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 Memory Modelling & Compiler Transformations in High-level Synthesis: Common

Sub-Expression Elimination & Loop Invariant Code Motion

Let  us  continue  the  discussion  on  the  high-level  transformations  with  a  few  other

examples that are also borrowed from the compiler domain. Let us start off with common

sub-expression  elimination.  This  refers  to  a  situation  where  you  have  multiple

expressions that the user has put in different statements  and through an analysis  you

realize that parts of the computation are common that there is a duplicate computation.

(Refer Slide Time: 00:59)

And you would like to of course, remove that duplication to the extent possible so that is

the possibility. The example here is you have an expression a plus b that occurs in two

different parts of what could be the same data flow graph, they are just two different

sections of it. When you do that of course, you would like to avoid the duplication the

recomputation as long as you can establish that a and b are the same, then the result of

the tapeless base should be computed only once there is no need to compute it twice.

So, this transformation to that right graph should be intuitively obvious why that makes

sense. Since this is extracted from code that we have written, we do need to first make



sure that a and b have not changed their values since the last time that expression was

formed otherwise it is not a valid substitution, but this is something that makes intuitive

sense, in fact, manually we often write expressions in this way. If we find that you have

to write two expressions that are the same or they have something in common then we

might  manually  restructure  the  code  in  such  a  way  that  you  introduce  a  temporary

variable and then express the other two both the computations in terms of that temporary

computation which is performed only once. The idea here is that we would like to do it

automatically right as part of the synthesis optimizations.

This is also an example of a typical transformation in compilers, but something that also

applies in a straightforward way to synthesis, but even though it seems very obvious, the

applicability seems very natural in fact it is a totally nontrivial optimization. Both from

the point of view of how to do it, now graphically in a simple example it might be clear

that there are these two sub graphs that are isomorphic means that there is a one-to-one

correspondence between the nodes and the edges that is what they are what we have

highlighted in green are the isomorphic sub graphs. They perform the same computation,

structure of the graph is the same, variables involved are all the same, and therefore, we

can say that there should be only one instance of that sub graph not multiple.

In the general case detecting that there are two sub graphs in a larger graph that are

isomorphic is a difficult problem; it cannot be done exactly in a reasonable amount of

time.  So,  that  itself  imposes  some limitations  on how aggressively  you can look for

common sub-expression illumination. Remember that these sub-expressions may form a

small part of a much larger expression; and our objective in this optimization would be

that no matter where it appears, if there is an opportunity we should detect it and exploit

it.

So, this is applicable everywhere, but in this compiler context in the synthesis context

and so on, but inherent difficulties are there with respect to how aggressively we can

optimize this. In fact, within synthesis also it appears at multiple levels of abstraction,

this is high-level synthesis, but even if you go down to logic level value where you are

doing Boolean optimizations there also there is an opportunity for an optimization like

this right. If we you have multiple Boolean expressions instead of arithmetic expressions

these are bullion expressions and there too it makes sense to avoid any computation why

not right.



So, we may come to that later, but wherever whatever the level of abstraction is such an

optimization is hard to perform. Remember a plus b is the same as b plus a. And I would

like to take advantage of that in this optimization why not if I can establish that two

computations give the same result then too I should perform that computation only once.

So, what it also brings up is that even the graph need not be isomorphic. Even if the

graphs are not structurally identical, structurally equivalent then to the expression might

be functionally equivalent, you can write the expressions in this way.

(Refer Slide Time: 05:55)

So, let us say I had a times b plus a times c this would result in some kind of a a graph

right, but equivalently.

Student: a star.

Yeah if you say a star b plus c that results in a different graph that structurally these are

different  things.  So,  even if  you had an algorithm for  doing graph isomorphism sub

graph isomorphism well that too would not be able to detect that these two instances are

there and I need to perform that computation only once. So, that difficulty is there, but I

would like to point out a an orthogonal effect here just  because it  is applicable,  just

because we have detected that two sub-expressions are common, it does not necessarily

follow that we should actually extract the common sub-expression out and do their kind

of replacement that is being suggested here.



(Refer Slide Time: 07:10)

We should be able to illustrate that through a simple example. Consider these two lines

of  code I  have  a  b plus  c  is  one  computation;  and a  b plus  c  plus  d is  a  different

computation. If I aggressively perform common sub-expression elimination, then I get

that  graph  like  this  and  in  fact  it  is  a  b  plus  c  that  is  common  across  the  two

computations. So, I can say that I will perform a b plus c first and that is why and that

result is also used in the computation of z that is one way of doing it.

Of course, as part of the common sub-expression formulation, it would be that I will try

to maximize the size of that common sub-expression, the bigger the size of that common

expression the more computations I am saving. So, it might seem that that about I should

do, but consider that I do not take a b plus c as common sub-expression. And I just take a

b as the common sub-expression. This is not as aggressive as I would have otherwise

they are not as we did here, but it is just this much that is common that is used in y

computation as before, but it is used in the z computation in a different way where I am

actually  performing  that  c  plus  d  separately.  So,  these  are  two  different  ways  of

performing common sub-expression elimination; in fact, intuitively it seemed as though

the first one actually is the more aggressive one, there should be the one that is preferred,

but should we prefer that or not what is the situation that it depends upon.

