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So, let us start today with the setting of the context we had defined what synthesis was

earlier. And before we go into the topic itself, let us talk a little bit about the overall chip

design flow and where is it that design automation fits into the picture and within that

overall flow where synthesis fits into the picture. So, that will be the topic of today’s

discussion.

So,  let  us  start  with  the  high  level  picture  of  an  idea  transformed  ultimately  into  a

realization in the form of a chip.

(Refer Slide Time: 01:08)

What are some of the stages? Let us say the high level stages could start with the design

phase which is an encapsulation of a number of different activities that go into what is

called design. But at the end of it we have the layout which as we talked about the other

day  is  a  representation  of  the  geometry  of  the  system.  There  is  a  processing  or  a

fabrication stage after that at the end of which we have the dies, those are ready for

testing and packaging which ultimately results in the chip. So, if we were to abstract that

flow into just 3 or 4 very high level stages it would be these.



(Refer Slide Time: 01:58)

What is involved in each of these stages? Design itself of course, is a very complicated

set of steps we start with the specification of what the system should be doing, modelling

of the system we will get into some more detail of what modelling means. Proceed to

implementation of the system and following implementation there would be some kind

of verification that we would have to perform just to make sure that this the resulting

system is what was expected.

(Refer Slide Time: 02:33)



That is design fabrication, again if it were to be encapsulated in just one picture it might

be this that the input is a representation of what the geometry should look like and that

leads  to  a  series  of  steps  starting  with  the  creation  of  a  set  of  masks  and resulting

ultimately in wafers which would be dissected into a set of dies that we are interested in.

(Refer Slide Time: 03:03)

Testing  is  the  name  given  to  a  specific  step  in  this  design  automation  stages.  As  a

verification step it is something that goes on all the time right from the time that we start

with the modelling, but this testing is more specific it refers to a die being manufactured

and then us running some tests  to essentially  check for manufacturing  defects.  Even

though  the  design  is  perfect  as  far  as  functionality  is  concerned  and our  simulation

results tell us that everything is fine then too there may be manufacturing defects that

might still show up in the system these are essentially random in nature they hard to

predict. So, you do have to run some simple tests on each of these individual dies just to

make sure that there are no obvious defects.

So, that is this testing. This testing ought to be seen differently from the verification and

simulation  steps that  we had seen earlier. Those are on a  representation  of the chip,

whereas this testing is on the manufactured die. Even if everything is fine with respect to

the design there may still be defects in the dies and we need to catch those in this testing

phase.



(Refer Slide Time: 04:26)

Packaging once the die is tested and is validated to be ok, there is packaging step which

ultimately results in the chip. So, these would be the 3 or 4 high level stages that we go

through in chip design.

So, this is just to set the high level context.

(Refer Slide Time: 04:47)

The thing  to  note  is  that  these  steps  are  very heavily  automated  every  one  of  these

starting from design to fabrication, testing, packaging and so on all of these are heavily

automated and over all forms this domain called computer aided that automation is what



is called CAD, VLSI or electronic design automation. All the automation steps involved

in,  going through the design phase, the fabrication phase and so on all  of these falls

under what is called CAD VLSI.

Focus of this course is clearly in the design stage out of these stages, but also within the

design stage it is more narrowly focused on the synthesis which is part of the design

phase not everything, but that is the overall context.

(Refer Slide Time: 05:43)

This is a parallel that we talked about in the other class and let us also reiterate just to

identify some of the differences. So, consider a hardware design flow chip design flow

versus a software flow.

In both cases we start with a specification of the system. We go through a translation step

that in one case is called synthesis in the hardware case; in the other case it is called just

a compilation. The outputs are very different like we had seen in one case the output is a

layout  in  the  other  the  output  is  object  code  or  binary  consisting  of  a  stream  of

instructions. In the software flow that is all that is there that is the end product if you

have to ship that  software to  somebody then that  object  code is  what you would be

shipping. Here though in the hardware line the layout is not what you would be shipping

typically that is not the end product that is not the chip that does go through another set

of manufacturing processes before you have the chip. So, nevertheless at the front end of



the compiler the software flow and the hardware flow are very similar, but the back end

would be very different.

One thing to note is that what shipped here essentially you produce one true copy of in

the software flow and you just replicate as many times as you need to deliver right. But

in  the  hardware  flow  that  is  different  the  manufacturing  step  does  lead  to  some

uncertainties  it  leads  to  some  defects.  So,  all  chips  that  are  manufacture  are  not

necessarily  correct.  So,  you have  to  throw out  some of  them and the ones  that  you

evaluated to be are shipped to the customer ultimately. So, in the software flow you

typically make as many copies as you want you do not expect defects there in the process

of making those copies, but in the hardware flow you do expect defects in the process of

making the copies.

(Refer Slide Time: 07:49)

So, that is again to reiterate the parallel between the hardware and software flows. Let us

take a look at what is involved in the design stage.

We said that we had there was specification, there is modeling, synthesis simulation and

so on. Let us start off with modelling what is involved in that. What is modeling? It is a

representation of an abstract view of the system abstract as opposed to detailed, meaning

that some aspects of the working of the system are captured properly not necessarily all

aspects.  We will  talk about what are those abstractions,  but it  could be that we have

functionality  of  the  system being captured  as  part  of  the  modeling.  Functionality  as



opposed to let us say timing of the system. So, these are different and often orthogonal

aspects of the modelling of a system, maybe the system is implementing some algorithm

and you represent that algorithm in terms of some language or something like that that is

the functionality that is captured.

As you indicate the functionality you do not necessarily give too much emphasis on how

much time it  takes to execute that functionality. Even though that is also part of the

system, that is also part of the requirement of the system. You may be phasing out the

modelling of the system in a sequence such that some aspect of it is captured in one

phase some other aspect is captured at a different phase and so on. So, it could be that

functionality is captured in one phase in that phase you do not care too much about the

timing, but timing could be separately modeled and verified, other abstractions could be

about  power  about  energy  and  so  on.  So,  many  different  parameters  that  we  are

interested in would need to be modeled in some ways and that is what we mean by there

is levels of abstraction at which the modelling is done. Abstraction essentially means that

we  capture  a  subset  of  the  essential  features  all  of  the  features  are  not  necessarily

captured then.

