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Finite State Machine Synthesis: Introduction to FSM Encoding

Different topic today; FSM encoding is an important step that takes us closer to hardware

detail from the behavioural level of abstraction.

(Refer Slide Time: 00:36)

If we look at the output of high level synthesis, there was this data path which looks very

structural, right, this part of it is closer to a net list, whereas, this part is still symbolic as

of now nowhere close to a net list. So, we need to do something about it that is what this

FSM encoding is about.



(Refer Slide Time: 01:07)

It is also variously called state encoding state assignment and so on, all of them referring

to the same problem; what is the problem? We assign codes to symbolic states in an

FSM. These are the symbolic states S 1, S 2, S 3, we can name them whatever usually

you choose  some meaningful  name and for  the  states,  this  is  a  mealy  machine,  we

understand this annotation right 1 0 refers to the condition

And the 0 0 here or refers to the actions, we need to assign codes to the symbolic states.

So, that no two states should have the same code, that is the objective; what does the

encoded FSM look like, if this is the original FSM, the encoded FSM would be different

in what way? What do we mean by assign codes to symbolic states?

Student: (Refer Time: 02:24).

Yeah. So, what do we do to the FSM to encode the states?

Student: Thank you, try some binary code.

Yeah, now you replace these symbolic names with some codes 0 0 0 1.

Student: (Refer Time: 02:45) in a way at actual test level it will be seen as a sigma log of

variable with certain size as the bit vector.

Yeah. So, there are some decisions we need to take as part of the state encoding thus

length of that bit vector is one of them, but of course, what is the value that we give to



each state is the other one; that is the state encoding problem, this is just a specification

of  what  we  do,  there  is  the  question  of  an  optimization  function,  what  should  be

optimized as the result of this action, clearly, there are many different choices for state

encoding. So, that is the FSM encoding problem. Let us define the optimization function

a little later.

(Refer Slide Time: 03:30)

But first let us understand that there is the diagram that is used for illustrative purposes.

Equivalently, one could look at the FSM as just a state table these two things on the left

and right, these two representations on the left and the right, they are equivalent. So, I

have  the  input  part  and that  is  the  output  part  of  the  state  table  and we have  these

columns, the state table that refer to an input section a present state section and next state

section and an output section, how many columns do I have? 

The inputs; this refers to the number of inputs assuming, these are all single bit number

of inputs, I have present state that is the state next state is also the state outputs, again

there will be as many bits on the output side as there are output bits in the FSM, these

two  are  identical,  they  contain  identical  information  every  row  of  the  state  table

corresponds to what in the FSM diagram.

Student: A transition.



A transition if I say on 1 0 I transition from S 1 to S 2 and in the process the output is 0 0

I  should  be  able  to  tie  that  to  a  row  where  I  have  essentially  captured  the  same

information condition is 1 0 S 1 to S 2 that is the transition and the output is 0 0. So, for

every transition that I have I can expect a row that is capturing the same information. 

So, it is a same thing, FSM is fine, the diagram is ok, from a visualization point of view,

but from an automatic processing point of view clearly that state table is something that

will be useful. So, why do you encode the FSM?

(Refer Slide Time: 05:36)

Student: Differentiate between the states basically in hardware everything is 0 1.

Student: Sir, you have to assign it to a variable. 

Now, what values is process of an of  implementing it somewhere that symbolic name

needs to be translated into 0s and 1s. So, that I could realize whatever the logic is in

terms of some gates; gates understand only 0s and 1s. 

So, there is a need for the motivation for encoding it, first question is how many bits

should I have in that encoding that bit there is relevant because we know the standard

template right, how that logic looks like the hardware looks like that would implement a

particular FSM, every bit in the state encoding translates to what or a longer or a shorter

encoding length has what implication on the hardware that is inferred.



Student: It is the bit of (Refer Time: 06:53).

I have to answer this question; how many bits will I use for representing a state encoding

means I have to assign a bit stream right for each of them 0 0 or 0 0 1 and so on how

many bits should I use.

Student: 1; 1 or 2 or number of number of states number of number of.

I take the number of states and the minimum, I need is the number of bits that are needed

to at  least  get so many distinct numbers that is the logarithm to the base two of the

number of states so.

You take the ceiling because it is an integer that we need, here why do we use; that could

I have used a longer state register that translates to, but why did I you took the minimum,

but it was not necessary to take minimum.

Student: More storage will be.

More storage will be required, yes, each bit translates to a flip flop, it is a state register

that I found that consists of a number of flip dependent flip flops and if I use 2 bits, then

I have 2 flip flops, there if I have 3 bits, then I have 3 flip flops. So, of course, there

should be an attempt to minimize the number of that helps in some way, but if I had an

area metric for optimization, I will try to minimize the number of flip flops and therefore,

I try to use the minimum length encoding here.

Student: What is the other trend of using minimum number?

I will get to we have not defined the optimization function yet. So, maybe we postpone

that discussion ok. So, when I do this encoding right S 3 becomes. So, I just replace the

occurrences of the symbolic state by the respective encoding all these S 3s are replaced

by all the equivalent codes, then I have essentially what is a truth table ok, what you see

here is a truth table, what can I do with a truth table? Now that it is in this representation

what is the next step?.

Ultimately, I want to generate hardware out of this logic, this somewhat represents the

combinational logic that is involved, right, what is the next step after the truth table, you

can generate gates out of this; this truth table is nothing, but the equivalent of a Karnaugh



map or whatever, right, all the bits are there all the do not cares are also nicely specified.

So, I can proceed with my logic optimization and realization of a gate level; netlist from

that truth table,  of course, the architecture may be illustrated like this, I have a state

register that captures the current state of the system what is there in the state register.

Student: The flip flops.

