
Synthesis of Digital Systems
Dr. Preeti Ranjan Panda

Department of Computer Science & Engineering
Indian Institute of Technology, Delhi

Lecture – 22
Two–level Logic Optimisation

So, this two level logic minimization,  it  requires some heuristic sort of approach just

because enumeration of the prime implicants will take too much time there are too many

of them. The general approach is actually quite simple there will be some kind of loop

we will look at what those operations are, but there are some simple operations which

hopefully might take us in the direction of an optimized function starting from some

input function.

So, we start with a cover and just attempt to improve it in different ways what we will be

studying as part of this strategy is; what are those improvement operations?

(Refer Slide Time: 01:15)

So, let us take a little more detail look at some of those operations first of which is an

expansion this just refers to the implicants that are given to us that we start off with, and

they covered that n dimensional space where n is the number of Boolean variables in

terms of which the function is composed.



And these implicants occupy some sizes depending on the number of literals that is there

in each of the implicants. So, if you  have an implicant like that; then it occupies one

vertex this one occupies corresponding to these two a d that implicant occupies 2 vertices

each of them corresponds to some region in that cube.

In  the  point  of  the  expansion,  operation  is  to  just  try  and increase  the  size  of  each

implicant  ok.  Why do that  that  reduces  the  number  of  literals  of  course,  when you

expand the size, but remember the objective of the two level minimization is not merely

to reduce the number of literals, it is to reduce the number of cubes number of product

terms, but the point is when you expand one of those literals in that direction where it

occupies now a larger space.

It is possible that in the process you might cover some of the already existing implicants

if that happens then you could delete the one that you have just covered as a result of the

expansion. So, in this example as we increase the size of this it turned out that the new

one actually now covers the existing implicant. So, we can drop that. So, the number of

implicants has reduced from 3 to 2 that buys us something in this two level that is the

process and in terms of the implementation of this. So, diagrammatically this should be

clear how to implement this is also an interesting problem we will get to later on, but

logically what we are doing is we are changing one of the literals in that implicant to do

not care we are dropping one of those literals.

In the process of course,  one should also verify that  this  is  a valid  expansion,  valid

expansion means it is if it covers something in the onset; if it covers something in they

do not care set, but it should not cover something in the offset if it does then that would

be an invalid expansion, but that is all that is there as the basis of this expand operation

you pick up some variable if this term has three variables then along a along b each

represents a direction a, b and c all three represent some direction along which you can

perform the expansion.

We can try out that expansion in different directions, and as long as it does not intersect

any vertex in the offset, it is a valid expansion we can continue the expansion. So, a

second time if you try to now expand that cube in this direction; thereby leading to this

region there this is an invalid expansion because in the process you would be covering a

vertex that is there in the offset. So, what this is telling us is you start with a function like



that this is an optimized version of that function as a result of this expand just this one

operation.

(Refer Slide Time: 05:32)

We could also go the other way around reduce is the reverse you are reducing the size of

the implicant reduce here refers to the region that the implicant covers in that space.

The way this comes about is you add a variable to that cube of course, the smaller the

size of the cube in terms of the number of variables that are there in it number of literals

that are there in it the larger the space that it occupies in that space. So, this reduce just

refers to in the dimensional  space how much space it  covers? How many vertices it

covers? What would be the point of the radius the point of expansion is that it improves

it ultimately reduces the number of product terms we have which is a good thing.

This operation does not lead to a more optimized solution right actually by itself neither

expand nor reduce actually lead to any difference in the number of cubes that are there

this we are just changing the size of the cubes, but in the process of expansion later on

you can drop some cube that is there and that would lead to a reduction in the number of

cubes,  here  too  we are  changing  the  size  of  an  implicant  that  does  not  increase  or

decrease the number of implicants we have.

Which is the ultimate objective of this optimization reducing the number of implicates,

but this itself does not necessarily lead to any improvement as it is, but it could be that



you combine it with a subsequent expand operation that might lead to a better cover, it is

just an elementary operation that by itself does not lead to a more optimized solution. In

fact, it most probably is leading to a less optimized solution because it is reducing the

size of course; our objective in all of this logic minimization is that we should have these

individual cubes to be as large as possible not as small as possible. So, this could only be

thought of as an intermediate step that may help us in a different expansion that might be

better.

Student: sir in are you are you implying that in expansion step wherever we expand a

particular implicant,  it  should not overlap with an existing larger implicant is there a

restriction of such.

No, no, I actually only covered the definition so far, how it will be part of an algorithm

we will look at, but I already hinted that that overall algorithm may not be very complex;

it  is  like a  loop where you run these elementary  operations  until  there is  no further

improvement.