(Refer Slide Time: 10:06)

Let us look at the modelling in some more detail. What kind of modelling can we do? It

could be at  a system level or in electronic system level of abstraction.  There we are

talking about relatively abstract objects like transactions or packets or requests responses



and so on. This is a little somewhat distant from a hardware view or pure hardware view

of the system. So, such kind of objects and properties such as traffic rates or a congestion

or a deadlock if there were some kind of a network that is being implemented then these

are  the properties  that  you are  interested  in  and those transactions  and modules  and

traffic and so on these are these objects that we are interested in. The description would

be in terms of these objects and properties and the analysis of the system would also be

in terms of those properties. These we can say are high level of abstraction forming the

system level.

Going down one level of detail we can get to a hardware level, actually at this level of

the system that  we are talking  you might  not  even have decided which parts  of the

system would be implemented in hardware and which other parts would be implemented

in software. So, at that level of abstraction you might not have made that commitment

yet.  But  at  some point  maybe between the system and this  and the hardware or the

software level of abstraction you would have made that choice and if you have decided

to  go down the  hardware route  there  too you can  think of  a  few different  levels  of

abstraction, starting with the behavioral level we will go into some more detail on these

hardware levels of abstraction in later stages of this course.

But  behavioral  level  is  one  level  of  hardware  abstraction  where  you  capture  some

essential features of the design, but not necessarily all the details. One example of what

you would omit would be you do not say what operation is to be performed when. So,

that is what we mean by saying there is no clock cycle level commitment. So, there is a

partial description of the idea of clocking perhaps the fact that there is a clock to the

system that is indicated, the inputs to the system are indicated, the outputs of the system

are computed so what the computation is those are clearly indicated, but which part of

the  computation  happens  when  that  is  not  necessarily  indicated.  When  the  designer

specifies something at the behavioral level, that particular detail could be omitted.

Next  down we  say  that  is  what  is  called  an  RTL level  or  register  transfer  level  of

abstraction. At that level we say that we have made all the decisions of what operation

will be performed in which clock cycle. It is an important abstraction change as we go

down from the behavioral to the RTL level. The distinction essentially is that well there

is several differences, but one important difference is that when we go down to the RTL

level we have made up this decision of pinning down operations in to clock periods this



is when each operation will happen. It is an important distinction. In the behavioral level

we say what that computation is.

We might even indicate high levels of constraint saying all of this that I have indicated

should be finished within 10 clock cycles. That is also a constraint that may that one may

provide  to  a  behavioral  synthesis  tool  whose  job  it  would  be  to  take  us  from  the

behavioral level of abstraction down into the RTL level. But key elements that are not

indicated by the designer are when each operation will happen. We can indicate the entire

computation and we can say that all of it must be finished within a given number of

clock cycles, but that is still not enough for us to produce the whole design we have to

make  some  further  decisions  those  decisions  would  be  part  of  a  synthesis  system.

Mapping of operations to clock cycles are exercises that have already been taken when

we go down into an RTL level  of description.  So, that  is  an important  difference in

abstraction.

Beyond that there is a gate level when we go down into a more structural form what do

you think the RTL representation  looks like  it.  In fact,  it  is  indicated  in a  hardware

description  language  also,  just  like  the  behavioral  level  of  abstraction.  It  is  still

functionality  that  is  captured.  So, you still  have your programming constructs like if

statements  and  loops  and  so  on  it  is  still  an  RTL  design,  but  the  description  of

functionality could well be specified in text form. But that is different when you go down

further into the gate level of abstraction that is when you have structure explicitly built in

and you have a structural net list that actually is the representation of our design.



(Refer Slide Time: 15:37)

So, with that as the different levels of abstraction let us quickly go through those steps

that were involved in the design stage and indicate where is the scope for automation. We

say that CAD and design automation pervades all through the chip design flow. Let us

quickly  go through just  the  design  step and within  that  indicate  what  kind  of  CAD

support is relevant.

The first step is that of specification and modelling that is when the designer indicates

what is it that is the functionality of the chip. What kind of automation could be involved

there? Clearly we need some mechanism to be able to specify that. So, depending on the

level of abstraction you may think of different tools that could help in just this capture

part. If layout is being specified or gate level net list is being specified there are these

layout  editors  and  schematic  editors  which  you might  already  have  used  in  various

contexts that is part of the CAD that is involved there.

Little higher level of abstraction when it comes to finite state machines you can think of

tools to capture those finite state machine you know what that representation looks like

you could specify. How do you specify a finite state machine?

Student: State diagrams.

In the form of a state diagram or equivalently what other ways are there of capturing a

finite state machine. Yes, a state table is a standard way of capturing, a finite state. Both



of  them  are  equivalent  whether  it  is  in  diagrammatic  form  or  a  tabular  form  the

information is the same and considering that these mechanisms are there for a designer to

specify you can think of tools to capture either a table that state table or just a graphical

tool for capturing the diagram.

Capturing goes hand in hand with the analysis once you have captured it there is some

high level  analysis  tool  that  you can build  into  that  same framework.  What  kind of

analysis  involves?  Suppose that  I  have a tool  for capturing  graphically  a  finite  state

machine,  what analysis  could I  perform on it? If I could perform some analysis  that

analysis could there, could also be another tool that is connected to this capture tool.

What analysis could be performed on a finite state machine?

Student: Coverage functional coverage (Refer Time: 18:14).

Yeah, there are a lot of things that you can do once you have captured the FSM which is

kind of an intent from the designer the sum of these analysis you have already done. It

could be that you indicate to the designer that certain states are unreachable right; when

will it happen that in an FSM a state is unreachable. You know what that FSM looks like

right. It is just a set of states indicated by nodes in a graph and a set of transitions, would

it happen that you have drawn a state which is not reachable.