The  flip  flops;  it  consists  of  only  the  flip  flops;  nothing  else  and  if  I  have  a  2  bit

encoding, then that state register will have 2 flip flops, the standard representation is you

just assume it as a D flip flop. So, that whatever the next value is going to be that is what

is computed in the logic here and that goes as input at the D input of the flip flop and

what you see here, these are the Q outputs of the flip flop, those are fed back into that

same combinational logic and they become the present state right that computation here

is the next state.

Computation that goes into the into the D flip flop that is essentially preparing the data

for the next state that is the architecture this combinational logic consists of 2 parts, there

is a next state logic and an output logic, of course, all of these are the output parts, right.

So, these are computed the inputs are these. 

So, these are input the inputs and the present states are these inputs to the next logic and

these  two consisting  of  the  present  state  because  of  the  Q inputs  and these  are  the

external  inputs into the FSM what are the outputs there are 2 output sets, one is the

external output from a HLS output point of view, you can see that these are the control

signals that go from the FSM into the data path, the other set of outputs are these are the

next state outputs right.

So, that combinational logic is all of this that is essentially a translation of this logic that

is specified here in the truth table that is the overall flow and the hardware architecture,

we  are  assuming  any  questions  on  just  the  overall  picture,  we  will  get  to  then  the

question is how do you take that decision that S 3 translates to 1 0, what is the basis and

how do you take that decision that is the FSM encoding problem, but it is embedded in

the bigger problem that is this ok.



(Refer Slide Time: 12:44)

I have to actually specify an objective by itself, it is hard to argue that one encoding is

better  than  another  encoding,  you have  to  say in  terms  of  what  is  it  better. So,  our

objective is the translation is from a state table into a truth table; that truth table can then

be optimized using standard logic minimization techniques. So, we should hopefully be

familiar with the basic ideas, but we will talk about this in the next step.

But I have to specify an objective and for now, let us say that the objective is to find an

encoding that minimizes the area of the final circuit; what is important to note here is

that  as  part  of  this  encoding  step,  we  are  not  generating  the  circuit,  we  are  only

anticipating; what will happen later encoding. In fact, is just this you take the symbolic

FSM and perform just these encodings? 

So, that you get this truth table; that is all, but it is hard to see at this level, why one

would be better than the other. So, somehow you have to argue in terms of what happens,

later if I take this decision, then the later logic optimization step can benefit in this way

or that way that kind of an indirect argument has to be made as we make the choices for

the encoding.



(Refer Slide Time: 14:12)

This is not so trivial and there is a lot of dependence on what that target architecture

looks  like  how  are  you  going  to  implement  that  FSM,  we  did  have  a  truth  table

representation, truth table is also a high level representation, it is only a specification of

the functionality of the logic, you can say that you will use an array logic kind of a a

target  in  which  case,  there  is  some such construction,  are  you familiar  with  what  a

programmable logic array looks like.

So, it could be this kind of a target as you know; there would be an and plain and there

would be an OR plane in that AND plane you would be generating,  what are these?

These are the inputs to my system, these are the outputs if combinational logic that that

PLA actually ultimately implements, I have a couple of flip flops here outside that is my

state register and these actually go back over here forming the inputs that is essentially

the present state right and these outputs here are the next state computations and these

other outputs are the external outputs of the FSM. 

So, that is the implementation. So, what would these be that this. So, each of these; what

is the meaning in this implementation what we are saying is if you had the input variable

if this was x, then this is x prime right, x bar if this was y then this was y bar.

So, such a connection here in that AND plane means what means you select these are

what are these rows mean what and columns mean what in the real life that is a initially

just  in  the  AND  plane,  there  we  have  introduced  a  connection  that  that  is  the



programmable part of this logic I have to decide; how to program it and programming it

essentially  means  that  I  decide  on those connections  which  connection  be there  and

which one should not be there I introduce these two connections to mean that this line

has some logic what is that logic.

Student: x bar.

Since;  so,  I  selected  x  and  I  selected  y  the  AND  of  those  is  what  that  line  there

represents, similarly I selected all these 3 here for the next row. So, that would refer to x

prime y is not there and if these present state lines, you call them whatever a and b, then

a is there and b is there. 

So, that is the meaning and so, terms are for product terms are formed and you select

from the AND plane of the PLA which lines you want and the complemented versions

are also available. So, that we can form any expression so, but these are all individual

terms and terms there may be as many literals as many variables here as the number of

connections you make there. So, that is what these are what is there in the or plane.

Student: Sir columns.

There, they  are the columns they represent what that these. So, if I call them a and b,

sorry, this is a prime in this is prime, then if I have chosen these two, it means that x and

y is what is selected. So, x y is one enter and this is the other and term corresponding to x

prime a b. 

So, that is x prime a b and through selecting both of them, we mean that that output line

here, it is actually a next state line is this term, this product term plus this product. So, in

the AND plane,  the horizontal  lines are used to compose the product terms in the or

planes  the  vertical  lines  are  used  to  collect  the  appropriate  product  terms  to  form

whatever expression you want that is if the target was a PLA.



(Refer Slide Time: 19:10)

It could also be that I have multi level logic the PLA is an example of a two level logic

structure, you have and terms and or of appropriate and terms nothing more than that the

only two levels, but you do not have to do it that way, you can have any number of levels

that is one level this is another level there is a different level and so on in general, of

course, nobody is stopping you from having any number of levels.

But that target architecture is different, you could have a standard cell based architecture

where you pretty much have random logic and you can implement any number of levels,

if you use one of those predefined architectures like a PLA, you are constrained with

respect to what kind of expressions you can implement there this target architecture has

to be specified to the FSM encoding strategy because the way you would encode. 