Student: (Refer Time: 08:50) a b and c.



Yeah this is actually not so obvious whether you should perform it or not, because let us

say we assume these are all single cycle operations. Then the way we have restructured

this  graph  after  common  sub-expression  elimination  in  the  first  case,  when  you  do

scheduling you would have to use three cycles to schedule this code. Whereas, the other

alternative, you need only two cycles if each was a single cycle operation. So, how did

this arise, it seems as though the lesson from here is that I should not blindly perform

common sub-expression elimination in the most aggressive way.

So,  an  algorithm  in  synthesis  that  performs  common  sub-expression  elimination

somehow has to be aware of possibilities like these. And go ahead with the application of

such  an  optimization  only  when  it  is  clear  that  there  is  a  benefit.  When  does  this

optimization take place, we already said that these are high-level transformations which

means that we perform these first very early on in the synthesis flow much before any

synthesis algorithm is run. Specifically, we have not done scheduling yet this is only a

graph transformation, we read the parse tree into a data structure and we are performing

all these manipulations on that data structure internal representation. We have not come

to any synthesis strategy yet scheduling, register allocation all of those things have not

yet been performed.

And yet this transformation has an effect on what happens later on, scheduling is going

to come later. And when you do scheduling you find that actually what seemed like a

good optimization,  was not such a good optimization,  but it is an interesting circular

problem. And there is a phase ordering problem, ideally you would have liked to see

effect  of  doing  this  and  only  if  it  is  a  good  idea  then  you  should  be  doing  this

transformation, but how do you find out that it is a good idea or not, you actually have to

perform scheduling. Here if I were to perform scheduling I would know, but scheduling

comes much later right, it would actually complicate this parse significantly because this

may be may not be the only possibility we have maybe there are twenty possibilities of

common sub-expression elimination.

And as the expressions become more complex you can easily see that there are there

might be many possibilities of common expressions of various levels of complexity that

are candidates, and all of them must not be performed. And the way to resolve it is to

actually do scheduling, but you cannot afford to do scheduling on every one of those

candidates.  This is a standard design space exploration it shows up in many different



context it shows up in physical design versus high-level optimization right we have many

candidates and all of them you do not know the effect of in fact, the effect might show up

in physical design.

These kind of problems we must be alert to in a design flow like this. There could be

many different ways of addressing it, but often to reduce the design space exploration

time, we might rely on some kinds of estimations. What is the expected impact on the

scheduling, we do not actually perform scheduling, but you say that based on whatever

constraints are there, based on what information is available perhaps we can estimate the

effect. There is no guarantee for that matter a number of these steps there is no guarantee.

So, it is all right that if you cannot guarantee that this is the best possible solution, but it

hopefully takes you in the right direction as far as the optimization is concerned.

This assignment that we are giving out we will pose a problem of this nature where it is a

high-level optimization that you have to perform, but the effect shows up later and we do

not  want  you  to  actually  iteratively  perform detailed  synthesis  on  every  one  of  the

candidates. So, have some kind of a prediction mechanism that guides that high-level

transformation, but this is a classical example of an optimization that makes sense in a

compiler. Within  a  compiler  the  left  one makes sense,  performing the  common sub-

expression elimination aggressively makes sense because depends again on how you are

going to evaluate it. But let us say it is the number of instructions that you are counting,

then you have fewer instructions in the first one if you aggressively apply it and as long

as assumption is there it is a single thread of execution single pipeline and so on then it is

actually a good idea to do this.

But  in the synthesis  context,  we may have more resources to  play with.  And if  that

second resource is there, there is a resource versus time trade off right area versus time

trade off the second solution requires two adders, but you might be aware that such a

resource is already available, the second adder is already available for other reasons. If

that knowledge is there then the transformations can be guided in some way right.

Student: Sir, how delays increasing the right point?

Not increasing, it is decreasing.

Student: Decreasing.



Area may increase because you have to two adders.

Student: (Refer Time: 14:31).

In order to perform both of these operations in the same cycle, you need two adder. So,

the resources you need for this solution is two adders and one multiplier that is what you

need, but in the first one, one adder and one multiplier is enough.

Student:  Sir, but then that compilation time also (Refer Time: 14:49) because we are

doing that optimization.

The compilation time will increase the moment you perform any optimization or if you

perform any aggressive optimization, the compilation time does increase.

Student: (Refer Time: 15:04).

In fact, we are implicitly taking that into account. When I say you estimate instead of

actually performing the scheduling, what is the point, why are we suggesting that you do

not perform the scheduling, it is because there is limited compilation time. If there are

hundred possible choices, and we are trying to resolve between those and choose the best

one that expected to be the best. Thus the default would be you just do not scheduling on

all of them that is part of the compilation time. So, in going for a methodology like this

where we are not explicitly enumerated all the choices and doing synthesis on all  of

them, we are trying to reduce the compilation time.

Having said that; it is always true that every one of these optimizations that we perform

adds to the compilation time in some way or the other. Normally compilers or synthesis

tools you are able to control in a little more fine grained way, the level of optimization

that you want it to perform. If it is a high-level more optimization passes are run or each

of those passes is run in more depth more detail and therefore you can expect higher

compilation times, but hopefully also correspondingly better quality designs.