Student: It is hard to imagine why a reduced can help us do a better expansion.

We will get to that ah, but so far let us just define the individual operations knowing fully

well that the last step in the algorithm cannot be reduced.

Student: Cannot be reduced.

(Refer Slide Time: 08:54)



Yeah,  it does not help; obviously, the third one is called irredundant that deletes some

implicants from the cover that are established to be redundant, you could think of this as

following the expand step in the process of expansion you might have rendered some

implicants redundant, because they got covered by the expansion process then we can

delete that the process of identifying that and removing that is what is included in the

irredundant step.

What do you do as a result of this, you need to check that when you drop one of those

implicants the cover is still valid which is in our example here, we chose to drop this

implicant ok. In the remaining implicants after the dropping of that particular implicant,

it must be that all the points in the onset are still covered, if they are not; then it is a

wrong function  so that  the  check needs  to  be  done in  the  process  of  identifying  an

implicant to be dropped.

(Refer Slide Time: 10:18)

Yes, but an overall algorithm is not too complex you can think of a lot of variations the

espresso is an example of an early logic optimization tool,  where you are essentially

doing the following reduce expand and irredundant in a loop until there is no further

improvement. Why do you expect that loop to help you perform reduction you perform

expansion and in the process maybe an implicant got dropped and we dropped some

implement that irredundant step might result in what we called an irredundant cover.



That is you cannot drop any more implicants from there and still manage to cover the

function, why do we expect a second iteration to result in a different solution, we will

maybe understand in a little more detail as we look at how expansion is done what is the

issue involved there and, and reduce and so on, but it turns out that you have a lot of

choices  when  you  do  expand  which  of  the  available  implicants,  there  is  a  set  of

implicants that you are trying to drop some of them now what is the order in which you

should process those implicates, that is one example it is not clear.

The quality of the solution depends on the order in which you do that processing, the

other thing is even after you choose the implicant to process what direction should you

expand in,  because there are  n variables  you could possibly expand it  in  n  different

directions. That too we need to discuss a little bit, but what might happen is that in a

future iteration you can try expansion along a different direction, that is why iterations

are there in this process the number of choices is large for each of these steps for reduce

for expand and for irredundant also.

(Refer Slide Time: 12:43)

But  in  the  process  we  might  actually  end  up  hopefully  escaping  from  some  local

minimum remember that irredundant was leading us to a local minimum not guaranteed

to be optimal, but this is an example of a possibly transformed version of what originally

was given originally we started of with 5 implicants, but we dropped one of them and

this is any redundant cover not necessarily optimal we have already seen this; yeah.



Student: I was thinking that, so in the last when. So, we are number of directions to be

(Refer Time: 13:20), right, there will be lot of iterations which we can do.

Yeah.

Student: So, if I plot the graph of improvements over each iteration it need not to be an

increasing or decreasing right can be a.

Yeah, yeah, it could be.

Student: So, something like that, so it is more of like we need to look for global maxima.

I need to keep track of the best solutions, so far in each iteration we can explore different

directions, but in the process we can keep track of what is the best result that we have

got.

Student: So, we can keep and we might have to come back then so, because if I just.

Yeah, we would have to come back, yeah, we would ultimately of course, come back and

choose the 1 that gave us the best results, but this is a branching structure of the solution

you may need to come back to a previous, iteration that looked more promising and

explores that one further.

Student: So, there I map this problem to so if we look at the extended algorithms of our

example graph partitioning problem so there.

 Yeah.

Student: The problem is more of finding a, so you keep on iterating and you find the

maxima you come back now this was better.

Yeah,  yeah  each  of  the  levels  may  correspond  to  further  improvement  after  having

chosen an intermediate solution that looks promising initial iterations you choose some

directions all  the directions are not necessarily promising, but you could evaluate the

result of individual expansion along different directions and maybe choose for further

exploration  those  directions  that  seem more  promising  yeah and the  standard  search

strategy is branch and bound and so on, that are there; obviously, apply to algorithms like

this  yes  by  itself,  this  loop  is  really  not  doing  anything;  it  is  just  invoking  those



operations again and again the intelligence lays in what direction you choose for each of

those individual operations ok.

So, it is possible that you have this kind of a solution that is kind of a local minimum,

because you cannot drop any implicants further from this, but if you apply reduce to this

maybe that implicant there is reduced to this implicant here is reduced to this could lead

to an expansion possibly in a different direction from what was tried earlier, initially we

had  that  being  covered,  now  we  can  have  possibly  this  is  an  expansion  this  is  an

expansion.