Even if it is for minimum area the way you would encode if the target architecture were

PLA or an FPGA for example, may be different from the way you would optimize it if it

is an the multi level logic and ASIC library is used to implement a standard cell library is

used to implement it.



(Refer Slide Time: 20:31)

That needs to be specified. So, let us identify; what do you need to optimize, if I say area

is our target to begin with, then what should you optimize in the PLA of implementation

what do we optimize.

Student: Number of connections.

Number of connections what difference does that make in the.

Student: I can put more logic in the same area.

The number of connections would it have an implacation on the area of the PLA.

Student: No.

No, so.

Student: Area of the logic.

So, that is the area, right, this is my area that I would like to minimize,  what is that

actually available in my hands.

Student: You can put a bigger logic FSM; I mean efficient utilization of the resources.

Let us assume that we are going to construct a PLA that implements our logic FSM is

there I  need to realize it  in terms of a PLA. So, I am looking for the smallest  PLA



structure that would yeah; that would be good enough for our logic. So, what does that

translate to what do I actually need to optimize here in this picture in order to minimize

the area of the PLA.

Student: The number of employees.

First, what is a very high level model of the PLA area? This is a rectangular structure

right its area is determined by.

Student: Length; length.

Length and breadth; that is a great beginning, length here translates to what and breadth

here translates to what?

Student: Number of rows and number of columns number of rows and columns.

Number of rows and number of columns that is a great improvement of refinement of all

the abstract idea of area of PLA; what determines the number of rows what determines

columns?

Student: (Refer Time: 22:39).

Number of inputs just number of inputs number of columns is what here you determine

by what things?

Student: Number of inputs.

Number of inputs and number of outputs also because those are also occupying space,

right, there is a column dedicated to every output. So, these are determining the number

of columns; number of rows is determined by.

Student: Number of expressions we are (Refer Time: 23:07) min term.

Can you be more precise; what is a min term; if you have a logic of 4 variables, what is

an example min term.

Student: You cannot break it down further beyond what it is.

Give me an example min term.



Student: Like I said will be a min term like all four terms will appear in that.

(Refer Slide Time: 23:32)

All  the  variables  will  appear  in  the  free  min  term  either  complimented  or  un-

complimented, but they all appear that is the min term definition, this is a min term this

is not a min term. So, now, can we get back what determines the number of rows in the

PLA.

Student: The number of min terms in the expression total number of.

Not number of in this expression has how many min terms.

Student: One; this is the product, no, no, one, sorry, sorry.

This is a product term, this is in general, this is a product term that actually corresponds

to 4.

Student: 4.

Min terms the sum of 4.

Student: Sum of 4.

Min terms right; what we want to minimize here? If I want to minimize the number of

rows is the number of distinct product terms, I am using in composing these expressions



distinct because I may actually reuse some product term, I use it here, there is a this is a

product term that is available for me for use in any of these output lines right. So, this

product term has been used once for that output also once for this output.

So, I do not count that twice because that line is available to me, it does not constitute

additional area in this kind of technology, the number of connections are irrelevant, if

you look at the layout this may be done, I mean, this is actually part of a pre designed

structure  establishing  a  connection  or  not  establishing  a  connection  does  not  add  or

subtract area the way, these are designed you would turn some metal on or off either you

connect some line to voltage one or like an input gate to a transistor either you say you

connect it to 0 or a 1, but the transistor is already there. So, you are not saving that those

are the properties of structures regular structures like these ok.

So, if I were to now minimize the area of this PLA, one thing is I should try to reduce the

number of distinct product terms, I use that reduces the number of rows.

Student: Rows.

What can I do about the number of columns, clearly, I have some flexibility in choosing

this because depending on how my logic looks like I may have more product terms here

in terms of the number of columns what flexibility do I have.

Student: As we discussed earlier, the for the state register if we use the minimum logic

and solve that.

Yes I have some flexibility here, if I use more bits, then I have more columns for the

state register. So, if I just want to minimize area perhaps I can just use the minimum

number of bits.

Student: It is because (Refer Time: 26:47) kind of problem because if I use exploratory

state of this term then my number of product terms can reduce if I use less then my

distinct product terms.

Can increase so that is where the optimization angle comes in whether you optimise

number of columns more or you optimize number of rows more that is very balanced.



Yes,  we  should  understand  the  tradeoffs,  here  some  of  the  choices  interlinked,  for

example, the number of state bits by itself, it does not say much, but it depends on how

you are actually doing the encoding, it is possible that for some choices of length of the

state register the logic is simpler. 

You  actually  might  need  fewer  product  terms,  then,  since  we  want  to  optimize  the

product of the columns with rows, there is some such uncertainty, but other than that;

what are the column choices that we have these output columns, I do not really have a

choice because they are going outside those need to be there what about the inputs.

Student: Inputs are also fixed.

Inputs are fixed.  Now, there is this question of does the inverted input also need to be

there  or  not.  So,  some  choice  you  can  say,  it  is  there.  So,  that  depends  on  the

methodology a little bit you could optimize. So, that you could give preferences to those

kind of expressions where either the variable or its complement is there, but both are not

there. 

So, there is some such flexibility; that is available, but in general when we talk about a

PLA structure we put both the x and x bar line. So, there is really not much flexibility

overall not much flexibility is there in the choice of the number of columns other than

the  state  register  length,  but  this  is  the  bigger  dimension  on  which  there  is  some

flexibility and we can make an encoding choice that optimizes the number of rows in the

PLA what if it was a multi level logic implementation and I want to reduce area.

Student: Sir, how are we gonna implement multi level or it simply gates structures.