Student: Would be run time of subsequence depth like elaboration or the function unit by

steps,  scheduling  steps  also  considered  into  account  when  we  come  up  with  an

estimation algorithm, so that even is my compiler time increases by delta I am getting a

two delta benefit or three delta benefit in my.



Yes while we would not have the time to discuss that in detail. The principle is what is

being illustrated  here which is  that  there  are  these number of passes we have to  go

through them sequentially, we do not want to combine all of them in the same algorithm

just  in  the  interest  of  engineering  simplicity.  And  of  course,  the  complexity  of  the

algorithm needs to be taken into account because of that there is a sequentialization that

is done; ideally to solve this problem well you should do scheduling also as part of the

high-level transformation.

Student: (Refer Time: 17:28).

You  could  do  that,  but  that  complicates  the  algorithm  so  much.  And  why  is  the

scheduling register allocation is also all of these are dependent on each other, no matter

what ordering you choose sometimes there is a choice in the ordering, but each pass is

going to affect  the quality. Quality  is  one,  but what you are pointing out is  that  the

compilation  time might  also be influenced.  In  this  example,  it  is  not  clear,  but  in  a

different example that we will come to that is the real concern where you are making a

transformation locally it seems as though that transformation is. It can only help improve

the quality, but it might increase the complexity of some other paths so much that you

have to limit the extent to which you perform that transformation.

We look at the examples soon here it might not be that these common sub-expressions

that we are extracting might not make that much difference to the scheduling. Here if I

look at  this  transformation  versus  the  scheduling,  what  is  the impact  on scheduling.

There is a possible positive impact on the quality of the scheduling results. There is an

impact  on  the  scheduling  time  also  the  time  taken  for  the  scheduler  to  run  that  is

dependent  on the number of nodes and adjacent  that  you have in  the graph you are

transforming the graph. And therefore, there is an impact, but probably not so much of an

impact in the general case there may be special cases where the transformations effect is

so much that the graph size becomes multiplied by a large number such pathological

cases might also be there. Often it might not arise here, but we will soon get to examples

where we do need to worry about that.

Student: Excuse me sir.

Yeah.



Student: At the compiler time what we will scheduling comprise of will it be like just

traversing all the graphs all possible graph.

What will scheduling comprise of, why do not we talk about it when.

Student: Ok.

Discussion; so this remember the overall ordering what we are talking about here is a

high-level transformation of the graph itself of the internal representation itself. We have

not done scheduling the we are pointing out here the effect on scheduling which will

happen later, but we have not done scheduling yet, but it will be done soon. So, why do

not  be  when we discuss  the  scheduling  we can  talk  about  what  is  the  input  to  the

scheduling and go (Refer Time: 19:55).

Student: (Refer Time: 19:56).

(Refer Slide Time: 19:58)

A few other transformations are worth looking at loop invariant code motion refers to

computations that are specified within loops, but the results of which are not changing

across different loop iterations. So, because I have some computation here A plus B since

A and B are not changing within the loop, I can move that computation out of the loop so

that I perform it only once and the rest of the body is the same as before. What is the

impact of a transformation like this, does it help in synthesis?



This  is  another  example  of  a  compiler  transformation.  It  helps  in  compilation,  why,

because there is that instruction this translates to an instruction right. The add instruction

if  the loop is going to go through eight iterations then that add instruction would be

executed only once as opposed to eight times and it is clear. In the synthesis context does

it help?

Student: Yes

It helps, why does it help?

Student: The cycles (Refer Time: 21:06).

We accounting cycles, and we have to argue that it leads to fewer cycles. So, question is

does it lead to fewer cycles right.

Student: Depending on if I am limited values sources if I have sorry.

Student: As many resources I can use in the.

Yeah.

Student: And then can paralyze all of them, I can still if with same code.

Actually these two statements are independent of each other, well actually they are not

independent of each other, there is a dependence between these two statements. But that

part  is independent  the y part  of it  is  independent  of the loop iterations,  but the i  is

changing though over the different iterations. If I did not take this into account what

would my graph B for the left loop body. So, let me exclude the loop, let me just have

the graph for the loop body right, so that is the data flow graph.

So, I have a plus operation and this is my A and B, another add that is I and that is my z.

What happens to that last statement, this is a graph. So, what do I write for that c i equals

z what kind of statement is it, it is assigning to an array in the programming language

context. So, I have to create a node and edge for it that node represents what?

Student: Operation.



Write operation into the array which in terms of hardware would mean what kind of

thing. I have to have a piece of hardware in mind for every statement, every expression I

have right in the.

Student: Sir.

So, what hardware is this?

Student: Sir, mux (Refer Time: 22:46).

Student: Register push.

First of all what are the inputs to that operation, what are the outputs that is the way to

analyze what is the?

Student: Input sir one and output is the (Refer Time: 23:02).

Student: Input is i and z.

Student: (Refer Time: 23:05).