So, I need to somehow keep track of what expansions I have done in the past. So, that in

future iterations I can traverse a different direction in the search space, but if I do this

expansion then you can see that there is one implicant there that could be dropped on the

application of the irredundant operation, I have a result that is better than what I started

off with, that is the way in which reduce might make difference again by itself that first

step did not really change anything with respect to quality of the solution, but it enabled

expand to occur in a different direction that is what a typical loop of this algorithm, right.

(Refer Slide Time: 17:20)

This was a visual illustration, it is representation and implementation is also interesting

you  have  to  be  a  little  careful  in  implementing  those  operations  because  they  are

invoked. So, many times, it is important that the implementation of those steps should be



efficient while this is not the only way to do it this illustrates some of the issues that are

involved.

So, let us introduce this positional cube notation I have a function like this, how do I

represent  it  we have talked about this  off and on we did not really  get to the actual

representation. This positional cube notation could use a binary encoding of a particular

manner for the implicants, their encoding could look like this if my variable is there in

uncomplimentary form normal form like a then I use as 0 1 2 encode it why 2 bits it is

because I also want to take care of the do not care condition.

So, if it was just 0 and 1 then 1 bit would have been enough, but I have a third thing to

take care of and which also leads to a fourth encoding that we have some interesting use

for, but the presence of an a is  captured by a 0 1 presence of an a prime would be

captured by a 1 0. If both of these are 1, then it means it said do not care and if both of

them are 0 then it means it is a void or a null that has some interesting uses that we will

see soon, but a function like there is a Boolean function like this could be captured in this

way, where do you have 1 row for each cube.

So, the three cubes here in the function then you have three rows and you have 2 bits for

each variable. So, if a b would be represented as 0 1 for a 0 1 for b and 1 1 for c meaning

that c does not appear there it is it is do not care with respect to c, that particular cube is a

prime b c would be 1 0 because a is complemented 0 1 because b is normal and 0 1

because c is normal 1 complimented. So, that is what the representation would be for the

Boolean function that we start off with.

(Refer Slide Time: 20:19)



We can think of a few operations with that particular representation,  let us define an

intersection of two implicants intersection would be defined as the largest cube that is

contained in both of them right an example would be. Let us say I have a cube a b c that

is represented like this 0 1 0 all 0 1 a b is represented like this, there is 1 1 here at the c

position because he is not there, if I take the intersection of a b c and a b I should get

what a b remember is nothing, but the sum of these 2 in terms, right those 2 i f c were the

third variable that I have that would be the 2.

(Refer Slide Time: 21:12)



So,  a  b  c  if  you  intersect,  so  anyway  it  is  a  function  of  three  variables.  So,  a  b

corresponds  to  2  vertices  in  that  Boolean  space  a  b  c  corresponds  to  1  vertex  the

intersection of these two would be what.

Student: 1 vertex.

 Would be this vertex.

Student: Yeah.

Right; it would be that vertex, so that is what the intersection essentially is the set of

vertices  that  are  common between the 2 cubes right.  This  would be captured  in  our

representation as follows you look at the encoding for a b c take the encoding for a b and

you just do a bitwise, product of all the 6 columns. What do you get 0 1 is intersected

with the 0 1 you get a 0 1 all the corresponding places are intersected right, you take

product of the here also you get 0 1, but the intersection of these two gives us 0 1, it is

the bitwise product.

So, I essentially have recovered a b c which is the right intersection of those 2 implicants

about this intersection. If I take a b c and intersect with a prime b c prime, what do I

expect remember that space is like this is 3 dimensional and this is a direction that is b

direction and this is c direction let us say this is 0 0 0, then a b c corresponds to that point

a prime b c prime corresponds to may be this point maybe at  this  point  what is  the

intersection of those two regions.

Student: Null void.

There is no intersection  these regions are not overlapping. So, there is no intersection

that is captured in our operation here by the presence of a 0 0 in the intersection when

you do that bitwise product, you take the product of 0 1 with 1 0 you get 0 0. And the

existence of a single null literal  anywhere there just tells us that this is what there is

nothing in that set it represents a set of points and 0 0 tells us that it is void.

Which is again a correct capture of what we expect in that intersection, correspondingly

we can define a super cube of 2 implicants that is the other way around it is the smallest

cube containing both the implicants. So, union, but it is not merely the union because



you  take  again  in  this  example  of  this  being  1  implicant  and  that  being  the  other

implicant what is the smallest cube that contains both the implements.

Student: Both of them.

There has to be a cube still. In fact, this is the smallest cube that includes both of those

implicants. Yeah, I need a single implicant that is why we do not call it a union here we

are calling it a super cube because it does include some other minterms that were not

there in the original 2 cubes, that is why different term is chosen as opposed to union

which of course, has a connotation of the set of the minterms that are there in both of

them.