Yeah, our implementation is just this let us assume that we can just pick up discrete gates

and  compose  a  circuit  that  looks  like  this.  So,  area  optimization  here  translates  to

somehow minimizing the total area that is occupied by all the gates, the some of the

areas at this stage, how do you do that that should also translate to something at the high

level like we argued in the other case; that I want to reduce the number of product terms

that is taking us a little higher level. 



So, that we can argue algebraically, as we take decisions on the encoding here, what kind

of argument it would be if I say I just want to reduce total area that is total area of the

gates can we translate that into something of an algebraic nature? 

Student: Sir, standard logic minimization techniques can be applied to.

Standard logic optimisation would indeed be applied after we perform the encoding. So,

at this stage, somehow we need to anticipate what happens there, remember, we are not

generating the circuit as part of encoding, we are not generating the circuit, we are only

taking those decisions of the translation of the symbolic correspondence of the symbolic

states to our distinct encoding that is all that we are doing, but in the process of doing.

So, we should anticipate what happens later number of gates is an interesting low level

metric that one can try and anticipate often the proxy that is used at the at a high level for

estimating  the  number  of  gates  is  the  number  of  literals  I  have  in  an  expression

ultimately they say there are some bunch of Boolean expressions that are generated, right

and our choice here for encoding has to be based on which Boolean of expression is

better  so;  that  means,  that  I  have  some expression  like  this  and  I  have  some other

expression may be with the same result maybe they are all equivalent logically to each

other, but they are not all equivalent with respect to implementation if you were to later

translate them.

So, given an expression,  we can do something to estimate its  complexity that would

translate to an area number ultimately, the measure that is often used is called literals

literal refers to the presence or absence of a variable in an expression ok. So, if a is

present, then I count once if c prime is present, then too I count once why it is worth

thinking about if b and c. So, this too is two literals a prime b is also two literals.

Student: Now, b has (Refer Time: 32:16).

No, every time it occurs in the expression a particular variable occurs in an expression,

we still in any product term in an expression, we say that it is an additional literal, it is

worth it or it is not worth it.

Student: If we call literal count.



Yeah. So, here literally literal count is 6 in this expression, why do we do that or first of

all, is it good to do that or we should be counting only the number of literals number of

literals,  anyway, tells  us  what  it  says  something  about  the  inputs  that  I  have  to  the

expression,  we want  to  capture  the  complexity  of  the  circuit  that  will  ultimately  be

generated. So, a literal count is what we want to do here, but is it to count b twice, the

way it appears in the expression or should b appear, once as a measure as an approximate

measure of the of ultimately what should translates to gate count right, so, if I have this

expression here b c plus a prime b.

So, point is b occurs twice should I count it twice; that is what this counting is doing lets

be convinced that it is to do. So, maybe for now, let us just ignore the prime here that is a

different argument, why should we consider the variable and it is complemented form as

one literal each is a separate argument that we will come to, but for now, let us just be

convinced that counting be twice is in that kind of an expression.

Student: Because we need two different gates.

 It translates to an additional gate, it does not matter that it has occurred earlier, this is

one AND gate the other one is implemented using a different AND gate, maybe there is

an OR structure there. So, we may occur any number of times, but the argument here

essentially is that every time it occurs, it has an impact on the gate count of the circuit

that is the intuition; that is the reason for a separate counting of every occurrence of a

literal if you had another one if you had plus.

Student: a, b, c.

a, b, c here that you can separately optimize, it is a different matter, we have are not

going this, let us say, this is my ultimate expression and I want to translate that in a

straightforward way, later on into gates, then that a, b, c indeed translates to a separate

gate structure. So, we are saying that every time such a literal occurs then that translates

in some ways.

To an additional two input gate or whatever our minimum element is therefore, we count

all of them all those occurrences.

Student: Sir, whether it is if we just consider b c plus a b that is b into c plus a so.



Not we are considering the optimisation though we are considering that this is the final

expression that we have and I want to take that and build a netlist out of it that there is a

better representation of that expression that there is a more compact representation of

that expression, if it is there then you replace it and that is what we want to count. So,

somehow this is the last stage of all the optimizations and we want to evaluate how good

it is without generating a circuit out of it.

Student: Sir, can we put at this way for example, if I take two input 9, then for each

literal  in  that  expression,  I  will  be  consuming  one  stack  of  p  and  n,  if  it  is  a

complementary consequence.

Yeah, yeah.

Student: That is what it leads to.

That is what this translates to, it translates to more area and the equivalence here is it is

like a two input gate or something like that.

Student: Basically, in that way, you will be able to cover the logic implementation details

also.

Yeah.

Student: In one short.

That is what we are trying to estimate,  every time something like this occurs here it

translates to 2 transistors in the logic implementation, indeed yeah; that is one, the other

thing is our approximation that I have a c prime plus b prime c or some such thing this is

still counted as 4 literals are we justified in doing. So,

Student: Yes sir.

Why they have got these two inversions.

Student: An inverter has to be realised to inverter signals

Right, I should count that or I should not count.

Student: We should count.



Right, so, I have 4.

Student: Count.

So, I am taking this as equivalent to a c plus b c, if literal count is the only thing that we

use as an approximation of the area, then both of these are equivalent, but you know that

they are not equivalent because the two additional inverters are there, but still remember

this is a high level approximation would we be justified would there be an argument for

actually ignoring.

Student:  Sir,  (Refer  Time:  37:34)  we  can  assume  that  complimentary  (Refer  Time:

37:36).

Yeah, it becomes a little tricky to capture these effects, exactly, this is an approximation

after all the point is; you may have something like this a prime b prime. Now compare

this with a b which is the more expensive?

Student: (Refer Time: 37:53).

This because this translates to an or gate right whereas, this is actually a more expensive

circuit the and the realization consists of a NAND gate followed by an inverter, right that

is why we get rid of this distinction on an average, we ignore the compliment we just say

existence.