Student: Yes, sir.

When will it happen?

Student: (Refer Time: 18:52) conditional.

Yes, the transitions into the states are controlled by a condition that you yourself specify.

It is possible that we make some mistakes in the specification of those conditions that is

also part of the specification. It could be that we have written that condition in a way that

that condition is never true. You can write some expressions that never evaluate to true.

So, some analysis one can certainly perform that just works of this specification that has

been captured in the form of a final state machine.

Student: (Refer Time: 19:35).



Now, well this is an example of the analysis. In that particular analysis we said that we

will analyze whatever you have provided whatever the designer has provided and give

some feedback.  That  state  is  unreachable  is  some feedback that  can be given to  the

disciple  what  other  kind  of  analysis  can  be  performed  on an  FSM. So,  if  feed  this

feedback is given to the designer he could possibly improve the design in some way, but

what other things could we do.

Student: Complexity, complexity of n number of.

What do you mean by complexity of an FSM?

Student: If I could achieve the same functionality is in a simpler fewer number of states.

Yes. We have gone through this process of identifying redundant states. There is nothing

wrong in it, but it is just that two states that you have indicated are actually redundant.

This is not the same as unreachable you could reach one or you could reach the other, but

the meaning would be the same. So, the tool could actually go through, you have gone

through such an analysis earlier not necessarily automatically you have gone through the

logic  through which  you can determine  that  two states  are  equivalent.  So,  these  are

examples of analysis that we could perform. It could be more sophisticated than that, but

of course, this course is about such analysis that we perform.

So, as of now we are just pointing out that there is scope for automation at all these

stages of the design flow. The more details we will get to as we talk about them.



(Refer Slide Time: 21:16)

That  is  about  the  capture  at  the  very  early  stage  one  could  introduce  some  design

automation. Moving on to implementation you have captured the intent in the form of an

HDL and you have to go further and ultimately we need to reach the layout we can think

of reaching there through a few different steps. So, initially I go through some set of

synthesis steps that take me down to gates and maybe at a later stage I invoke some other

set of these physical synthesis tools to take me from the gates down into the layout. So,

this step is what is called synthesis and is the focus of this course.

(Refer Slide Time: 22:00)



What kind of design automation is involved in synthesis? First of all from the system

level  we  could  do  some  system  synthesis  that  involves  answering  some  important

questions  like  hardware  versus  software  implementation.  The  specification  has  been

captured,  but  at  a  certain  high  level  of  abstraction  we have  not  even  indicated,  the

designer has not even indicated which module is going to be implemented in hardware or

in software. In fact, we could introduce some tools there and some analysis there that

would actually help make that decision of which modules should be taken further into

the hardware flow. So, that is one.

Having decided to take a module into the hardware flow there are different levels of

synthesis we can think of behavioral synthesis would take us down from that behavioral

level of abstraction into the RTL level of abstraction.

Remember the difference between the two. That is primarily the task of the behavioral

synthesis. Once you are down here we would go through another set of RTL synthesis

steps that take us from an RTL level HDL down into a gate level of abstraction. Layout

and physical synthesis tools would help us in taking those gates down into a layout. What

is involved here are steps like placement of the modules, and the gates and the routing of

the wires between them. So, these are the kind of design automation steps involved in

synthesis. So, even though we call the whole thing synthesis the kind of problems are

very different that are addressed at all these different levels of abstraction.

(Refer Slide Time: 23:51)



Verification, designing is not enough there has to be an associated step of confidence

building in that design which is established through various verification mechanisms. All

kinds of questions need to be answered after we have done a design with respect to

whether  we are  satisfied  that  first  of  all  the  specification  is  correct.  Specification  is

indicated by us in some way there could be bugs in the specification itself right. So, if

you start off with specification that is faulty clearly; however, good a job you do of the

synthesis tools and implementation tools the result of course, is faulty because there was

an error in the specification early on.

So, we do need to confirm first that the specification is correct, if we are satisfied that the

specification  is  correct  then  there  is  the  question  of  being  satisfied  that  the

implementation that is  generated at  the end of this  design steps actually  satisfies the

specification. For that same specification there might be many different implementations

all of which are ok, they might even be equivalent with respect to each other, but like we

said the other day all might not be equally good there is an efficiency criteria that is used

by our synthesis mechanisms to finally, select one out of the many different possibilities.

But it is a tool after all and the tools might have errors in them and therefore, whatever is

the  output  wherever  we  are  with  respect  to  the  level  of  abstraction  we  translated

something from a higher level down to a lower level of abstraction and there is the need

to answer this  question of does this  implementation actually satisfy the specification.

Wherever we started from and whatever the next step was.

This is with respect to functionality, but it could also be with respect to timing. Timing

constraints may be imposed by the system very early on as part of a design specification

and  the  way  we  do  the  implementation  we  need  to  make  sure  that  those  timing

constraints  are  met  otherwise it  is  not  a valid  design.  When the timing constraint  is

imposed it is not clear, but you could easily imagine one common scenario where at the

very early stages of the specification you define that this is the functionality of the chip,

but you also say that it  must operate  at  1 gigahertz  or 2 gigahertz  right.  That  is the

product definition and it comes at very early stages. So, that is the timing constraint if

you are saying 1 gigahertz is the frequency at which the final product will operate that is

actually specified very early on and every step of the implementation that you are going

through must be aware of that timing constraint and produce a an implementation that

satisfies that timing constraint.



So,  whether  the  timing  constraints  are  actually  met  or  not  is  part  of  a  verification

mechanism somehow.

(Refer Slide Time: 27:00)

What kind of design automation is involved in verification? How do you actually ensure

that functionality is correct this is a difficult problem in general and while it is hard to

establish in a fullproof way that the entire chip is designed correctly, you may actually

divide  the  problem  into  divide  the  chip  itself  into  smaller  modules  and  ask  more

interesting questions with respect to whether those smaller modules are ok or not and

also resulting interaction whether that is or not. So, at least in parts we ought to be able

to verify the functionality of the system.