That is a different operation, but that is not the same as one region that union of 2 cubes

might result in multiple cubes you might not get a clean single cube that defines the

union sometimes you might, but sometimes you might not if it were these two points, if

you started off at that point and that point then the union could be the same as the super

cube because you would get essentially a single cube that represents the union.

But it is computation should be easy we just take the bitwise or of the 2 implicants and I

would get my super cube. So, between a b c and a b if you take the bitwise or you

essentially get zeroes here 1 0 1 the third literal there would result in 1 1, because that is

the union this is 0 0 1 0 1 0 1 for a b c and for a b I have 0 1. The super cube would be

the bitwise sum of these which is 0 here 1 here 1 here 1 1; what cube is this?

Student: a b.

This is a b itself, this is fine right if there  is a containment relationship between the 2

cubes one is a subset of the other the super cube is just a larger cube that is what you

would get if you just do it a bitwise or operation, but like we saw if you take a b c and a

prime b c prime, which could be these 2 nodes then you have a super cube where you

had a b c was 0 1 0 0 1. So, a prime b c prime was 1 0 0 1 for b and 1 0 for c prime.

The super cube would be the following it would have 1 1 in both of these places right

this place has a 0 1. So, the corresponding implicant here is just b because this I would

leave out and this I would leave out and that really is this example that we have here this



is an example, where the super cube does have some minterms that were not there in the

original 2 cubes.

So that is intersection and super cube distance between 2 implicants is just defined as the

number of positions in which they are different. So, the difference being computed like

this you have a b c, and let us say a prime b c prime then will require the distance to be 2

because these 2 literals are different on the other hand.

(Refer Slide Time: 29:33)

If you had a b c and you have a b then this distance is 0 this distance is 0. So, all three

this is a do not care and that do not care anyway there is an inclusive relationship, so we

will say that the distance here is.

Student: 0.

0;  this is captured by performing an intersection of the 2 implicants and counting the

number of.

Student: Voids.

Voids right, so those are the operations you can now see the reason why this notation was

chosen in a way as to enable these operations for example, because the intersection in

super cube these operations are going to be performed again and again we want them to

be efficient.



And if I can implement those operations as bitwise products or sums you know that the

actual translation in 2 instructions and so on might be very efficient and therefore, that is

the basis of the choice of this encoding of implicants. Ultimately it might translate to just

a single instruction logical and or a logical or if I manage to for example, capture the

implicant within one word if I managed to capture it within 32 bits of a processor then

this can actually translate nicely into just a single instruction.

(Refer Slide Time: 31:17)

So with that as the representation, how do I implement the expand operator the idea is to

increase the size of the implicants.  So, that later  on other implicants are covered the

covering and actually deleting of the other implements that got covered is not part of the

expand process it is part of the irredundant process, that also is not trivial because you

have to choose which subset of things that could be dropped would you actually drop

because you cannot drop all of them, right.

So, that is also a separate two interesting problem, but expand itself is not necessarily

trivial  idea is trivial,  but what are the problem is that choices are there what are the

choices,  these  maximally  expanded  implicants  are  the  prime  implicants,  you  cannot

expand anymore without intersecting the offset means that you have arrived at a prime

implicant.

So, the expand process would result in a cover that is minimal with respect to single

implicant  containment,  single  implicant  containment  means.  In  the  process  of  that



expansion, you can make sure that that particular implicant that you are processing will

not be covered at the end of that process if you keep expanding, at the end you will come

up with an implicant that it cannot; obviously, be contained in any other implicit that is

the nature of the transformation of course, when do you stop you stop when you are

intersecting the offset which means that further expansion is not really possible right.

So, our basic operation then would be in terms of that encoding you raise one of the

zeros to a 1 in the implicant, we want to drop one of the literals right either a or a prime

if it exists we want to drop. So, here this is what let what implicant is this is a b prime c

prime, expanding it means that I convert this let us say to a c prime means I am dropping

the b prime literal,  conversely I may drop a and that might become b prime c prime,

either way this basic operation is one of those zeros is converted into a 1 right, dropping

it means that a 1 0 or a 0 1 becomes 1.

So, a 0 is converted into a 1 as the basic operation each such raise increases the size of

the cube by a factor of 2, 1 lateral is dropped means the size in that space has doubled

right. I need to check if that expanded cube still valid which means that I checked for a

possible intersection with the offset.

Student: Yes.

Assuming that this offset is available to me in the form of some set of implicants, I can

quickly do an intersection of the expanded cube with all the cubes that are given and

together  they  contain  the  offset  or  if  the  offset  is  given as  a  set  of  just  all  the  min

minterms that is fine with each of them I can quickly do an intersection well quickly is a

little tricky, because the operation is quick with 1 min term or with 1 cube the number of

such cubes might still be.