Student: Overall global picture things will normalise.

Right, the right; so, these are some approximations which are necessary at the high level

you need to make that at high level it is hard to and without realizing it right it is hard to

come up with a more exact picture. So, we just ignore those I think; so, although if it is

very simple, then you should be able to do something about it being more accurate with

respect to that estimate. 

So, there are some limitations, but still overall the literal count is considered as a very

nice proxy for the complexity of a an expression when it  comes to multi  level logic

implementation in the two level logic for that PLA structure would literally count be

good.



Student: Sir in a PLA structure indoor can be implemented very efficiently and we have

all the inputs available for us.

Right.

Student: So, literal problem cannot be.

The equivalent  argument  here would be let  us say you have some logic here that  is

represented  by  this  picture  and  consider  the  addition  of  an  extra  connection  that

translates to one more literal.

Student: Yes.

Right in the Boolean expression does that translate to more area.

Student: No, no.

It does not, we just argued that it is the area is independent of the number of connections

in the multi  level  structure;  the area is  dependent  on the number on the size of that

expression. So, here we are dependent the area is dependent on the number of product

terms that are appearing. So, it is not as though there is no dependence at all on the

complexity of the expression, but it depends in a different way not merely because the

size of the literal the literal count is more or less. So, in this we do not use literal count,

we would use product term.

Student: For a given stack of inputs, we can have all the product terms and mid terms.

Right, right.

Student: (Refer Time: 40:14) also that.

Yeah.

Student: Will mention the difference if we increase an input then it will (Refer Time:

40:22).

If you have an additional input, then it makes a difference because you have a more

column  yeah  ok.  So,  this  is  what  we would  try  to  optimize  if  the  target  is  a PLA

implementation, then I try to optimize essentially the number of rows which is number of



product terms that is a different optimization if it is a multi level logic implementation,

then I try to optimize the gate count and that gate count at the Boolean expression level;

what we try to optimize is the number of literals in the expression that will be later built

up, remember, we are not going to build up these expressions that is actually part of the

logic minimization step which comes later, but we try to anticipate what happens in that

step as we argue about the state encoding let us see what options do I have for state

assignment.

(Refer Slide Time: 41:10)

I can use the minimum number of bits if n is the number of states, then I take log n to the

base 2 ceiling of that tells us the number of bits that are there in the state register. So, this

kind of a choice can be made for the encoding, but of course, I have a large number of

choices there even if I use the minimum number of bits. So, that minimizes the number

of flip flops. So, that is some step in the direction of optimizing area, but that is only one

the other extreme you might be familiar with is what is called a one hot encoding I use as

many bits as a number of states.

Student: States.

Right; So, that would mean that if I have 4 states, then I use four bits and the encoding

could be such that the corresponding bit is one and all the others are 0 or could also be

the other way around which is all the other bits are one and for that state it is 0. So, this

leads to more flip flops, it for this example, it is 4 flip flops instead of 2, but it actually



might  simplify the logic we just talked about it  in the p la context  buzz,  but it  may

simplify logic why would it simplify logic.

Student: Sir, the next state derivations will simplify your output derivations may also

simplify depending on the.

Student: Expressions in the.

Conceptually; so, that logic has two components the logic for determining the next state

or the logic for determining the output has two components; one is which state are you in

and the other is what are the inputs because those are my inputs there which state you are

in that part of the logic is the simpler implementation, if you have one hot encoding why

because you just pick up the appropriate.

Student: Bit.

Bit and that bit is one means that you are in that state, if it is 0, it means that you are not

in that state. So, if you are looking for a particular transition from s 2 to s 3 and you want

to know are you in s 2 that logic is very simple in one hot because you just pick up the

appropriate Q output of the flip flop and that being 1 or 0 tells you whether you are in

that state, if it were the minimum bit encoding, then you would need a little bit of logic

to tell you are you in this state or not because it would be encoded that as 1 0 0 or

something which means that you need two inverters and at three input and gate to tell

you that you are in that state.

Student: If you encode you have to decode.

Yes, there is  a decode that  is  implied,  there the logic may not be as explicit  as this

because  of  course,  you  are  sharing  logic all  the  time,  but  conceptually  this  is the

argument that there is an explicit decoding that has already happened as part of the one

hot encoding step.  So, logic could be simplified which means that the area could be

lower the for the logic part the area of the flip flop has increased, but the logic could

possibly be  simplified,  but  more  important  is  this could  possibly  be  a  faster  design

because the critical path is countered from flip flop to flip flop write out Q output of the

flip flop to the d input of the next flip flop stage.



If the logic is simpler, then it is likely to be faster. So, there is some merit to one hot

encoding also and in general it  is  not clear  which one you should use there,  it  may

depend on w hat, your objective for optimization is although the other thing to note here

is that if you take it to the extreme even one hot leads to complicated circuits what if you

had 500.

It is not an uncommon design where you have a large number of states.

Student: 500 is a very large number.

Right, so, so, then we are talking about nine flip flops versus 500 flip flops somewhere

this argument ought to break down in terms of the implications later on with respect to

layout output.

Student: Can you explain why this will be faster.

Why is this likely to be faster the reason is the same because the logic may be simpler.

(Refer Slide Time: 45:51)

So, in one case, we have three flip flop design. So, if whether a particular whether you

are in a particular state or not, you need to determine by let us say 0 say that is the

encoding that we are looking for. So, the circuit is this, this tells you are you in state S 2

whose encoding is 0 0 1, this is not the only thing. In fact, there are maybe a couple of

other inputs these are the primary inputs x and y and that transition could be that maybe



you have an OR gate, if you are in that state and either x is 1 or y is 1, then the output is

something; let us say that is my logic if I use a minimum with encoding of three bits

maybe my design had seven states.