Simulation  is  a common mechanism having designed it  and having implemented  the

system you execute  the  specification  that  test  data  is  provided by the  designer  or  a

verification engineer  and you check the output of the simulation against an expected

output of the system. So, that is simulation. This is a common mechanism and normally

chips that are designed you always take it through simulation, but often is not sufficient.

Why simulation not good enough or why would it not help in establishing that the chip

will work correctly under any circumstance that you can imagine.

There some fundamental limitations might be there in simulation what might they be?

Student: The word any.



Yeah, the word any what is the problem.

Student: Cannot come up with those many situations to stimulate (Refer Time: 28:41).

Yes. So, we are defining this as verification through execution. So, execution means that

you are defined a system and you generate inputs and you observe the output of the

system for those inputs, which means that to actually guarantee that the system is fine,

you have to generate all possible input combinations and observe the response of the

system  for  every  possible  input  combination.  Not  just  that  it  is  not  merely  the

combinations of the input the other thing that is that comes into the picture is that the

sequence of inputs is you, not only have to produce every combination of the inputs, but

every sequence of those combinations because our designs are sequential they are not

merely combinational designs. But even if we were to restrict ourselves to combinational

logic is it easy or difficult to generate all possible combinations is difficult, why, where is

the difficulty?

Student:  (Refer Time: 29:44) microprocessors you need to generate  to give power to

eliminate combinations.

Yeah, it should be obvious that the number of combinations grows exponentially with the

number of inputs. Even if it is an adder that we are designing let us say just a 32 bit

adder, how many inputs are there to such a system?

Student: (Refer Time: 30:07).

Yeah, there are two inputs of 32 bits each there may be a carry in also. So, there are 64 or

65 inputs and even if the numbers even, if the values of each input is constrained to be

just 0 and 1 then too the number of combinations is 2 to the power 65 and there is no

way of exhaustively testing whether that adder itself being a simple circuit that it is, is

actually working correctly for all the input combinations.  So, there is no hope of the

simulation  being exhaustive  in  any way. So, there  is  a  need to  expand the scope of

verification  beyond  simulation  and  the  formal  verification  is  the  mechanism  that  is

somewhat nicely orthogonal. Its objective is somewhat different it does not rely on any

test data provided from the designer. So, it does not do any simulation at all. But it for

example, may check for equivalence between a specification and an implementation or it

checks for satisfaction of certain properties.



We talked a while ago about entering a system in the form of a finite state machine and

answering the question of whether a particular state is reachable or not. That would be an

example of a verification you do not rely necessarily on any simulation input, you could

look at that FSM if it is simple enough and you could analyze all those conditions that

are  specified  on  the  transitions  and  verify  theoretically  by  just  looking  at  the  your

specification  that  certain  state  is  unreachable.  So,  that  is  an  example  of  a  property

satisfaction that we are looking for.

So,  that  is  another  kind of verification  that  is  involved here.  These are  examples  of

design automation in the verification space.

(Refer Slide Time: 32:16)

Move on to testing what is involved here you need to quickly check whether that die that

is  just  produced  is  defective  it  suffers  from  some  obvious  electrical  defects  or

manufacturing defects that is it. So, what is involved here? You generate some test data

just like simulation, but you also have some hardware typically internal hardware that

would  check  whether  the  internals  are  or  not  of  the  chip.  So,  some test  circuitry  is

actually built on chip. So, these are examples of what falls into the testing domain.



(Refer Slide Time: 32:57)

What kind of CAD is involved there? A test pattern has to be generated these inputs that

we said will provide manually at the simulation stage. This is another kind of execution

testing involves a different kind of execution and there is an opportunity to automatically

generate  some  test  patterns,  given  the  design  to  check  whether  there  are  any

manufacturing defects.

There is an associated step called scan insertion. It turns out that to provide observability

into the chip you need to tamper with the chip itself in some way. There is an issue with

verifying  that  the  manufactured  chips  are  working which  is  different  from verifying

during simulation that your model is working ok, what do you think would be an, would

be a difficulty. At the later stage when you already have the chip that is not there when

you are running a simulation of a model of that chip.

Student: Parasitical (Refer Time: 33:58).

Parasitic effects are there in the real chip, but it is not as though it is not there at in the

model that is being simulated that depends on what is it that you have modeled for. If

your model is very simplistic and it did not take some of those effects then indeed you do

not observe it, but we can do our modelling taking those effects into account. Like when

we already have the layout there is enough information for us to answer many other

questions.



The disadvantage of simulation is that you do not have enough time it just takes too

much time and having the real system the testing is much much faster than simulating a

model of the chip. So, that is an advantage that is what is better about doing the testing at

of a manufactured chip well, what is the disadvantage?

Student: Sir, we are using practical component. So, we cannot know for sure how they

will exactly behave I mean 100 percent we cannot predict the way.

Yeah,  sure  we  already  argued  that  even  if  our  design  process  was  perfect  the

manufacturing  process  may  introduce  defects.  There  is  an  example  of  an  imperfect

system. The job of testing is precisely to point out which ones have defects and which

ones do not have defects.

Student: Some of the inputs may end into a situation where that chip is damaged.

Chip could be damaged for various reasons.

Student: (Refer Time: 35:36) is what you just said in the.

Observability, see the  problem with  the  monitoring  what  is  going on in  the  chip  as

opposed to monitoring what is going on in different parts of the component that is being

simulated is that during the simulation as part of the simulation process you have access

to your whole design right you could click on some output of a flip flop and check the

value that is there currently at the same at that time instance.