Student: large.

 Large; but the validity check is essentially an intersection operation with all of the;

Student: Offsets.

(Refer Slide Time: 35:10)



Min minterms in the offset, so that is the operation in terms of the implementation what

are the issues here. Issues are what order to consider the implicants I have a large number

of implicants and the idea of course, is to take an implicant and increase it is size until it

does not intersect anything in the offset that is fine that is easy to do, but the thing is

when I have a large number of implicants,  then which one do I  start  with that does

influence the later steps and therefore, the quality of my solution.

Other thing is having chosen that single implicant what order do I raise those 0 entries to

1, that 2 is not obvious there you have a large number of variables. So, all of them are

candidates and which ones to drop which direction that expands should in that itself is

not obvious both of them are questions that are open, and we somehow have to use some

heuristic  to  choose  promising  implicants  and  promising  directions  within  those

implicants. The heuristic could be that we expand those implicants first that are unlikely

to be covered by others let us just quantify that with an example.

(Refer Slide Time: 36:43)



Here is my set of implicants x y z and w and that is the table for those implicants the

question is which one is unlikely to. So, which one should I start processing first x y z w.

Here is one simple argument you align them in that table and form a vector of the sum of

each of those columns and there are 3 1 there, so that number is 3.

There is a single one here that number is 1 the 3 ones here, which results in a 3. So, that

is  the  sum now  you  take  the  dot  product  of  that  sum with  each  of  the  individual

implicants each cube you get something. So, that is what we are saying is a weight if you

take the dot product of x with us you get some number here 9 x is this. So, where did the

9 come from essentially 3 3 and 3, where it is 1 these numbers are picked up yeah where

this is 1 the corresponding number is picked up from the sum. So, you get 9 for x, so the

implicant itself you take the dot product with the some vector here and you would get

some weight here that is what we are calling the weight.

The operation clear the dot product what is the meaning of this if the weight is low for

one  of  those  cubes,  then  it  means  that  in  the  densely  populated  columns  that  cube

actually does not have a 1. Otherwise it would have picked up the 3 densely populated

means consider a column and there are large number of ones out there if that cube also

had a 1 then the larger number would have been picked up in the weight if it is relatively

small it means that it has a 0 in the places that are densely populated those columns that

are densely populated.



The argument is that if that number is low if that weight is low then because too many

other cubes do not exist that have a one in that space in that particular column, that cube

is less likely to be covered by others that is a heuristics argument if that number is high it

means that many others have a one there. So, it is more likely that it will be covered, why

is it one in that column it is because our literal if it is a then either that cube has an a or it

is actually do not care. right.

Both  of  which  are  favourable  with  respect  to  covering  our  implement  right  if  it  is

conflicting if it is a 0 then it will not cover. So, the weight will be low if there are more

zeros in that column relatively speaking that is the intuition. So, less likely to be covered

means that we can consider the implicants in increasing weight order. So, our first cubes

to be processed could be the ones that have low wait because those cubes are likely to

stay in the final result also right, but the other ones because there is a relatively larger

overlap those are candidates for dropping.

So, since they are candidates for dropping let us try to drop them and instead let us try to

expand the cubes that are less likely to be covered by others. So, that is why that order is

what is resulting point is that we want to consider x last, in this particular examples x y y

is that and w it does not matter the weight it is the same, but x comes later.

(Refer Slide Time: 41:16)

So, if I go ahead and expand an implicant; let us see what it looks like. So, originally the

onset was these; there is I do not care set and there is an offset yeah one more point, that



I  did not specify it  belongs somewhere there should be 8 vertices  or 8 minterms  of

course, actually the b c is fine these are actually cubes in the offset.

So, that is fine all the 8 might actually recovered here, since I picked up the y say for

expansion let me expand y along the a direction that would lead to the 0 1 becoming a 1

1. Correspondingly that would lead to the new expanded implicant being y prime where

a is dropped I have just be prime z prime with me. I have to check the validity of that

new cube this is the representation I have to intersect it against all the cubes in the offset,

and as it turns out what happens if you intersect this with the offset b c b prime conflicts

with the b.

So, you have a null in the second position at least right this is b prime and this is b c, let

us say that will lead to a null for the intersection with the first cube of the offset leads to

a null. So, we are intersection with the second cube would lead to null in the third place

because there is a c here and there is a c prime here. So, I have here a cube b prime c

prime that has a null intersection with everything in the offset, so conclusion is it is safe

to do that expansion. So, y prime is n since it is let us push further with respect to the

expansion and try to drop something else now let us try to drop b here, that if you drop b

then that 1 0 becomes 1 1 and I get the second expansion is just c prime.