So, instead of 3 flip flops, maybe I could have used 7 flip flops and S 2 corresponds to

this the seventh flip flops if this is the Q output if this Q output is 1, then I minus 2 in the

1 hot encoded version that line tells me that I am in state S 2 x and y are still there and

my logic could be this just getting this output tells me that I am in state S 2 that is nice

this  whole of this  logic  was avoided that is  the decoding logic of the state  that  was

avoided I directly got this and except the rest of it still remains the same.

So,  in  the  critical  path  of  the  design,  we  omitted  a  part  of  the  logic  that  is  the

simplification we are talking about it could lead to lesser area, but that is a little trickier

argument because there is a counteracting increase in the area for the flip flops, but the

speed argument is usually there because that logic is now missing here and this has a

smaller critical the path.

Student: Sir, next state encoding had complicated with one hot scheme.

The next state; so, what is the next state logic anyway next state logic is also if you look

at the. So, that is my input present state next state and output right. So, just like an output

logic look like this the next state logic is. So, this truth table is just a general truth table

0s and 1s are there everywhere, this could well have been one of those next state lines

same logic in order to find that the next state should be S 2, what you need to do you

need to check whether current state is S 1 and the inputs are such and such and that

decoding is omitted in that logic also because;

Student: But actually we need to send 0s to the other.

Use ok. So, each of those computations is smaller, but now you have more computations

because you have seven lines going to the next state instead of 1.

Student: The connections will increase, but not.

Connections will increase the each of them is simpler logic, but now you have more

logic perhaps right the speed argument is still there.



Student: Speed can be.

Right; because each of the logic elements is simpler and therefore, the critical path could

be smaller, but the area is a trickier that I did not propose this as an area optimization, I

only said this is possibly faster area is more complicated argument it is hard to argue

yeah.

Student: Sir, why do we need all 7 line (Refer Time: 50:05) because if we know that we

are in state 2 end (Refer Time: 50:08) status will be the state two we need only two lines

the state two should be set to 0 and 3 should be set to one all others are already 0 when

state 2.

This is the implementation of one transition, right.

Student: Fine.

Yeah.

Student: What I am talking about is like we are not saying that when we are calculating

the next state we need to send all seven signals.

Seven signals need to be d seven d inputs need to be given to the

Seven flip flops right they would correspond to all those transitions where that particular

state is the next state.

Student: Ok sir, but the rest of the flip flops they are just sitting there only previous.

Rest of the flip flops do not change it is true.

Student: So, given in the logic realisation we need only two lines problem re state for

calculating the next state we need to set one to 0 and the other state to the next state.

 See the this seven these are the Q outputs of the flip flops the input d values do need to

be provided right how do I provide it I pick up from these rows all the rows where let us

say S 3 is the next state and build some logic like this let us say there is a nor gate or and

gate and. So, some combinational logic any one of them is one then my S 3 should be

one.



So, that comes from perhaps an OR gate that is picked from many different parts. So,

every line that I have in this state table corresponds to some logic that is built and all of

these would be. So, if I have S 3 is there, then I would pick up all of that. So, that logic

has picked up this logic is picked up and so, correspondingly I would build something

and I would send that to the respective input of the flip flop.

Now, inputs have to be sent to 7 different flip flops as opposed to earlier I had to send

inputs to two three different flip flops, but it is true that I need to compose the logic for

the same number of transitions in both cases the number of transitions is the same.

Remember that that by itself does not mean anything because you can share logic these

are not distinct pieces of logic that you have the point of optimization logic minimization

of course, is that you want to generate the minimum area circuit by sharing logic, but

these options need to be known to us we do have at least the minimum number. 

So, we have a range of choices one is the minimum number of bits other is the one hot

encoding that hopefully is the maximum number of bits you do not need more than that

many number of bits because some of those may be redundant perhaps for a particular

encoding you could choose any number of bits between log n and n; there may be an

argument in its favour, but the simpler treatment of course, is these two extremes the log

n.

(Refer Slide Time: 53:46)



And the and the one hot encoded lets first understand even before solving this what are

the possibilities I have a brute force search could be that you generate al the encodings

synthesized circuits from each of them and just choose the minimum area circuit, it is not

a good one, how many encodings are there for an n state FSM can be precisely captured

this number this binary encodings cannot be that hard.

Student: 2 raised to the power n.

2 raised to the power n; can we be more precise than that why two raised to power n.

Student: Yeah should be 2 raised to power n.

(Refer Slide Time: 54:33)

If I have some such logic S 1, S 2, S 3, how many encodings would be there, it is it is 2

raised  to  power n,  if  is  there  a  dependence  on the number of  flip  flops,  we choose

number of bits I choose.

Student: Yeah 2 to the power n, if we choose number of bits as n; then it is like if it is.

If you choose number of bits as n, but n is my number of states.

Student: Yes, one hot encoding is tow raised to power n, but like that it is fixed.

If you choose one hot encoding.



Student: Yeah then.

Then.

Student: Then n n states n states no any state can have one I can choose.

One hot encoding; does just one encoding.

Student: no, but I can have S 1 as 1 0 0 or 0 1 0 or 0 0 1. So, I still have an option. So,

there is still an encoding option there.

Yeah, you can or you can have that although when it translates to logic they are all same.

Student: Probably equivalent to yeah.

Should be in that sense they are, but I have n states how many choices are there it is not

independent of the number of bits you are choosing there ought to be a dependence on

the number of bits that you have chosen suppose I choose m bits where I know what that

m is m is in what range.

Student: n and log n.

Between n and log n, those are my choices. So, m bits I choose some number in that

range now how many possibilities.

