
Synthesis of Digital Systems
Dr. Preeti Rajan Panda

Department of Computer Science & Engineering
Indian Institute of Technology, Delhi

Lecture – 26
Timing Analysis & Critical Paths

We will continue with the fall spark discussion.

(Refer Slide Time: 00:26)

As we have seen earlier the computation of the critical path is not merely structural it

does depend on the logic and what else is going on in the rest of the logic. And not just

what is happening on the critical path, the actual critical path may be different from what

a structural traversal of the graph might indicate and in general it is necessary to examine

the logic.

(Refer Slide Time: 00:58)

So let us just try to arrive at the condition that determines the critical path. So, that one

could make it a part of the analysis, the basic question then is related to the propagation

of an event when does an event propagate along a path.

(Refer Slide Time: 01:25)

For that one, definition is worth noting because the condition could be nicely captured in

terms of this function called a Boolean difference. So, suppose you have a function f of

three variables. So, this is an n gate with f as the output and a b c as the function inputs.

So, that is the normal output a b c which is 1 when all the three are 1 otherwise it is 0.

Let us define the Boolean difference operator as follows, Boolean difference of a

function with respect to 1 of its input variables is defined as, that function if you

substitute a equal 0 x or that function when you substitute a equals 1.

It means f of a x or f if you just replace the a s by a prime and a function in this example

here f of a is just this f of a prime is if you replace a by a prime, then that entry becomes

1, because the a s and the a primes get inverted. So, where you had a 1 earlier you have a

0 and where you had a 0 earlier you have 1.

So, that is the logic for a prime b c that is the column truth table column for a prime b c ,

x r of these two columns gives this column where these two are different and these two

entries are different everywhere else it is 0. That is our function called a Boolean

difference , Boolean difference of a function is defined with respect to its inputs with

respect to one of its inputs, that is what the a is its one of the input variables of the

function. What does this tell us, if this was 0 throughout what does it mean this is an x or

function and if an x or function is 0 it means that.

Student: Both the entries are same.

Both the entries are same what is the meaning both the entries are same here what does it

mean.

Student: That means, (Refer Time: 04:09) it does not matter if a is here (Refer Time:

04:09).

Does not matter you put a equal to 0 you put a equal to 1 if there is no difference then

that function is independent of a what if it was 1.

Student: Then is different (Refer Time: 04:21) the a sum of because.

It is dependent on a what else can we say in general Boolean difference is a function

these are just two extremes in general what is the Boolean when you do an x r as it is

here.

What is the Boolean difference actually here it is neither 0 nor 1, this is a column that

consists of both 0s and 1, so what is the difference.

Student: It is an all of the (Refer Time: 04:51) in a way.

Is just another function right, so what function is it of a b and c.

Student: It has become an all of a plus c plus a prime b c become basically it all become

(Refer Time: 05:04).

It has become b c.

Student: (Refer Time: 05:08).

Right its b c just become b c we see because it is a prime b c plus a b c which is just bc

Student: b c.

Does that make sense what would it mean if b c is the Boolean difference what we have

say.

Student: The eliminated a (Refer Time: 05:17).

A is eliminated yeah, not sure.

Student: Not that elimination of a gets as a different function it is no longer basically it is

not redundant that it will has a.

A is certainly not redundant as far as the function is concerned. So, if its 0 it means that it

is actually redundant the function is independent of a if it is 1. It means that what is it

mean that function is actually f of a prime x or f of a if it is 1 it means that f of a prime is

always different from f of 1 is the inversion of the other.

Student: It means the gate is only (Refer Time: 06:01).

That is d x the other extreme that is dependent only on a, but in general this is a function

and that function the Boolean difference, if you ensure it to be 1 for example, you set the

input variable such that that Boolean difference is 1, then the function any change that

you make in a becomes visible at the output of the function.

Student: (Refer Time: 06:33).

So this is b c.

Student: (Refer Time: 06:39).

Right, so if b c is equal to 1 here what is this function anyway this function is a b c right,

if you hold b c as 1 it means that changes in a are reflected directly in the changes in.

Student: (Refer Time: 06:57).

The output of the function that is what the Boolean difference captures for us, it is an

important metric as we say it will help in establishing sensitization of a path. It

establishes that you hold the other inputs of the function to whatever values in a way that

your path is actually sensitized the specific input that v 1 that is the input with respect to

which we take Boolean difference right. So, this tells us what the other inputs should be,

so that our changes at the input at the a input are reflected in changes in the output yeah.

Student: The input patterns are providedly using this function.

