduling as an important step that step helped us in getting the

FSM structure at least part of the efficient structure we could not complete the FSM, but

at least we got most of the structure of the FSM because of the scheduling. Then we did

function unit binding that step helped us arrive at most of the data path components at



least this part of the data path the resources computation resources part of the data path

and these muxes at the input of those data paths. But finally, there is a register allocation

step that helps us arrive at these decisions how many registers do I need and what are the

variables that should be stored in each of those registers.

(Refer Slide Time: 54:56)

These are sort of the 3 major steps in high level synthesis, but with the FU binding and

the register allocation your data path is complete.

What else remains after this? Our FSM was not quite complete we had the states, we had

their transitions and we did have an idea about the conditions as of now, those are simple

do not care conditions, but the outputs actually I need to provide the right select signals

into the muxes.



(Refer Slide Time: 55:30)

So, there are a few other things to complete the hardware the mux select signals need to

be decided which resource should be connected to which input of the mux the order is

important right. So, those I need to decide and correspondingly I need to fill in the details

on the FSM action table.

In general I need a bunch of ALU function signals what are these a given ALU may be

capable of doing more than one function the adder that we saw was just doing added

nothing else. So, there is no other function a function input in there, but an ALU may be

configured to do an addition in one clock cycle subtraction in some other clock cycle a

comparison in a different clock cycle. So, you need a few other bits here to say in that

clock cycle what should this ALU be doing so that is what we call a function, where does

this information come from? The FSM it is the FSM that knows what is the operation

that should be performed and now, we also know which ALU should be performing this

so that these bits should be coming from the FSM.

Then there is this load input of a register. At every clock cycle you do not necessarily

load a register with new data only when you have data that is useful then you need to

store it so that information also needs to be provided by the finite state machine. So, that

is the other part that is necessary for us to complete the hardware.



(Refer Slide Time: 57:06)

So, these control signals would be generated by the FSM bringing us back to that picture

hopefully this high level overview gave us an idea of what are the steps and how they

help us in getting closer to the hardware.

Of course, the step is still there that FSM is symbolic this is not quite a netlist this part is

of course, closer to netlist these are just instantiated components and the interconnections

are also clear here they are not clear, but that is something that we already know how to

do. Given an FSM you know how to ultimately translate it into a circuit with D flip flops

and gates we will get there, but that part is already you are familiar. So, the process of the

inference of the FSM is what is the part of the HLS task.

Then let us get back to this status signal when is this useful. It was not useful in this

particular example we had so, but when will it be used.

Student: One operation takes more than one clock cycles.

If an operation takes more than one clock cycle what kind of status signal is useful.

Student: So, then we would need to tell the assembled (Refer Time: 58:17).

If an operation takes a variable number of clock cycles then there may be a need to

perform a handshaking where that component actually sends a signal saying it is done.

However, if that component takes a fixed number of clock cycles if I know that it will



take 3 clock cycles and no more than 3 clock cycles then I do not need to rely on that

status right what can I do on the FSM side, if I know that a component takes exactly 3

clock cycles then.

Student: (Refer Time: 58:49) count the clock cycles,

If this was my first state there were other states therefore, I just introduced two more

clock cycles right if it was taking 3 clock cycles I know it is taking 3 clock cycles then I

just  introduced  two more  dummy states  in  the  FSM and pick  up its  value  later  on,

anyway the FSM does not pick up. The value the values probably are going as the output

and back into the input of some other component it only sends the control signal, but if it

is small then the way to incorporate that in the FSM is to just have the right number of

states wait for the right number of states do not need an explicit counter there, but if the

number of states is likely to be large number of cycles is likely to be large then perhaps

there is a an explicit counter that could be incorporated and that counter could be there in

the data path the counter is a data path element really.

So, again the counter may have an output signal that says it is done or whatever if you

are counting up to 10 end of 10 you may send a signal that could be a status signal that

goes back to the FSM that is one kind. What other kind of status signal might be useful

for us.

Student:  Multiple  status  (Refer  Time:  60:11)  I  mean  (Refer  Time:  60:11)  status  to

multiple status.

Right, if you are in one state and well these were linear structures that we saw so far if

the structure might not be linear right you may be the next step may not be obvious so far

the next step was obvious and therefore, that condition was actually do not care here, but

it  may not be obvious, you may be dependent on something that is the result  of the

computation from the data path. It could be that you have a comparator on the data path

and the output of the comparator says true or false and depending on whether particular

output is true or false you may go one way or let us say that input is taken here as x then

on x you go to one state on x bar you go to the other state. So that is the other kind of

status signals that we are talking about.



The moment you have an if statement the moment you have conditionals in the HDLs

chances are that they may translate in the FSM to a forking structure like this of the

FSM. And that  condition  under  which  you are  going one  way or  the  other  may  be

dependent on some input that is that is externally an input to the entity itself or it could to

the entire design itself, but it could also be an input that comes as a status signal from the

data path side of the computation. It could be a result of some computation that happened

in the previous clock cycle that is used to achieve the fork in the FSM.

Let us conclude here.