This is essentially a memory write operation that array C I did not show the declaration

here, but you can assume that there are some elements in an array, and we are indexing

that  array  that  might  usually  translate  to  some storage  in  a  memory. And this  is  an

indexing into that storage and storing value there that is what it is it is a memory write

operation. So, to that memory write operation what would the inputs be and what would

the outputs be?

Student: Address.

Address should be there let us just as further the case of simplicity assume that somehow

i is the address because that is what the index is. So, this applies if I have a separate piece

of  memory  just  for  that  array  c.  If  I  had  many  arrays  then  there  is  a  some  other

computation  that  mapped  to  the  same memory  module  then  I  have  to  generate  that

address in some way that also should become part of my computation, my data flow

graph should have those operation address computation operations also. But otherwise

let me say i is the address and what is the data?

Student: (Refer Time: 24:15).



So, those so somehow I need an address and a data as the inputs to a generic memory

write operation. What about the output?

Student: That.

Output is.

Student: (Refer Time: 24:35).

The modified version of that array I remember so, but what do I put here? The outputs

are the kind of things that one would get connected to some other operation that is what

we do output means here does I introduce an edge and that edge represents dependency

here.  So,  what  would  that  be  for  the  memory  write  operation?  Remember  for  an

equivalent add operation my inputs were the two operands and the output is the sum

sometimes the carry also is another output from depending on whether you are using it or

not. But that is how I constructed my other nodes that I am just now worried about how

to construct the node to represent a memory write faithfully.

Student: Sir, should give the location of the place have written the data.

Student: Or like status if it was successful or not memory write.

Well, we could make the assumption that the memory write takes a variable amount of

time I do not know how much time it takes. If that is the protocol then you can say that

you will need some status signal saying that it is done without which you cannot proceed

with for example, using elements of that memory because if the operation itself might

not be complete. But I mean that is an interesting variation but to simplify things let us

assume that I know what is the maximum time required for a memory read or a memory

write operation that puts it in the same class as an add operation. In fact, even an add

takes a variable amount of time depending on the value of the operand so but when we

say an adder delay is 5 nanosecond what do you mean.

Student: Maximum.

It  is the max delay irrespective of what the operands are it  might cause the carry to

propagate all the way from the LSB to the MSB that is the time that we take into account

when we say the adder delay is 5 nano second, it is the worst case delay. So, similarly to



simplify the memory read operation, which is not a bad idea actually, it is not actually it

is not as varying as a simple SRAM access is not complicated. There is not that much of

variation write time or the read time.

So, let us assume that the delay is fixed time it requires to if this is 2 nanosecond then

that is fixed that just to simplify. Just because that is what we have assumed scheduler

cannot work remember if your operations have a variable amount of delay or at least it

cannot work in the simple mode that we have seen so far. Because you have an operation

if you do not know whether it takes one cycle, two cycle, three cycles and so on, how do

you actually split that in two clock cycles, because you would also like to share you all

other operations here this is being done statically. So, in fact, you will be forced to not

schedule anything in parallel and you wait for the handshaking signal to come from the

memory before you can do anything else. It can be done, it is done this way if you have a

more  complex  memory  like  a  DRAM  or  something  like  that,  but  for  the  simpler

memories let us just treat it as just another operation just so that it can fit into the simple

scheduling formulation we have now.

Let us introduce the memory write node here. So, at least the inputs are clear, z is an

input, i is that other input so that is the rest of my graph output actually is not clear from

a memory write operation what output you take. In fact, there need not be any output

right. As opposed to a memory read operation where what are the inputs, what are the

outputs?

Student: Address.

The address as before is an input.

Student: Then an output.

Then well actually you need only an address nothing else. And the output is the data.

Here it is clear. You produce the address and after a fixed number of cycles that is known

because the memory has been characterized earlier for its worst-case delay, I have the

data. This kind of a node you can see how to incorporate in a clean way inside the data

flow graph.



Student: if my memory has been structured prior to this decisions, then I do not need an

option tell how many to fetch, but otherwise the word size or byte whatever I am trying

to delay.

How many bits to fetch yeah, there is an assumption when I say memory what kind of

memory it is, memory is characterized by at least some elementary operations one is the

number of words and the width of each word. This is not obvious as actually the what

this is pointing out is another set of decisions need to be taken for example, is c the only

content  of  that  memory  or  are  there  other  contents  that  determines  the  size  of  the

memory. In fact, that determines the delay of the memory.

Student: Yes.

Delay of the memory is a function of the number of words in the memory. So, before we

proceed to scheduling and other such things, we do need to finalize the mapping of the

variables on my arrays in the data to the memories. This is a different problem by itself

that also needs to be solved as part of the synthesis strategy which is you may have ten

arrays in your design. Now, how are they placed into your memories?

(Refer Slide Time: 30:23)

One architecture could be that you just have one memory module this is array A, array B

and so on this is my array J. So, I have all of these arrays all of them are mapped to the

same  physical  memory.  What  is  the  implication?  Now,  when  you  say  B  of  i  this



translates to a calculation of the address, because now i is not enough for me to say what

the location is. So, you may have some base address plus i may be a multiplication if

necessary depending on how you are addressing it.