We will get to how to apply, but as of now that is just the definition and an informal

interpretation of what it might be a.

Student: (Refer Time: 07:53) in the;

This is with respect to a single variable, although we have introduced this in the context

of timing analysis this has other interesting applications if you were to do a power

optimization of a combinational circuit there to you are interested in if an input changes

how far will it propagate, in the circuit because it may get mask at a various other stages

by values that don’t allow the input change to propagate to the output, there to there are

some interesting in the analysis with respect to let us say power estimation or even when

you do power optimization such a concept is useful in the theoretical formulation ok. So,

but that is just remember that is the Boolean difference we will use it in 1 context here

yeah.

Student: If any (Refer Time: 08:48) that appear as 1 that p f by right a partial derivative

function its different function it is bound to upon that there will be another (Refer Time:

09:00) will be 1 because it will always happen in the (Refer Time: 09:05).

Fine.

Student: Because the (Refer Time: 09:06)

It is different so yeah so.

Student: And is there way to (Refer Time: 09:12) that in code where have an expression

and need not create the (Refer Time: 09:18).

This is the definition.

Student: But I still need get all these inverse all these.

You have a 1 function right f of a prime is 1 function Boolean function this is another f of

a is another Boolean function, the x r of these two if we can take in an efficient way that

is what gives us the resulting function right.

Student: (Refer Time: 09:40) this covering what.

So, we covered representation of Boolean functions now I need to manipulate that

representation to perform ands and ors and x ors and so on btts could be used to achieve.

The basic operations they are defined we did not cover them actually we left them saying

you work it out. Remember after we talked about the representation I said that it may be

an instructive exercise to just try and understand how we you would do and how you

would do or you have two different functions of the same or overlapping set of variables

how would you do. And so two functions means you have done btts on the same data

structure and they are pointing to different entries of that dash table.

So, the dash table is the same its just I have defined two different functions how would

you do and how would you do or it is non-trivial it is not obvious try to do that yourself.

The book does have the formal way of doing it, but x or any such operation this is a

standard way to do this getting back to this question of when does an event propagate

along a path an event propagates along a path b if the Boolean difference for all gates

along the path this is that is one of the gates right. So, d f by d z means for every gate

along the path the Boolean difference of the output with respect to the input.

Student: In the;

That is there in the path.

Student: (Refer Time: 11:24).

If that is true it means that events on the input will propagate to the output. So, that is

what we looked at so it defines the conditions for the rest of the inputs of the gate. So,

those conditions are true then we have established the propagation of an event yeah.

Student: (Refer Time: 11:49) basically now we have a new function that function we

have a one that is the (Refer Time: 11:57) for which we have sensitizes path yes, but

some there again will make to build (Refer Time: 12:03) btt for.

Oh, yeah, yeah, yeah, yeah, we are not saying this is trivial and, in fact the actual

determination of the condition is still there we have only defined what condition needs to

hold for us to propagate the path, but we will get to.

(Refer Slide Time: 12:20)

So, couple of things static sensitization of a path is defined as follows we say a path b is

statically sensitize able if there is an assignment of the primary inputs such that that

Boolean difference is one for all the gates along the path. So, assignment of primary

input means here some condition has to hold right for the other inputs on that gate some

condition has to hold on all the other inputs these gates are not of that nature, but it is

like this to establish that path you have to collect all of those conditions on the rest of the

inputs of the gates; it is some function.

So, ultimately you express that in terms of the primary input side all the primary inputs.

That condition; if you are able to obtain an assignment of primary input such that all of

those Boolean differences turn out to be true then you have established the sensitization,

this is what we call a static sensitization this is actually independent of the delays of the

gates themselves assuming that once everything is stable if this condition holds, then that

part that we are interested in is sensitizable ok, that is not the only condition under which

its sensitizable, but if this is true if this condition is true then it is sensitizable it.

(Refer Slide Time: 13:59)

So, that is what is called as static sensitivity of path hm, let us just define one more term

that says a controlled value and a controlling value for an end gate we say that a 0 is a

controlling input value, what does it mean it is just that if that value is 0 on 1 of the

inputs then irrespective of what is there on the other inputs you know the output,

similarly for an or gate the 1 is a controlling value once you have 1 on 1 of the inputs

then you don’t care about the others the output is forced in both the cases.

So, that is what it is, so there is; this idea of a controlling input and correspondingly there

is a controlled value at the output whatever that corresponding value is when you have

the controlling input then the controlled value on the and gate is 0 controlled value on the

output of the or gate that would be 1.