The chip itself has a very limited number of external pins, it is not so easy to go to that

particular flip flop and check what is the value. So, on the other hand we do need to do

some elementary testing of that nature in this phase to make sure that the system is ok,

right. So, to aid this there is a standard procedure that we follow that that is what the scan

insertion is about we introduce the testing related infrastructure elements into the chip,

its purpose is just to aid in the debugging aid in the visibility. So, conceptually what

happens is that and large parts of the memory or interesting parts of the chips memory

are connected together in a form of long shift register and ultimately we are able to scan

out the elements of that shift register and indirectly observe the data that is there inside a

chip.  So,  such mechanisms need to be inserted  as  part  of  the design automation  for

testing that is what we call scan instruction.



Student: Sir, the debug should also be (Refer Time: 37:12).

There is an interesting phase called post silicon debug, debug to just like the simulation

we are debugging as we perform simulation, but that is debugging on the model of the

chip. The testing while I did not point it out here indeed involves other interesting part

the kinds of debug that you would perform on the chip that is actually produced yeah for

simplicity it was left out, but indeed that is another interesting step. So, here we are just

talking about observing, but after observing what kind of analysis can we do and also can

you  form  out  some  of  that  analysis  on  chip  into  validation  related  hardware  more

sophisticated validation related hardware on chip. Then merely this can change that we

would be inserting it is a very interesting modern area somewhat outside the scope of the

synthesis, but we are talking about it just to understand the overall scope for computer

aided design.

(Refer Slide Time: 38:19)

Student:  Sir,  (Refer  Time:  38:18)  all  chips  (Refer  Time:  38:20)  is  that  done  by the

designer or does someone else do that job.

So,  who designs  the on chip  test  circuitry?  Actually  this  overall  flow should tell  us

something about what is happening where. So, here is a simplified version of the design

flow  in  which  we  have  labeled  some  of  those  steps.  Let  us  say  I  start  off  with  a

behavioral model. So, this at this stage the assumption is that we are talking about a

hardware implementation. Remember at the higher level at the system level that itself



was not  was not  decided,  but behavioral  level  the behavioral  model  of hardware we

would go through a behavioral synthesis step to generate an equivalent of an RTL model.

Let us say there is an RTL synthesis step that takes us from the RTL model into gates this

is more structural like we are seen it is a structural net list. This is where we may need to

manipulate the design to insert our scan circuitry the test related circuitry. Essentially it

may involve changing some of the existing flip flops into a more sophisticated kind of

flip flop that can also be configured as the shift register that we were talking about. So,

some of those flip flops not all because there is an area overhead associated with that

insertion, but in conceptually you have inserted some memory elements to help us in

tracking later on. So, that is what is performed as part of the design step all of this is

technically performed by the designer.

So, it is just that this step that test insertion is what is called a test synthesis that would be

among the different synthesis steps that you would be performing. A gate level design

then that is not the end of it there is this logic synthesis step that we can go through to

optimize  a  bunch  of  gates  this  is  not.  So,  what  is  indicated  here  is  not  necessarily

optimized it is one form of representation of our design. A set of logic synthesis steps

would take us into a more optimized form of design of that same gate level net list. Then

we would go through a physical or a layout synthesis to generate the layout for us that

would then be what is input to the next stage of fabrication and so on. There is another

optional step here we could extract gates from the layout that was generated why would

we do this.

What happens here is you look at the layout and extract from it a gate level circuit. You

should be able to do it this is a digital design anyway. So, one should technically be able

to extract these gate level back from the layout, what would they use be?

Student: (Refer Time: 41:21).

Yeah, it could help in establishing that their layered synthesis was among other things

there was no problem in the layout synthesis. In every one of those steps since we will be

using tools heavily it is certainly possible that errors are introduced at various stages.

Verification is somehow ingrained in this design process we are not really separating

them out,  simulation  is  something  that  is  relevant  at  every  step  of  our  design  flow

starting with the behavioral model, the RTL model, each one of these is still a model this



optimized  gates  and so  on  these  are  gate  level  netlist  and  which  should  be  able  to

simulate them for correctness.

(Refer Slide Time: 41:54)

The extracted gates we could also simulate that for correctness just to make sure that

everything is fine.

(Refer Slide Time: 42:10)

Other examples of verification would be a comparison formally, informally, manually or

automatically and so on of each of those steps each is a translation step as we go in the

forward direction it is a synthesis step that is taking us from a higher level of abstraction



to lower level or more detailed level, at every step there is possibly a need to compare

the two make sure that everything is fine.

So,  we  are  just  indicating  this  as  comparison  all  of  them  do  not  necessarily  mean

automatic  comparison.  Even the forward step the synthesis  not all  of those steps are

necessarily automatic some of that synthesis s just happening in our minds. For example,

going through from a behavioral level into an RTL level forms what the context of the

behavioral synthesis that we indicated, but all of that could well be just steps the design

and goes through and comes up with and enters the design directly in an RTL level of

abstraction.

Student: (Refer Time: 43:12) high level synthesis which you are mentioning.

Yeah.

Student: All are similar or dissimilar is it with the RTL to get (Refer Time: 43:22).

(Refer Slide Time: 43:25)

So, we indicated that there is a behavioral synthesis and there is an RTL synthesis flow

these are different just because the levels of abstraction are different the components, the

objects the properties and all of these are different in some ways of these components.

Therefore,  the  kind  of  activity  that  is  involved  in  those  synthesis  steps  would  be

different,  but  that  is  of  course,  the  topic  of  this  of  this  course.  We will  talk  about

behavioral synthesis, but we will also talk about RTL synthesis, logic synthesis and so



on. It turns out that the formulation of the problems they care about and the solution

mechanisms are all very different from each other.

With that introduction let us move forward to the modelling part we did say that that was

the first step in the design flow before going into the modelling.

(Refer Slide Time: 44:24)

So, hopefully we got an idea about where design automation is relevant and of course,

the conclusion is that you break down the design flow into a very large number of steps.

There is automation that is involved at every one of those steps we will be concentrating

on that synthesis step here, but some motivation has been set for design automation at

every one of those steps. So, the first step was the modelling of the system. And let us

now, take closer look at what is involved in the hardware modeling.