Student: 2 to the power m m.

 2 to the power m are we sure. So, if n was eight if I had eight states then I would use

three bits suppose 2 to the power 3 is 8 do I have only 8 choices for encoding.

Student: No sir.

No; that would make it easier actually, if the number of choices were only the number of

states then it is a linear function and I could actually use the brute force method just a

very small number of possibilities. So, it is a instinct should tell you that it should be a

large there should be an exponential somewhere, but where would that be.

Student: Sir, this make it as 3 bits, then the eight states can be captured using those three

bits that is every state can be assigned any number from those.



Student: Sir, combination or permutation states.

Yeah.

Student: So,

So, if I have n states how many possibilities do I have for the first one.

Student: 2 power n.

2 power n.

Student: no, no, no, m.

2 power m

Student: m, m, m.

Yeah.

Student: yes, sorry, 2 power m, but everyone.

They are independent things, remember, they are we have to make the choice of what m

is. So, m is not derivable directly from n that many choices for the first state.

Student: Second also.

Once you have made this, how many choices for the second.

Student: 2 m minus 2 m minus 1 minus 1 that c combination, I think not permutation.

That should be.

Student: Then minus 2 and 1 obtain 1.

Then; what until.

Student: n minus n or minus 1.

It is not exactly, but it is something like that you started with minus 0. So, minus n minus

1, some such expression captures the number of possibilities of course, you can for the



minimum value of m, you can substitute  it and you can see that it  is an exponential

function which is 8 times, 7 times, yeah are we convinced that this is an exponential.

Student: That only, yes, but it is an exponential permutation.

Where what is the proof that it is exponential.

Student: Sir, factorial value thing.

It is a factorial function.

Student: 8 factorial.

Right. So,

Student: Combination; not permutation, I was;

So, factorial is factorial exponential in n is n factorial exponential in n.

Student: It is right, no.

Right, I am asking.

Student: (Refer Time: 59:37) factorial (Refer Time: 59:39).

The graph looks like that. So, somehow it is like a cup, informally, these are cup shaped

graphs  and  therefore,  one  ought  to  be  equivalent  to  the  other  is  that  a  precise

mathematical argument you are giving it is not so hard to prove that n factorial actually

there is a precise, I am not sure there is an approximation for n factorial called Stirling's

approximation; where the function looks something like n to the power n there is. So, n

does appear in the there are some other things it is not exactly of course, n to the power

n, but it is not so hard to prove that n factorial ought to be.

Student: n exponential.

At least exponential you can show that.

Student: Sir, (Refer Time: 60:26) we can break it down n factorial n into n minus one till

when there is a if we just ignore the constants, then it is basically there is an mostly bad

at times. So, it comes n power n n minus.



What? If you ignore the constant everything is a constant.

Student: No sir, like we are n times n minus 1 n times n minus 2 n minus (Refer Time:

60:48). So, could we ignore this minus n minus 2 these are.

If you ignore all those then you have totally different, it is a who says that every constant

can be ignored in this way if you have some function of n plus a constant, then you can

ignore  the  constant  a  constant  is  not  always  to  be  ignored  in  that  way, although  I

appreciate the insights that may come up from it should lead to a clue that it is probably

exponential, you can easily show that this ought to be worse, even if you cannot derive

that closed form exponential you should be able to prove for example, that this is greater

than 2 to the power n, is it obvious from this expansion? Each of these guys has greater

than if you really work this. So, there are n terms here.

Student: (Refer Time: 61:48).

Yeah, not hard to say that this should be (Refer Time: 61:52). So, there is no question of

generating n factorial encodings and generating circuits out of each of them and then

checking which one, it was although if it was linear like if it was n then that might have

been a possibility.

(Refer Slide Time: 62:19)

But with that background, let us look at one FSM encoding strategy that targets multi

level logic, this discussion is taken straight from that paper it is an old paper, but its



selected for analysis just because there are some interesting concepts there that anticipate

the effect of later optimizations ok, later means whatever decisions we are going to be

taken. Now, are going to be subject to logic optimization that is happening, later, we are

not going to do that optimization as part of this process and yet we can prepare the inputs

for that optimization in a way that that optimization is able to find common terms and so

on that is the objective here.

It is a nice way of estimating these are estimates that we are making, but it is a what we

will go through in this argument is a is a concrete example of estimates of essentially

literal count. So, what we want to optimize is a literal count in that Boolean expression,

but problem is that the Boolean expression is not n there at this time the final Boolean

expression is not there.

In spite of that; we would like to anticipate what happens in the later stages which is a

little  tricky  and  therefore,  a  little  bit  of  a  more  concrete  example  might  help  us  in

quantifying  those  estimates  in  some  way  that  is  what  we  will  go  through  in  this

algorithm. 

So, objective of course, is to minimize the expected gate count in the implementation

when the implementation is not there you do not want to actually implement it, but you

want to argue at a logic level if I did this then this kind of logic is likely to be output and

those kind of opportunities the optimization tool is likely to extract and therefore, this is

better than that that kind of an argument is made here.



(Refer Slide Time: 64:28)

For that; let us first introduce some typical optimizations that are actually happening in

the multi level logic optimizer, this will formally explore later on in the last stage of this

course  how  the  logic  optimization  tool  works  logic  synthesis  mechanisms,  but  the

principles  are  of  course,  known  principles  there  is  an  idea  of  factoring  if  you  see

something like this might be occurring the same variable occurring in complemented

way or in an un complemented way in multiple terms like that then I can extract out a

common factor.

Why is this a good idea; what does this optimize?

Student: The number of gates number.

Optimizes number of gates our approximation of the gate count is literal.

Student: Literal number of.