(Refer Slide Time: 14:57)

Static co sensitization is defined in the following way for a path p, it is statically co

sensitizable. If there is an assignment of primary input such that for all the gates along

the path g has a controlling value whenever f has a controlled value means, if this has 1

there is an output of an or gate if that is 1 then this has a 1 if it is this what about the

inverter that there is only 1 input. So, if this question does not really arise both values are

controlling.

So, that is what this is g has a controlling value whenever f has control value we are not

saying anything about the other input that is how it is different from the static

sensitization , but in reality of course, whether that path actually is sensitize or not does

depend on what is happening on the other input. So, we have to formulate this a little

further, but this is definition is it is statically co sensitizable if that condition holds if a

control value is there on the output then the controlling value is there on the input of our

interest that forms the path ok.

(Refer Slide Time: 16:32)

Then let us outline the path sensitization condition if it is static sensitization then

everything is fine, we insist that all the other inputs on that gate should have non-

controlling values. So, that our path is sensitized, so that is 1 possibility if this condition

is true then it is fine then it means that we have identified a sensitized able path , but the

co sensitization I need to go a little further as follows that is the path of our interest

right .

And I say that it is for that other input to also have controlling inputs, but under the

following conditions, if both of these have controlling inputs right both have zeros then

we want that along our part the controlling input should appear earlier. Then it does not

matter that the other input also gets a controlling value the change in the output is

because of our input the is a logic clear.

Student: Sir, we only talk about a single change while sensitization.

What do you mean a single change all edges here result in edges there on the output.

Student: (Refer Time: 18:09).

Right, so both the edges when we say path it means that any change on the first input

ultimately gets reflected on the output no matter how long that path is. So, this is a

relaxation instead of strictly insisting that all the other inputs must have non-controlling

values it could be that we allow a controlling value on the others also, but the timing

situation is such that this signal arrives first if it is a controlling value then along our path

of interest the controlling value must appear first, then two we say that it is sensitized

able.

So, this is part of a co sensitization correspondingly its for us to have both inputs being

non controlling right both of them being one, but if that is the case then we want our

input to arrive later, they say both of these are 1 you see that the output was 0 even here

it does not matter that the other inputs became 1 earlier , but this is the 1 that is going to

make a difference if, if this is going to make a difference there.

Then we want that even if the other inputs have non-controlling values our input is not

controlling even if the others have non-controlling. If ours is the last 1 then you would

still see that path being sensitized, this is an outline of what is a necessary condition for a

critical path that critical path of course, is 1 that is sensitize remember we define the

critical path in two terms 1 is it is the longest delay structurally, but also it should be

sensitized able right if it is not sensitizable its a false part and that isn’t the critical part .

So, these conditions can be the additional conditions that could be imposed, this 1 if it is

true its fine, but otherwise combination of these two requirements can form the necessary

condition for identifying a critical path.

Student: Cosensitization.

Cosensitization just refers to that there is a relationship with the other inputs also it is

not.

Student: (Refer Time: 20:42) an example which where it is used in some process in the

(Refer Time: 20:50).

This is a tighter determination of the critical path right.

Student: Right, definitely.

So, what do you mean is it used this is the timing analysis as part of a timing analysis

function. So, I could do just this just the static sensitization, but it turns out that is too

restrictive this would be a way to relax that and actually have a more technically correct

interpretation.

(Refer Slide Time: 21:22)

Then the false path detection involves what things we need to determine the set of input

values that will allow a path sensitization, which means that we have picked 1 path and

now we require a bunch of other functions to be true right. All those Boolean differences

need to be true which means that essentially it is like you have the product of a bunch of

expressions those need to be true how do you ensure those are true you have to solve the

satisfiability problem that ultimately assigns values to primary inputs such that these

functions are all true, right.

So, this of course, is the classical Boolean satisfiability problem often manual inputs are

used the designer may have some intuition himself about which are the parts based on

external knowledge not necessarily obvious from the netlist itself, but other knowledge

night might be there that the designer can actually used to instruct the tool that these

parts are false.

(Refer Slide Time: 22:32)

So, that is about the false part lets quickly go through what is essentially just definition

and putting together once you have computed the critical paths through the

combinational logic what else remains to be done. So, that analysis was valid for

combinational logic. So, far, but of course, real designs are sequential and there are flip

flops along the way. So, how do you account for them?

(Refer Slide Time: 23:04)

You need to at a very basic level of course, take into account some of the timing features

of the flip flops themselves, what kind of timing features are there in a d flip flop things

are defined with respect to the rising edge of clock right. What are the timing parameters

there is the requirement that before a clock edge that input must stabilize for a certain

amount of time that we call the set up time right it is it is this so before that.