So, some computation is first performed, so that is the address computation b is the base

address for that  array capital  B. It  is  a constant  because we might  know that  it  is  a

constant the sizes might be known, but we still  have to actually  schedule an address

computation then that becomes the address to the memory write, and the data is zero in

this case. So, such a computation has to be part of the graph that is being scheduled, it is

an operation and that operation needs to be explicitly scheduled as part of our scheduling

strategy, but this is not the only way to organize our hardware.

Remember unlike in a processor where the memory architecture decision has already

been taken by the processor designer, and effectively what is available to us is one large

address space and we have to just decide the location and of all my data elements within

that address space. Here we have the flexibility to choose our memory architecture in the

way that is suitable for our particular application that is being synthesized. What is an

alternative architecture,  instead of storing all  the arrays in the same memory module

what could I do?

Student: (Refer Time: 32:34), sir we can break it in smaller chunks depending on what

kind of control logic I need where how much I want.

Yeah there are implications, but clearly this is not the only solution. So, other extreme

could be, one extreme is you store all the arrays in one memory, yeah you just map all

the arrays to different memories. There is nothing that is preventing you A is a separate

physical memory, we are generating the hardware remember. We have the flexibility to

generate whatever kind of hardware we want our optimization functions are area and

timing and so on, but depends on whatever we are optimizing what is the advantage and

what is the disadvantage, let us see of doing things this way. These are variable sizes are

not the same, so that might translate to memories of different sizes. And maybe the D and

E some of those arrays could be actually mapped into the same physical module, but in

general there is nothing that is restricting us to store all of the data in the same memory

module.



And other  extreme would  be  every  array  becomes  an  independent  memory, but  the

general solution could be that you do some sharing and where it is necessary you can

actually keep them out as separate modules. What would guide such a decision? This is

not necessarily  part  of the loop invariant  code motion discussion obviously, this  is a

different discussion, but in general this falls within the area versus delayed trade off that

we are talking about in what way. So, let us say these are five arrays and here we had

five. So, these are two possible memory architectures for just storage related decisions

the rest of the designs not changing, but I have the option of storing A and B in different

physical modules or the same module. What would the trade of be, what is the advantage

of doing so and what is the disadvantage?

Student: Sir, control logic need may need to be replicated for each physical (Refer Time:

34:40).

Something would replicate the memory is not merely the bunch of locations, there is in

addition to all these locations that consist of registers or capacitors or however you are

implementing  an individual  cell  in  the memory. There is  a  decoding logic when the

address comes, there is some decoding logic that ultimately says that that is the element

that was addressed, and then I will read it out. If you have separate memory modules, so

for A you would have a decoding logic for B, you would also have a decoding logic. Of

course, if you combine A and B into one memory module, you also have decode in fact,

you have  a  bigger  decoder  then  those,  but  in  general  there  is  some overhead where

decoder is one then the other part is what is called as sense amplifier if you are familiar

with the way memories are designed.

So, just keeping this discussion simple, there is some circuit that when the data is read

tries to as fast as possible detect whether it  was a 0 or a 1 that there would be two

instances off here. Here there may be only one instance so width is the same in all of

these cases. So, the point is that when you split it up in this way you have a little bit of an

area penalty when you are splitting them up. There are a number of things that come into

the play routing overhead is the other thing that comes into the picture.

Student: Independent.

Because you read something from here or read something from there, ultimately maybe

they are going to the same adder. So, you need to have these routes right both from that



memory and from that other memory. Instead, in this case there would be only route

from one so that is a little bit of intangible thing right now we are not able to see the

impact. Impact is there how much impact it is hard to say, but in general you can assume

that if everything is compacted together into one memory from an area efficiency point

of view, it might be better. So, there would be an overhead by splitting.

Student: (Refer Time: 37:01).

So, that is one thing. Other thing is what about time now I have to do a similar analysis

with respect to (Refer Time: 37:10).

Student: Sir, behavior level may be timing you have to be same, but at physical level it is

non-trivial to (Refer Time: 37:16).

Well, for the behavioral synthesis timing is a parameter for the memory write operation,

how many  cycles  is  an  input  right.  For  every  operation,  the  library  element  we are

assuming has  a  delay  associated  with it.  So,  here  the  memory  write  would have  an

associated delay which would be better in this case or in this case.

Student: Separated one will be better.

The smaller memory would have a lower access time that is of course assumed; timing

wise it might actually be better. But from a scheduling point of view can you see which

one might be better I have two arrays A, B; and the choice is between assigning them to

different physical memories or the same physical memories, so this choice versus this

choice. And I have operations B i equal to something, I have A i equal to something else

these  operations  translate  to  the  DFG nodes  we  talked  about.  And  they  need  to  be

schedule which is better from a scheduling point of view one thing is of course, that if I

split them up then the individual delays might be different let us say this is 3, and this is

4 nanosecond, time to access it as it is 4 here, and here it is 3.

Student: (Refer Time: 38:41) one cycle.

Yes, there is a parallelism related advantage when we split things into different modules

like this. Let us assume that these are single port memories.

Student: That is what I was (Refer Time: 38:57).