If you take c prime here you will notice that that also leads to a null intersection with the

offset because it conflicts with both of those they are in c form and since I have a c prime

that is also a conflict and therefore, this expansion is also safe, it is a valid expansion,

after c what? What’s the next expansion as long as it is valid, we will keep expanding

right now if this 1 is valid. So, what’s the next expansion there is only 1 0 remaining you

try to get rid of that 0 change that 0 to a 1 what is the resulting function.

Student: 1 sir; 1 everywhere.

 Yeah, it is a 1 everywhere it is a.

Student: (Refer Time: 44:37).

Yeah,  everything is do not care, so that one of; obviously, has a non-null intersection

with the offset. So, that is an invalid expansion ok, similarly I can take one of the others

if I try to expand w, then that would lead to something. So, that is my overall strategy, so



I  have  a  table  of  these  implicants  and  I  know  what  the  encoding  is  what  the

representation is my expansion would lead to one of those 0 bits becoming 1 and I do

that intersection with the offset. In the process it turns out that x and z are covered by

that expanded y since I had a c prime here, c prime is what I ultimately pick up.

So, I pick up two things 1 is the second expansion of y which I have indicated as y

double prime, first expansion was b prime c prime second expansion was c prime that is

what I would keep similarly w is what I would also keep that is my optimized set of

cubes ok. In the process of that expansion it turned out that x and z are already covered I

can drop them you can see they are covered because.

Student: Take an intersection.

Yeah, you take an intersection of that  with this  you actually  get that  term itself  that

implicant itself intersection with voidable prime will lead to since this is do not care

whatever is there at a that will appear and this one is not conflicting therefore, whatever

is  there  in  that  implicant  will  also  happen.  So,  that  is  the  expansion  process  and

implementation would look like this.

(Refer Slide Time: 46:32)

Second would be the order of raising the zeros in an implicant the goal of course, is to

make that implicant prime, but just because there are many zeros in our implicant it does

not min that we can raise all of those zeros to 1 right. So, some subset has to be chosen



and the number of subsets of course, is large. So, some heuristic is also needed here for

choosing the order in which the zeros will be raised because at some point you have to

stop you start with this perhaps it is ok. The next 1 it is invalid and therefore, you will

have to stop on the other hand if you had chosen the third 1 to start with you would have

arrived at a different expanded cube, so that order is essential.

So, let me keep a set free of the candidate  entries that can be raised initially in this

example there would be three this just refers to the position number 2 3 and 5, all of this

are an initial free set ok, but they are candidates that does not min that all of them can be

raised  we have  to  check  the  validity  to  see  which  ones  can  be  raised  anyway  it  is

initialized to those 0 entries in the process of raising we would drop some elements from

that set of course, if you managed to raise all the zeros to ones then that set is empty.

(Refer Slide Time: 48:16)

Some pruning of the search space can also be done here to reduce the number of choices

that we have for example, first we can find entries that can never be raised. What entries

can never be raised, suppose my offset was this consisting of 1 cube and this is the cube

under consideration that we are trying to expand, this cube has a distance of 1 with the

offset right it is different in the third position. So, the distance is 1 remember if there is a

do not care somewhere then that does not count towards the distance right.

So, there is when there is a conflict a versus a prime that is when there is a distance you

are counting the distance as the number of voids that are there in the intersection this is



essentially 1 void. If the distance is 1 from the offset then you cannot raise it because that

would lead to a non-null intersection with the offset, it is different at this point right it is

essentially it is different because of that entry and if that entry is raised to a 1 currently it

is the null intersection, but it will lead to a non-null intersection that is not allowed as

part of the expansion process.

So, if those implicants are at a distance of 1 then those corresponding entries because of

which that distance is 1 are the ones that we can throw out we need not consider those

entries. Similarly, you could argue that there are some entries that can always be raised

let us see an example of this, that is my cube under consideration and this is my offset

and we are considering that position this is 0, this column has only zeros in the offset .

Since, it is only zeros here too I have a 0 1 there is no harm in raising this to a 1 it will

not lead to any further intersection with the offset  there already is some intersection

whatever is there if there is a distance it came about because of some other position not

because of this position. So, it should be for me to raise this to a 1 since, all the other

elements are 0 there all the elements in the offset are 0 there then I can say that it is to

raise it. So, I can raise and remove them from the freest.

These are somewhat trivial sort of cases, but otherwise what we are looking at is if the

super cube of x and y remember it is obtained by taking the bitwise or of the 2 cubes, if it

is feasible feasible means that there is no intersection with the offset right. So, where x is

the implicant that we are considering y is one of the other implicants that we have with

us, if it turns out that it is feasible for some y you raise the corresponding entries in x this

is right.