Of course, we will rely on our prior knowledge of programming languages and standard

programming constructs are assumed to be already known we will. What will point out

here by way of hardware modelling are those features that are different in some ways in a

hardware modeling. There are lots of things that are common and there should not be any

need to talk too much about the common features.



(Refer Slide Time: 45:34)

How do you specify your designs? We already talked about some of those capture related

tools that are involved it could be that we specify using a layout editor, which means that

these  individual  geometries,  individual  wires  and transistors  all  of  them are  actually

drawn by us manually on an editor.

You could do that it limits of course, the complexity of the system that we can design in

some ways. So, maybe it translates to a small number of unique transistors that could be

designed  in  this  way.  That  does  not  mean  that  complex  designs  are  not  possible

memories  are  actually  very  large  circuits  and  individual  memory  cells,  individual

decoders, IO and so on those are hand designed typically right. That is an example of a

chip and a large system where you actually may be entering this, the design at a layout

level. So, not that complex designs are not possible, but it is possible when the system

that is being designed is regular enough that you can use generators in some automatic

way. So, essentially the memory system is an example where you would be designing

maybe one cell by hand, but it is designed in a way that you should be able to replicate

that design millions of times and you still have a working system. So, but the complexity

of the individual blocks that we design is still limited there.

You could move to schematic capture where you enter gates and interconnections and so

on. So, the difference between that layout at this schematic and that other schematic here

is that this is actually representing the layout is representing geometry whereas, this is



still a little abstract.  You draw a wire like that you do not really intend that the wire

should look that way in the layout, it is just a logical view of the system. So, this is the

way older systems used to be designed and it is possible to have the medium complexity

designs  being  captured  in  this  way.  The  more  modern  mechanism  for  specification

capture is  typically  through hardware description languages  it  is  a text  language and

usually the specification very nicely scales up to up to very large systems.

So, as you can see here that syntax is something that is similar to what we have already

been used to in the form of in the form of programming languages. So, description is text

and  you  could  enter  very  large  systems  this  way  system  level  of  design  that  the

difference here being that some of the components are software components and so on

there  too  it  is  not  very  different  the  entry  could  still  be  text.  You  could  still  have

sophisticated graphical tools that aid the design entry in various ways, but overall the

standard ways of capturing specification at the higher levels of abstraction like HDL or

system level is typically through text.

(Refer Slide Time: 48:54)

There  are  some  interesting  questions  first  to  answer  before  we  go  into  capturing

specification. We said that the complexity as you go down or you go up the level of

abstraction or layout of schematic and an HDL and system level,  you can expect the

complexity  of  the  system  that  can  be  described  using  those  specification  capture



mechanisms to increase as you go up the level of abstraction, up from layout capture all

the way to text level HDLs.

There are other advantages to doing it this way what about maintain ability or modify

ability of the designs. So, somehow that is related to the number of objects that you are

entering. So, that number is small then it is easier to maintain, the system modify, the

system understand the system. So, that too would improve along with this transition of

the specification capture level.

There is  an associated and an interesting question what about optimality, what about

efficiency of the design being constructed.  Would there be circumstances  where it  is

more efficient to enter the design at the layout level than at a gate level or at an HDL

level? Yes, why?

Student: (Refer Time: 50:21) then we go for the gate level layouts it starts from there and

then.

Is there a context in which it makes sense to enter the design at the layout level?

Student: (Refer Time: 50:33).

Yes. In fact, we already talked about. That memory is an example where you actually

enter the sense of a memory cell through a layout. It is so important that you can afford

to spend all that time to design the system at the layout level.

Student: If we want to optimize the area beyond limits of the technology then you would

(Refer Time: 51:01) like memories.

Right.

Student: (Refer Time: 51:04) based highly optimized.

Yes, it  does depend on the context the answer is not. So, obvious which one is more

efficient,  it  is  not  obvious.  So,  a  modern,  high  performance  processor  if  the  next

generation  processor  if  you  are  designing  what  level  of  abstraction  would  you  be

designing it out of this?

Student: HDL level.



At the HDL level. Would it make sense to capture parts of it in layout?

Student: Yes.

It might. So, the circumstance of our particular design might be such that what do you

mean by circumstance; maybe there are timing constraints imposed on some subsystems

that are not realizable if you enter it at the HDL level.

Of course, the remember that they are when we say HDL captured system level and so

on we did say that we are talking about digital systems here whereas, there might be

components that are analog and so on in a bigger system which you do need to take

recourse  to  other  mechanisms  of  the  specification.  But  there  is  one  thing  to  be

acknowledged about moving to higher levels of abstraction, moving to higher levels of

abstraction somehow the assumption is that we will use automatic tools to take us down

into the layout. Ultimately of course, we do need a layout, but if I capture it at the HDL

level, capture the specification at the HDL level then I will use some automatic tools to

take me down to layout. 

If I were to capture it at the layout level then I am not using that kind of automation there

are other automation that is involved, but I am directly entering the design at the layout

level, so what can we say about the comparison of the efficiency which one would be

more efficient. If I had the choice of entering a design whatever it is let us say it is a

multiplexer, if I had the choice of designing it at the HDL level there are some constructs

that can help me specify a multiplexer in an HDL. I also know how to design, I also

know the transistor circuit and I can actually enter it that transistor circuit at the layout

which would be more efficient?

Student: Efficient in terms of (Refer Time: 53:22).

Yes. So, let us define the metric of efficiency area.

Student: Layout (Refer Time: 53:29).

Layout should be more efficient why?

Student: So, that these are the exact picture of how everything could be routered and

placed on a particular chip (Refer Time: 53:40).



So, let us move up from a multiplexer to a little bit more complex let us say it is some

small finite state machine that you decide or you can think in terms of equivalent number

of gates maybe there are 10 gates. So, is that better to, do you think that the design will

be more efficient if you directly enter it at the layout level area we are talking about as

the efficiency metric then if you were to specify it there at the HDL level.

Student: Since layout would be custom made (Refer Time: 54:11).

Yeah.

Student: (Refer Time: 54:12), but HDL the automated processed is more generalized.