(Refer Slide Time: 38:52)

Yeah single  port  memory means  that  at  any point  in  time you can  access  only one

element that. So, then when I have my A i equal to 0, B i equals 0, ultimately there is a

two different memory write operation right. These memory write operations could be

scheduled in parallel. If it is three cycles fine, this is three takes three cycles, but the

nodes corresponding to the two physical memories to different physical memories would

not be conflicting in a scheduled, you know they are independent modules, they can be

activated simultaneously the accesses can proceed simultaneously, so that is till  three

cycles.

But more important is that the two accesses could be scheduled in parallel. As long as

there is no dependency data related dependency between those two accesses which is

here. What is an example of a data related dependency that will prevent you from doing

simultaneous access even though A and B are in different modules. I have A i equal to

something and let us say I have B i.

Student: Equals to (Refer Time: 40:17).

Right equal to some a j let us say plus one some such. So, there might be a dependence

between as of now I do not know I unless disambiguate and prove that i and j can never

be the same that is a different argument. But you see that this kind of a dependency may

sequentialize the two memory accesses even if the B and A are different.



Student: Even if i and j they are not same, since I have a single port memory I cannot

schedule them.

Right this would be multiple accesses to the same memory which would not be allowed.

Student: (Refer Time: 40:53).

So, there are some tradeoffs there. We introduced it in the context of how to implement

that C i equal to z statement. But this is one thing as opposed to if I had a single module

in  which  A and  B  were  both  mapped,  what  would  the  schedule  be?  I  have  two

sequentialize them because it is a single port memory, and I have a memory right even

though there is no dependence between the two statements, I have to sequentialize them

because the two memory write statements are competing for the same resource. The two

memory write nodes are competing for the same resource. If one is on, then the other one

you have to wait. Just like you have two different addition operations competing for the

same adder, if you have scheduled one addition then the other one has to wait, memory

operations can also be thought of as similar right.

So, this was my four cycles. And the other one would be another four that would be the

second memory write operation if my cycle time was 1 nanosecond. So, there could be

fundamental differences you see that the this implementation is much faster than this on

one side it illustrates a very interesting architectural decision that you have to make and

then how it influences the schedule.  We did not get to multi  port memories,  but that

would be another orthogonal effect to worry about. Alternatively instead of two single

port memories it could be that I have a dual port memory. A dual port memory means

that  I  assign  both  of  these  to  the  same module,  but  two  simultaneous  accesses  are

permitted to that memory it designed it in a way of.

Student:  Dual  port  and we have three (Refer Time:  42:58)  A, B and c (Refer Time:

43:00)

If it is dual port, it means that you have a max of two simultaneous accesses. And if you

have more than three that are independent and they are schedulable operation you cannot

schedule all three together. So, there too there is a sequential relation that is necessary. I

have to also do a similar cost calculation what is the impact. Simultaneously, so if there

are up to two accesses we could actually do in parallel, so I could do better than this in



terms of the schedule in terms of the performance. Area of a dual port memory would be

larger than the area of a single port memory of the same size. The fact that you permit

dual port multiple accesses to that same bit cell of the memory means that you have to

redesign that bit cell to have more than one all the way. So, every memory element is

larger in a dual port or a multiport memory that was a digression.

Let us get back to first of all whether that loop invariant code motion helped us or not.

Just by itself it might not be obvious just like several other transformations, you have to

look at the resources sometimes that does take you a little bit further into synthesis steps

to  figure  out  whether  it  is  actually  helping.  But  it  could  belong  to  that  class  of

optimizations where it is not necessarily improving, but it does not make it any worse. If

that kind of an argument you can make then it may be safe to make optimization.

Student: From the language perspective, these for loops will be there in the processes and

in process all these are executed once like we have a wait or a synchronization point.

(Refer Slide Time: 44:52)

In a VHDL process, if this will loop were to occur would be that you have a process

begin end. Somewhere you have this loop that is an interesting point we overlooked. So,

there is no synchronization within that loop itself.

Student: Yeah.

But maybe later on there is a wait, and maybe earlier there was a wait.



Student: But (Refer Time: 45:18).

I have used system c syntax for this wait because for loop was written in a c syntax way,

but that wait is similar to the VHDL wait for rising edge your question is.

Student: So, before after first wait and then the next wait, all will be like executed once.

Right.

Student: And assignment will be done only at the second wait. So, this moving this y is

equal to a plus b would not make a difference in the cycles.

There is a difference between the way the simulation works, and the way the synthesis

will work like I pointed out earlier the two may not be perfectly equivalent. Simulation

wise how is this treated. I was here in some let us say end up some delta, and all of this is

happening in fact in how much time?

Student: Same.

zero times.

Student: Zero time.

Within the same delta.

Student: Delta.

Right  that  is  what  the  implication  is  here.  But  do  you  think  there  is  a  hope  of

implementing this complicated loop in zero time?

Student: No.

What about one cycle? Actually it is a little tricky we should look at how to implement a

for loop in general if you have a bunch of statements of course, you cannot implement in

zero time, because every statement takes some amount of time. Let us say it is a simple

combinational  statement  a  equals  b  plus  c,  d  equals  a  plus  e  and  so  on.  So,  these

operations are there. Can I do all of this in the same clock cycle?