As  long as  we are  not  intersecting  the  offset  it  is  to  raise  it  in  whatever  direction.

Specifically, it is to raise it in a direction where a super cube is formed with one of the

other implicants y is the super cube relevant here. So, I had some terms these are the

offset terms ok, let us say this is 1 cube and this is some other cube the super cube of

those 2 cubes it turns out is in this space that is this is the super cube it is there in a space

that does not intersect with anything in the offset. So, we are saying there will prefer to

expand along a direction that results in that super cube.

Student: Super cube.



Why would we prefer that?

Student: Sir, logic would become smaller the larger the cube that we are taking l.

Right, the logic does because I remember our ultimate objective is to not merely reduce

the size of them, but the number of implicants that I am covering choosing the super

cube leads to what possibility, this was my x this was my y the point of choosing the

super cube is that I could drop that other guy.

Student: (Refer Time: 53:49).

I am considering x this is the implicant that is under consideration we want to see what

directions to expand it in, it could be expanded in different directions, but the profitable

direction  of  expansion is  1  in  which  I  am able  to  ultimately  drop one  of  the  other

implicants, super cube is a nice thing that helps us here because if I choose the super

cube, it means that one of these become redundant the both of those become redundant,

but one of course, is the result of the bigger one is the result the super cube is a result of

expanding one of them, but in the process I would have dropped one of the others.

I may have a choice of expanding in some other direction which might have lead to some

other  logic  that  is  less  profitable  because,  it  does  not  result  in  that  containment

relationship  that  we want to  move towards.  So,  that  is  the operation  and among the

different choices that we might have x is the one under consideration here, and the super

cubed y could be taken super cubed z could be taken it is possible that when you take the

super cube with z. In fact, or maybe it intersects with one of the others therefore, it is not

a valid super cube, right.

So, you would select that y that covers in the process the maximum number of other

cubes, yeah it is it is also possible that not only is y covered as it is y is covered in an

obvious way when you expand x into the super cube of x and y, but it is also possible in

this process there is some other cube that gets covered in that super cube remember super

cube consists of not merely the union of 2, but some other minterms also.

That is really some essential ways if I want to distil the logic these are the things to take

care of in determining the order in which the zeros can be raised in an implicit. So, two

questions need to be answered for expansion one is the order in which the implicants are



going to be processed, and other is for the implicant that is being processed the order in

which the zeros would be raised to 1.

(Refer Slide Time: 56:12)

Moving on to the reduce operator idea is now to convert a prime implicant into a non-

prime  implicant  right  the  whole  point  of  reduction  is  that  it  is  no  longer  a  prime

implicant right it violates the definition of a prime implicant; however, the number of

implicants in the cover still remains unchanged. In fact, even because of expansion the

number  is  not  changing  it  is  just  that  redundancies  are  created  in  the  process  of

expansion we will drop them as part of a different operation perhaps.

So, the number is not changing and a validity check needs to be made just like in the

expansion case I made the validity check that we are not intersecting the offset. Here the

validity check is the other way around we have to ensure that as a result of the reduction

what condition still holds, the onset points are all still covered as a result of the reduction

right.

(Refer Slide Time: 57:25)



So, I want to find a maximally reduced cube here too I need this some heuristics, but let

us define this maximally reduced cube first. So, I have some cubes let me represent this

as a set. So, I have my x that is 1 cube and I may have some other implicant. So, this is a

cube y and maybe some other cube these are my f that is my function.

First  of  all  let  me  generate  f  minus,  x  which  consists  of  essentially  the  remaining

implicants the remaining cubes if you just remove that cube from there. Here is what I

can do f minus x is it consists of this much right that and this together. So, that is my f

minus x I take the complement of f minus x compliment with respect to set means what,

what is the complement in this picture of f minus x each is seen as a set x is a set y is a

set z is a set and actually formally.

Student: Why is x.

Complement  is  defined in  terms of a  universal  set  everything other  than that  what’s

complement of f minus x.

Student: 1 minus 1 minus z.

So,  if  you just remove the y and z all  these others form the complement  that is  my

compliment. So, f minus x prime is this. So, what we are saying is that reduced cube that

we want is the intersection of x with f minus x compliment which gives us what .

Student: The centre part.



Yeah, this part of x that is not overlapping with the others, this is clear that that would be

the maximally reduced cube I cannot reduce it any further because then I would drop

some things from the function, but these parts of x that are overlapping with y and z, I

can afford to drop from my reduced cube because they are already included in y and z

anyway. So, that is all that we are saying x intersection f minus x prime is what is my

reduced cube ok.