So, it reduces literal,  I should be able to argue that it  reduces literal  and therefore,  I

would  do  this  does  reduce  literal  where  I  take  a  common  b  out  instead  of  two

occurrences of b I have one occurrence of b and therefore, there is a reduction in the little

count the rest of it does not change, but b bs occurrences reduce and therefore, the total

literal count reduces there of course, is a common sub expression argument here also of

what nature if I look at these two expressions jointly, I see that a plus b is a common



expression or it is a common sub expression of each of them is expression because here

that logic can be represented as a plus b times something.

Student: c e.

Times c e and this logic can be expressed as a plus b times d e and therefore, if I do that a

plus b turns out to be a common sub expression doing this would increase or decrease the

literal count actually I increase the number of expressions I had two expressions earlier

now I have three expressions.

Student: Because number of gates will give you the;

Right, the gates is likely to be reduced just because you see that there is some common

computation that was taken out that translates the number of gates and that would reduce

you  see  that  literal  count  instead  of  a  b  occurring  to  a  was  occurring  twice  b  was

occurring twice, at least as far as this part was concerned, we reduced 2 occurrences of a

to 1 occurrence of a reduced 2 occurrences of b to 1 occurrence of b S was added here.

So, anyway overall you can see that such an exploitation of common sub expressions

would lead to reduced literal count in whatever it is that I am implementing a third one is

a common cube occurrence of a common cube is identified as follows cube is sort of a

special case of the common sub expression where there is just one product term in that

expression; that is what we are calling a cube in some ways dealing with cubes is easier

logic optimization logic synthesis algorithms tend to work with cube because it is an

easier analysis we look at that analysis, later, but finding a common cube is an easier

evaluation than finding a general common sub expression that might be the sum of four

different product terms right.

So, common cube what common cubes are there in this expression here I have an a e,

here I also have an a e here I can see that there is a common cube between these two that

is extracted out and so, u is extracted out and I have the product of u with the c and d this

is a little easier because depends of course, on how you represent these things, but to take

one expression like that one product term like that and take another product term and

find that there is a common cube between these two, you can see is an easier activity

than  take  a  general  expression  and  some  other  expression  and  find  that  there  is  a

common sub expression like this one is a harder analysis than this because we are limited



to just single product terms not sum of product terms at least the or part of it is all gone

and we need to worry only about the ands.

Student: Sir, one that is tangential question.

Yeah.

Student:  The data  structure point  of you doing the common cube approach probably

simpler with the matrix implementation versus a graph right because when it is;

Graph we did not talk about the representation but.

Student: But.

So,  in an in a graph what is the matrix and what does the matrix have and what is the

graph have.

Student: These are;

This is a general Boolean expression.

Student: Right.

Right, so, matrix means.

Student: In matrix, I can keep these equations as a product of rows and columns I am

may be I am not able to express.

If  actually the representation is totally non trivial what is a good representation is not

obvious from here, but what we are just arguing in principle is that limiting ourselves to

one product term the possibility of finding a common what is common between those

two product terms is of course, a simpler version of the general expression where you

have sum of product terms and two sum of product terms and you find what is common

between the two, this seems to be a more restricted version of the everything that you

want to do here you also want to do in the other one, but you also have sum of products. 

So, it is just a conceptual argument. So, far, but we will get to because everything in the

logic synthesis has to do with how well you represent these things.



Student:  I  would only collect  from the constant  multiplications  in  that  here it  is  not

obvious how you can represent, but in case of filter designs and stuff where  multiple

constant multiplications are there in parallel.

Yeah.

Student: And then graph based representations are very hard to code in terms of reducing

the logic and if you put it into a matrix form like a y equals a x.

In certain specific kinds of computation certainly more interesting data structures could

be generated graph does suggest itself as an obvious way to represent just because if you

look at the netlist it is like a graph.

Student: Yeah.

Right, yeah, but still you have to do more and there are I will we should spend some time

on the interesting representations when we get to the logic level as of now this is only a

principle argument, alright.

Student:  Sir,  do  we  do  both  of  these  (Refer  Time:  71:58)  sometimes  common  sub

expression and common cube?

If  you have a  good algorithm for doing common sub expression you are also doing

common cube as part of it.

Student: Part of it.

Right

Student: if you were doing.

Yeah.

Student: Recursive in nature.

Yeah, it is just that sometimes in the interest of simplification, but particularly in this

algorithm why we introduced these at this stage is that this algorithm tries to maximize

the availability of common cubes assuming that the logic optimizer is handling at least

common  cubes  if  common  sub  expressions  its  fine,  but  even  if  not  common  sub



expression it is if it is doing common cube then it will try to expose the availability of

common cubes to the logic synthesizer that is these reason why we are talking about it

here fine let me stop here will you get to the actual algorithm in the next class.

Student: Sir, why we do this common cube actually if we have common sub expression.

No, if you have common sub expression then you do not do common cube, but you could

do common cube and not do common sub expression because that is more difficult, it is

still  a  reasonable  logic  synthesis  tool  that  would  do  common  cube  not  necessarily

common sub expression the other thing to note is that this can be done well an algorithm

that identifies and exploits common cube can perform very well quality of that algorithm

can be good common sub expression is a difficult problem common cube is not hard to

as long as you have all the expressions every pair you can take and you can easily argue

whether a common cube is there or not.

What is the size of the common cube, right in an optimal way that is not very expensive,

but the common sub expression is hard to do remember a plus b is same as b plus a that

introduces  significant  complexity  into  the  process  of  identifying  the  common  sub

expression, you will find that as part of your I assure you, you will come across that

difficulty  and  be  convinced  totally  by  the  end  of  this  semester  that  common  sub

expression is hard, but common cube is much easier to do optimally even.