So, if that is the clock edge then the d input must be ready by this time otherwise it will

not be properly placed. So, that is 1 parameter we do need to take care of there is a hold

time which essentially requires us to keep that d input stable past the rising edge of the

clock. So, it has to be stable for that much time right sometime setup time before the

clock edge and whole time beyond the clock edge. One other important timing parameter

that is relevant for us is there is a delay from the time the clock rises to the time the

output the q output stabilizes the called a clock to q delay.

So, at the very least these three timing parameters I must take care of there is a further

dependence on the actual value, value 0 value is 1 the timings may be different, but at

least these are these you can take the max out of the different values if there is a

sensitivity with respect to the value, let us say clock to q may be different for q equals 0,

then for q equal to 1 if it is then you just take the max, so at least these three I need to in

a simple way capture in my formulation.

(Refer Slide Time: 25:13)

Then what is the max delay constraint if there is a clock period, then we required that

whatever is the critical path of that combinational logic I must account for that much

delay for the clock to q because the inputs to that communist logic may be coming from

flip flop outputs. So, that output is ready only after that much time right, so that is 1 thing

other thing is whatever outputs we compute here maybe d inputs of a flip flop and

therefore, I also need to complete before the set up time for it.

So, my requirement could be that in addition to whatever is the critical path that I have

computed I have their propagation delay and that set up time together all of this must be

less than them (Refer Time: 26:08) of course, this is still at a logical level remember

there are routing delays and other delays that complicate this further, but we can proceed

in this direction if there are other delays that we are able to analyze and in corporate then

that equation should have those calls what about the hold.

Student: Hold should be less than clock.

Hold should be less than clock period that is fine.

Student: (Refer Time: 26:41).

Is there a relationship between the critical path just like we had 1 equation here can we

come up with a different equation involving the whole; oh there is no need.

Student: (Refer Time: 27:02).

There is so then.

Student: U should be less than (Refer Time: 27:05) logic and the clock (Refer Time:

27:09) minimum delay.

The minimum delay of the logic this critical path is essential max delay, but this

propagation delay plus the minimum delay through this must be.

Student: Greater than hold.

(Refer Slide Time: 27:30)

Greater than hold so such a an equation also can be there, normally, you may not have an

issue, but if you do then you may have to put some buffers or something like that to

make sure that the whole time whole time of which flip flop are we talking about here

this 1 because right that value has to stabilize (Refer Time: 27:51) yeah fine, so such

computations.

(Refer Slide Time: 27:52)

Ought to be part of a the timing computation what other extensions we can think of a lot

of simplifications we made along the way gate delays are variable in the general case of

course, there is a dependence on the output load there is a dependence on the input slew

the rate of which the input is changing both of these do contribute to the gate delays.

In ways that are non-trivial because they are not; obviously, known when you start off

the netlist if it is known then at least partially the output load is known to us because we

can compute the load based on fan out certain model can be used, this information is

necessarily partial because the actual load is known only and your routing is complete

without that you have to make some assumptions. So, that is one thing there is a

variability the rise time and the fall time might be unequal these transitions might be

unequal for a variety of reasons it depends and the transistor types it depends on.

So, many other things the timing characterization of the gates would usually have this

information separately characterized to simplify an analysis you may just take max or

min or whatever makes sense, but these delays are of course, separately characterized

and as we have indicated in several places there why delays might be significant and

therefore, the load due to the nets would need to be estimated in some way that

completes the discussion I had in mind for the timing analysis of course, it is a very short

discussion a lot of other things that we didn’t go into, but this is sort of a very elementary

logic level discussion on timing analysis problems, that completes the topics I had in

mind for the synthesis course.

We did manage to go through most of the topics that I wanted to cover there was 1 that

was left as optional unfortunately if I had a full class I would have paid some attention to

it those involved a couple of ideas from the physical synthesis that is also synthesis and

we didn’t as well this is supposed to be synthesis of digital systems the physical

synthesis would involve things like place and route right those of course, are topics that

are complex enough in themselves that they merit a separate course really, but

nevertheless some of the basic ideas it is not hard to cover, but at a very elementary level

standard cell routing what is involved what is the objective function and what kind of

optimization is involved.

It turns out that particularly standard cell routing the problem and its solution has some

very nice parallel analogy to some of the synthesis problems that we have already seen

there is also a global placement and global routing and. So, on the elementary ideas

involved there can certainly be discussed in a relatively small amount of time, but since

this is sort of a logical break I decided to skip those topics.