This is fine as the definition, but the problem is that f minus x prime that reduced cube

this is just a set of minterms right that might not result in 1 cube it might actually become

multiple cubes, that you can see that if you have let us say these were my original x. And

that part was covered by y this part got covered by z then my maximally reduced cube

consists of this, but this is not 1 cube this is actually a set of minterms.

So, I cannot possibly have that whole thing, the problem is we want to replace x by

exactly 1 cube that is part of the reduce operation in the process of doing the reduction

we should not increase the number of cubes that are there that is that is through all of

these  operations  we try  to  make sure that  we are  moving in  a  direction  of  reduced

number of cubes. So, we do not want to increase the number of cubes.

What happened is we all had individual cubes that were all nicely structured, but the

complement operation interfered with the single cube property it resulted in a possible

multiple number of cubes, intersection is fine actually if you take the intersection of 2

cubes according to our definition of intersection you get only 1 cube that you can see in

the  representation  itself  right  there  is  only  1  cube  that  is  there,  but  then  since  the

complement resulted in a disjointed set of minterms that do not necessarily form a cube.

The intersection of x with that complement also may result in multiple cubes then the

reduced cube that I am interested in is the super cube of f minus x x intersection the

super cube of f minus x prime, that is the reduced cube that we are looking for just

because f minus x prime is no longer possibly just 1 cube it may be more than 1 cube.

That this is actually the maximally reduced that will leave the proof of, but you can see

that it must be safe to do it there is a larger cube is formed of that complemented set, and

anyway we are intersecting that with x means that we are choosing only from what was

there in x. So, it must be safe to do that, so that is the idea, so this is what theoretically

we are looking for as the reduced cube.



(Refer Slide Time: 63:32)

Let us try to do it too quickly on an example and it is associated representation, suppose I

start with this function in which I have 2 cubes 1 is b prime this is the square and the

other is a prime c it is representation is this. So, for x this is b prime and for y it is a

prime c. So, that is my initial function I would like to reduce something let us try to

reduce x. What is f minus x in this example, f consists of what is f here is the set of all

the cubes that we start off with; so, x and y that is the set of all the cubes, so f equals just

x and y what is f minus x.

(Refer Slide Time: 64:27)



Student: y.

Y; just y you remove that element, what remains c x that is f minus x what is the prime of

f minus x prime is defined in terms of the universal set all the minterms that are not there

in y that is the prime. So, you see that this may lead to multiple cubes because why was

this is my y.

So, the set of all minterms that exclude ys is essentially the set of these 6, all of these 6

minterms that is f minus x prime. In fact, that results in 2 cubes here you can see one is

this  square  that  will  cover  those four  and the  other  is  this  square,  this  is  where  the

number of cubes is increasing in that complement operation ok. Then what is the super

cube of those 6 terms it is essentially of these 2 cubes, from the representation you can

see super cube of those 2 cubes is obtained by taking the bitwise or which is essentially

the entire.

Student: Sum of.

Space everything, so that is the super cube now when you take the x intersection super

cube of f minus x that is my definition of the maximally reduced x that I can afford. So,

that when you take that intersection of x with or everything do not care you get x back,

which means that x cannot be reduced further which x has to be there you cannot reduce

x further, that should be clear in the following way x is the square, right.

If you reduce it what happens if you choose along this direction to either pick up these

two or those two that would be a reduced cube, both of them would be illegal because in

the process we would be dropping some minterms from the onset or it does not matter

even if you pick up these two or these two, because all four are there in the onset you

cannot really afford to reduce it in any direction.

(Refer Slide Time: 67:14)



What about reducing y; it seems that there is a possibility for us to do something about it,

but formally we have to take f minus y prime what is f minus y.

Student: X.

F minus y is just x right f consists of just x and y, so that is x. So, x prime for us since x

is the set of those four points x prime is the set of those other four points. Now this

actually has a reasonable overlap with this when you take the intersection of y with this

set now you do get something. So, super cube of f minus y prime is what, f minus y

prime is the set of those 4 minterms super cube of those four main terms each taken as a

cube is what you end up with 1 cube only right this is an example where the super cube

results in just 1 cube.

So, that is what it is and y intersection with this is just a reduced version of the y, you can

see that this part of y is overlapping with x you need not have it in the reduced form, that

part definitely needs to be there because there is no other prime implicant that is covering

it, but that actually comes out here in our computation of y intersection f minus y prime.

So, the result is that y could be reduced for us to a smaller region in a way that between x

and y we are still covering all the elements in the onset, and we are not leaving anything

out  these  are  little  further  insight  into  a  couple  of  those  operations  I  have  omitted

irredundant the three operations like expand and.

Student: Reduce.



Reduce and irredundant that I have omitted, but the set of operations and the kind of

things that you do is again similar.