Student: Yes, in the same combinational.



I could if I had enough time. There is a dependency here right, it is that kind of b c that is

a and that is e and that is that is my graph. Is this graph schedulable, the whole graph

schedulable in one clock cycle?

Student: Yes.

Yes, it could be if the clock cycle is appropriately long then we could do it. So, I could

have the very complex set of statements and all of that could still be schedulable. Our

scheduling algorithm should be such that it is able to pack all of these as long as it fits

into a clock cycle list.  From the graph itself,  I  do not know; I need that clock cycle

information before I decide how to schedule it and how many cycles it translates to.

What if I had a loop that is what our example here is. And in the loop, I have some bunch

of statements here. Even without the loop let us say I had a wait here right, and then I

had a wait right. And it was the case that these delays were two this delay was and in

fact, the clock period was also two then what happens. You expect a mismatch between

the simulation and the synthesis. Why because the simulation everything was simple and

you did not give any delay here, these are just variables anyway the assignment happens

in zero time. Everything happens in zero time, and even if there was a clock to that

process everything certainly finished in one clock cycle. The simulations view is that in

fact, any complicated computation you have between two successive waits in fact all of it

is done in one clock cycle, but you can see that there is no way the synthesis tool can

generate a circuit that obeys the simulations few point.

You  do  not  since  the  delay  here  through  this  combinational  logic,  there  is  a

combinational logic; it could be done in the clock period if the clock period was wait

enough, but this clock period is not wait enough. So, what do we do the flexibility we

give to a behavioral synthesis tool is that that ordering should be respected, but what was

zero  time  here  or  one clock  cycle  here  in  the  simulation.  The tool  should  have  the

freedom to expand that into multiple clock cycles, just to produce a realizable design. So,

what was one clock cycle might actually expand to a multiple clock cycles.

Now, whether that is accepted or not, it does depend on the scenario or usually it is, but

sometimes it could be that the design requirement are such that input change and exactly

five cycles later you need the output to change that is an external imposition. You could

think of designs where handshaking is taking place, it is part of a bigger design in which



the result is expected after five cycles. And you do not have the freedom to do this. Then

if it is not possible you would come back and say there is an error in the scheduling

because I could not respect your constraints.

Scheduler  should  be  able  to  come  back  and  say  do  the  evaluation  of  whatever  its

possibility  whatever  its  choices  are  with  respect  to  resources  that  are  there.  But

sometimes it might be that the scheduler is not able to give you design that respects all

the constraints.

On the one hand there are resource constraints, on the other hand there are dependencies

which impose constraints on the scheduler, and you also impose a time deadline related

constraint all the constraints  might not be simultaneously met. So, that we should be

prepared for in general that there may be mismatches timing related mismatches between

simulation and synthesis which might be its just that if we are doing validation, we check

the result. Here we do not check it in the intermediate stages the synthesis result because

we do not know the synthesis tool might have expanded a clock cycle into multiple clock

cycles. Because the original specification remember was a functional specification to the

synthesis tool, it is the functionality that is specified.

The timing details are not known; even to the designer it might not be known it is. The

tool that may come back and say that I could meet your timing or I could not meet your

timing or this is the best that I could do considering the constraints that you have placed.

So, that is the second thing which is you may have a complex computation between two

wait statements and that may take some time. But let me get back to the general question

which is I have a loop. How do I handle a loop?

Student: We can consider that as a flat code with each block repeated.

Yes, I need to the thing is that in order to do scheduling I need to know the delays of all

the deterministically know the delays of the operations, without that scheduling cannot

be done. So, there could be one uncertainty in the for loop which is here I have a plus b

and so on, these are all deterministic, there are known operation delays are known, but

what is the one thing that might not be known when you have a loop?

Student: Number of times.



Number of times you go through the loop might not be known right. So, this I just said a

loop. Here this loop that we have on the slide is deterministic I know exactly there would

be eight iterations. But I do not know in general I may have i less than n where n is

dynamically  computed  I  might  not  know there  is  that  leads  to  some difficulties  for

scheduling. Because how many cycles do I expand this two, if I do not know n, then this

is a little tricky right. So, what do we do? There could be two solutions one is like he said

we just expand out everything assume that this is actually statically known some number

8, it  could be because the users code is written in that way it could also be that you

perform some other optimizations such as.

Student: Constant propagation.

Constant propagation where you had i less than n, but n even though it appears as n here

in fact, the value of n is known considering what else you have done with n before you

got here. Either way if at compile time we are able to figure out how many iterations and

resolve any such uncertainties  then there is  a  one simple  solution  we could actually

expand out the loop into multiple loop bodies. I will soon get to what is the synthesis

related consequence of that, but in principle there are eight iterations, you just copy the

loop body eight times it is possible at least you have a solution there. It has some very

interesting implications, but it is possible.

So, the scheduler now instead of seeing loop with an uncertain number of iterations that

it is not able to do anything about is just seeing a bunch of statements larger bunch of

statements than the original, but that is the bunch that is going to be scheduled that is one

solution.  So,  this  solution  works  if  you are  actually  able  to  statically  determine  the

number of iterations. What if you cannot can the synthesis still work if you are actually

not able to determine the value of n.