Right.

Student: So, layout should be more efficient.

So,  there is  an  argument  that  if  you draw that  layout  yourself  if  you get  to  control

everything right all the placement of the individual transistors, the connections between

the transistors you expect that you can do better than a tool that ultimately has the same

logic in its  mind it  has the same transistor  diagram in the mind,  but maybe it  is  its

realizing it differently from the way you would realize it. So, there is an expectation that

we can design a more efficient system if we were to capture it  at the lower level of

abstraction at the layout level.

Student: (Refer Time: 55:04).

Yeah, it  is yeah. So, while that expectation is there is an implicit  assumption in that

expectation, implicit assumption is that it that design is small enough that you have full

understanding of it  therefore,  if it  is the 10 gates maybe it is still  we could possibly

generate a more efficient system. It is not clear that that argument scales if the design is

very large it might be hopeless to design the layout. Given enough time maybe you could

still do it, but unfortunately that much time is not there the chip ultimately has to go into

the market right. So, there are limitations with respect to how much time can be spent

therefore,  the  design  methodologies  are  usually  such  that  there  is  a  trade  of  that  is

involved in the efficiency versus time to market, that always effects a product design and

it  affects  the  important  decisions  of  what  level  of  abstraction  I  should  capture  my

specification at.



(Refer Slide Time: 55:57)

That  efficiency  is  typically  more  for  a  class  of  designs  like  a  high  performance

processors and memory and so on where the area is very important to, you memory is an

example where you want to design that single cell in a very efficient way right. You

would you cannot afford to lose even a little bit of space because that single cell is going

to be replicated so many times that it makes a difference to the ultimately to the cost of

the  design  itself.  So,  there  would  be  some  class  of  chips  like  high  end  processors

memory and so on where you can afford quite a bit of manual intervention in the design.

So,  that  leads  to  higher  costs  in  a  very natural  way but  typically  the expectation  of

volume is high enough that the cost is amortized over the very high volume that it is

spread over.

But otherwise the time to market is typically a lot more important for most other classes

of  designs  involving consumer  electronics  and so on.  There  is  always an aggressive

deadline and that deadline means that you have to make intelligent decisions with respect

to how much manual intervention is involved and what the methodology should be and

that leads to various decisions being taken for example, you would intervene at a gate

level or a layout level only where it is necessary where for example, you cannot obtain

that kind of performance or area if you were to use higher levels of abstraction. So, in

that  process  some efficiency  can  be  sacrificed  it  is  alright  it  is  expected  that  some

efficiency would be sacrificed in the interest of meeting time.



(Refer Slide Time: 58:04)

So that just sets the context for hardware description languages as it turns out in modern

systems even in high end systems, high performance processors and so on large parts of

the system are indeed written in an HDL and a system level description. So, there will be

some components that you will still design manually perhaps, but that the overall system

just because we need to do other things with it we need to be able to simulate it, verify it

and so on the HDL based methodology is very widespread. It would be rare to find an

example of a modern chip where HDL was not involved at all.  So, let us quickly go

through some of the requirements of these HDLs.

In ways that are different from what is the normal expectation and normal features in a

typical programming language. So, essentially we need to sit back and think about what

aspects of hardware do I really need to capture that are not present in an obvious way in

a programming language. What are those? So, let us start off with indication of time the.

How the system behaves with respect to the progression of time is  a very important

component of a hardware specification. So, I need some language related help. So, we

are just trying to indicate what are these requirements so that we can provide language

constructs to capture those requirements. So, time is essentially I should be able to create

waveforms, I should be able to observe waveforms and so on. So, some mechanisms I

need for specification of time and responses of the system to time.



(Refer Slide Time: 60:00)

Through that the creation of periodic signals as we know the we need some mechanisms

a hardware sequential hardware is described in terms of clock and I should be able to

model clocks in my design in some ways.

(Refer Slide Time: 60:16)

The idea of concurrency we actually pointed out the other day you have a large net list of

gates. In fact, all of them are working simultaneously right; all the gates are working are

active at the same time. As long as the inputs are changing the outputs will change if all

the inputs change to all the gates in the design then all the gates are active and all outputs



may change in response. So, concurrency is very fundamental the way we think about

hardware and I should be able to explicitly model that in my design. So, process is just a

terminology that is used in these languages to capture that effect, but I should be able to

say that there is some operation or a bunch of operations that proceeds concurrently with

another bunch of operations. So, two processes P 1 and P 2 execute in parallel I should

be able to say that in a simple and elegant way.

(Refer Slide Time: 61:12)

I  should  be  able  to  specify  structure  composition  interconnection  these  are  the

fundamentals of a net list creation. We had already seen what their structure would be

like. So, what kind of structure I have here the idea that a block A consists internally of

two sub blocks X 1 and Y 1, I should be able to specify that. I should be able to say that

this X 1 and X 2 are just two instantiations of the same block that is X. That is again

something  that  we all  have  already  been using  in  whatever  hardware  we have  been

designing. So, we do need that ability, we should be able to say among other things that

there is this wire that connects these two blocks.

So composition I should be able to specify that this block consists of these other sub

blocks I should be able to specify interconnection, these pins of one block are connected

to those pins of the other block I should be able to specify that.



(Refer Slide Time: 62:15)

Quickly moving on of course, we will get back to how we specify that. So, as of now we

are just trying to indicate some requirements in a hardware specification that we might

not necessarily  have used in the software.  All  though will  when we talk about these

constructs we will realize that some of them do overlap with software constructs too, but

let us talk about bit true data types. This refers to the idea of specifying bit width of

variables.  I  say  something  is  an  integer,  but  in  addition  to  that  I  also  have  this

information that this integer let us say I have an integer called variable.

(Refer Slide Time: 62:55)



I know the range that that variable can take. So, the range is let us say 0 to 31 that is the

range over which that integer value might vary, but not beyond that. Remember this is a

specification of the hardware and ultimately there is some hardware circuit that will be

generated that is inferred from that specification right. So, what I am saying is that for

the hardware specification it makes sense for me to somehow indicate that possible range

as part of the specification itself, why?