Student: (Refer Time: 54:39).

Student: needs some (Refer Time: 54:40).



(Refer Slide Time: 54:42)

Right. So, I have for i equals 0, i less than n, but this time I have no way of determining n

that is possible right, maybe n came from outside it was an input port right. So, there is

no assumption you can make plus plus, there are some. Assume these are all variable. So,

that the signal related complication is not there of course, we know how to handle that

case where I have a mix of variables and signals. Let us say these statements are A, B, C.

Can we think of a way to handle this in our schedule in our synthesis, first of all what

about  a  representation  how do I  even  represent  this  we learned  how to  represent  if

statement.

Student: Yes.

We learned how to represent generalize if statement if it is a switch or something then

also we know how to do. If a loop how do we represent?

Student: So, if at the end or beginning, so (Refer Time: 55:42) while loop convert it into

a.

Yeah these are all equivalent syntactically one can be transformed into the other. So, let

us assume it is a for loop or a while loop does not matter it could even be while condition

and a loop body. And you know how to transform a loop like that into a loop like this the

while loop is the more general one. For example, what happens to this if you translate

that into a while loop?



Student: (Refer Time: 56:09).

It has to be put into the body where in the body will you place it you may place it at the

end.

Student: End.

Yeah so, but the rules are straightforward for doing that translation. So, we worry about

one kind of loop how do you synthesize that loop. Before doing that let us look at how

do I represent that loop. So, that I submit the appropriate set of statements appropriate

graph to the scheduling.  You can see that  this  part  of it  is easy I do the same thing

whatever I was doing earlier, it is a bunch of statements, there is no loop inside there.

And those statements are translated into the graphs in an obvious way, but there is a loop

around and closing loop how do I handle.

Student: That control as (Refer Time: 56:52) it should go back if that condition is met.

Right.

Student:  The  control  as  end if  the  control  and if  that  condition  is  ordered  then  the

controller should you know move.

Yeah. So, I should generate  the standard data flow graphs that I normally do for the

body; only thing is this condition has to be incorporated. Now, in a simple way, let us

first translate this loop like this you just say while. So, I have A, B, C right; after C, want

to evaluate that condition right. So, let us put that condition evaluation also here actually

that condition evaluation comes in two places one is even before you enter that condition

has to be checked.

Student: Yes.

So, that you decide whether you come here or not. But other is let us say you evaluate

here, whatever that condition is at the end of this, so that condition evaluation is also part

of our DFG at the end. So, and I schedule this part right as usual and at the end of this

schedule  I  have  this  value  whether  C  is  true  or  false.  If  it  is  true  then  essentially

externally I need to go back to that same schedule whatever I had generated; if it is false

then I have to somehow get out from there to the following statements. This is a patch



work that the FSM side of things can easily handle this translates to a loop in the FSM

right. So, you have this set of statements A, B, C, so they translate to sequential FSM

structure each of these cycles some bunch of statements are scheduled right and bunch of

operations are scheduled like we have seen earlier. But the last one at the end of which

that value that it is a C prime value is known that is the condition that may if it is true

lead to right that is the condition remember these were unconditional transitions.

Student: Yes sir.

But at the end of the loop body, you have a conditional transition that takes you back to

the first statement, but c can be false also if it is true then you go back there. If it is false

then you just proceed to this corresponds to the loop body; after the loop body I had

some other basic block that has been scheduled like this and translates to a bunch of

cycles like that. And I would adjust the next state accordingly that is how you would do

it.  In the form of representation,  you could actually  therefore,  think of a hierarchical

CDFG structure, CDFG is anyway a hierarchical structure where the loop itself forms a

separate level of the hierarchy right.

So,  the  loop  body  is  scheduled  separately  and  each  basic  block  could  be  actually

scheduled separately. But this packing up has to be done because we understand that this

is a separate hierarchy. This is one schedule, this is a different schedule, but they have to

be put together in the construction of the overall finite state machine in a way that the

conditionals work the way we would like to.

The condition check here actually got duplicated in two places one is the loop body, but

this is done even before you enter here right let us say before this you had another bunch

of statement so corresponding to some states in the FSM. And here also actually you

need to check whether that condition, should I come to the first statement of the loop that

is also a conditional thing right, you do not always come. And therefore, that condition

needs to be included not just here, but also in that basic block that is preceding the while

loop, it also becomes part of that computation and at the end of that you are checking

whether that value is prime.

Student: Sir, we can just check the condition once at the first statement of loop.



You could do it in different ways; it is all right. You could also do that here and exit from

the loop here to that next statement. It could be done other way of doing it is you actually

duplicate here, but if it is true, you come here; if it is false you would know how there

are some different ways of making that adjustment. So, that could be the most general

way of translating a loop of synthesizing a loop. Considering that this is what it might

translate to. Now, get back to this question of loop invariant code motion. If I remove

some code from the loop right and move it outside, the loop body, might it help from a

performance point of view?

Student: Yes.

It might help in the general case, because it might reduce the length of the schedule the

loop body schedule might actually be faster. And therefore, the number of states that you

are generating here in the FSM that might also be smaller and therefore overall there

could be a difference.