Student: (Refer Time: 63:45).

For using less memory, where is the memory being inferred from?

Student: (Refer Time: 63:51).

Yes. That integer needs to be stored somewhere and if I have this valuable information

that the range is 0 to 31 this means that 5 bits.

Student: (Refer Time: 64:03).

Are sufficient for storing that integer, right. As opposed to this if I had just left it in a

programming language saying int bar what would the inference be?

Student: (Refer Time: 64:18).

Of  storage,  actually  we  do  not  necessarily  indicate  that  we  just  say  integer,  but

programming  languages  make  certain  assumptions  about  the  width  of  that  integer

compilers are obliged to obey the rules of the programming language. So, in C when you

say int a 32 bit integer might be assumed. Such a thing might not be a good idea in a

hardware description language.

So, let us talk about softwares, I did say that I will talk about some of the parallels

between compiler technology and synthesis technology as we discuss these in detail, but

it actually shows up even at the early stage of specification.

In a C program if a variable had a similar property how would you declare it? There are

bit fields that can be used to actually specify explicitly the range. So, the idea that you

are interested in an object that essentially is 5 bits, but do you do that usually? In fact,

you could not even recall how you do it, which means that you do not really you are not

using it. Why do you not use it is it not important?



Student: (Refer Time: 65:30) it is an important. Sir, memory is not that much of criteria

because in computer systems we have large chunks of memories.

Yes, this is an important the memory related argument is important. If we are generating,

if we are generating hardware from that specification then the 5 bits as opposed to 32 bits

that are going to be used they make a lot of difference. This argument is with respect to

memory it is not merely that. So, let us say this is a variable right. Then we have var. Let

us say I had some other variable you had an operation on two variables both of which are

constrained to be in the range 0 to 31. What is the other inefficiency that creeps in if I did

not put this valuable information that my variable was 5 bits wide?

Student: (Refer Time: 66:19).

Yeah. So, both of these need to be stored right. Storage and a default assumption will be

made about 32 bits right, in the absence of that specification. But note that what about

this addition how will that addition happen? In hardware you have to instantiate an adder

circuit to perform the two additions. Now, that addition also will be inefficient, you need

a 32 bit adder to add to 32 bit adder, as opposed to 5 bit adder that would have been

enough. If I had this valuable information that the possible set of values is restricted to 0

that range of 0 to 31. This is an important optimization element.

Sometimes  there  may  be  enough  information  in  your  program or  in  your  hardware

description that an analysis tool can actually automatically infer that the range is limited

to 0 to 31. It could sometimes right. Can you give an example of a code that you write

from where we could infer that the range is limited?

Student: 5 to 0 or 1 some of the bits (Refer Time: 67:36).

Yeah. I am just talking about let us say you are in a C program there is something that I

could look at the way you have written a loop and infer that 5 bits are enough or you

could equivalently infer that the range is limited to 0 to 31. How? The way you write a

for loop, this is the only thing that is happening these are the only updates that i plus plus

is the only updates that is happening. There is actually enough information in there for us

to infer automatically for a tool to infer that the range is 0 to 31 not beyond that. So, such

of course, if you write such a loop the synthesis tool could possibly automatically make

that inference. Sometimes though, but all the time that information might not be there.



Sometimes it could be that the designer has awareness about the system maybe that value

instead of being hard coded like that it comes as an external input somehow. And you

know  from  the  external  working  of  the  system  that  the  value  is  limited  to  32  bit

otherwise the system might not be able to capture it.

So,  in  general  there  may be  a  need for  us  to  specify  some language support  to  the

designer where the designer is able to say not merely the type of the data, but also the bit

widths.  Such  a  thing  is  not  very  important  in  software,  but  it  is  very  important  in

hardware it controls in a direct way the quality of the hardware that is being generated.

We already saw that, it controls the sizes of the registers sizes of the memories that will

store those variables, but also it has lot of implications depending on what operations you

are  performing  sizes  of  those  ALUs  and  so  on  multipliers  everything  might  get

influenced by such a, by that knowledge and that knowledge is critical right in hardware.

So, let me stop here, we will continue with what are the other requirements of the HDLs

and then we will introduce the HDL language later on.

Student: Sir, what is the meaning of bit true?

Bit true just says that  you specify the exact  bit  width.  As opposed to an int  that  we

specify in  a  programming language so we rely on the compiler  to  use some default

widths bit true means that we are specifying exactly how many bits. It is a lot more

essential in hardware. In fact, there is a different reason why you do not use bit fields in

the software context you just leave this as int.

Difference is that the architecture of the processors ultimately it is going to run on some

processor that architecture is optimized to certain data  widths right.  So,  that data bit

might be 32 bits for example, of the processor. In ways that it does not really help you

whether your data is the range is 0 to 31 and therefore,  whether the bit  effective bit

widths of your data whether there are 4 or whether they are 20 or whether there are 32. In

fact, the processor is designed in a way that it does not really take any advantage of your

effective  data  being narrow. Meaning let  us  say you go for  an add instruction,  in  a

processor.

This is assuming that register has a certain width now right, what is that width? It is that

32 bit. So, the fact that our data is fitting within 5 bits is not really helping the processor



is designed in a way that that add instruction may take one clock cycle even if the bit if

the  operand  was  32  bits  wide.  So,  a  narrower  operand  is  not  really  helping  us.

Specification that the operand is narrow is not really helping us in that context therefore,

it is actually correct to use that int data type. That is actually the fastest way. So, you do

not get any faster by having 5 bit data in a processor. But in a hardware implementation

you do get faster. If you should do get smaller, but you do get faster it is efficient in

almost every way whether its area or power or delay or so on. So, it is a lot more critical

when you are generating hardware therefore, in the synthesis context the specification

the knowledge of the right bit widths is a lot more essential.  In the software context

because of the way processors are designed it tends to not really matter.

So, let us stop here with this.


