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Lecture – 07
Cache, Memory bandwidth and Spatial Locality

Now, let us move to another issue with the memory right. One issue is that when I want

to access some memory location, from the time that I request that access to the time that

the memory comes back to me with that data that there is a lot of time that has elapsed

that is the latency, right that that is a problem.

(Refer Slide Time: 00:26)

But again you could do something similar to what we did with pipelining right. So, even

though the latency is high, I could have more data coming back at periodic intervals. So,

what is memory bandwidth? So, this is essentially the rate at which data can be moved

between the processor and the memory.

So, note that this is not talking about the time it takes for the there to come back, this is

talking about the total overall rate at which things can be done. So, for instance how long

does it take to execute one instruction it might take 5 nanoseconds or 10 nanoseconds or

15 nanoseconds, but the through put that I get, if I am doing pipelining is one instruction

being  executed  or  completed  every  nanosecond  every  cycle  right  because  I  am

pipelining. So, this is also similar. So, let us look at some aspects of memory bandwidth.



So, how do you increase the memory bandwidth? So, one simple way of increasing the

memory bandwidth is you increase the block size.

So, earlier we were talking about a cache, which was storing 4 bytes. So, 64 k cache was

actually 16 k entries each of 4 bytes right and this was essentially the b which was the

word size of the size being written by the memory. Now what I could do is that I could

increase the cache size. So, let us say that instead of 4 bytes I start maintaining 16 byte

cache entries. So, this is something called the cache line size how big my cache line is

right. So, let us take a simple example we will we will take the example of a dot product

code not matrix multiply, but let us look at dot product right. 

And let us see how it would perform under these two scenarios. So, what would the dot

product code look like?? It would essentially look the same as that innermost loop of

matrix multiplies, right that essentially nothing, but dot product right. So, it would again

look exactly the same load R 1 from an address load R 2 from sorry R 3 from another

address and then finally, add into R 5 the product of R 1 and R 3 right and then I repeat

this again. Now I keep on repeating this first. Let us look at this case where I have 4 byte

cache line size, what is the performance I am going to get in terms of flops? There is no

cache reuse this is dot product this is not matrix multiply. So, every time I get the data is

going to have to come from memory, right.

So, this is going to take 100 nanoseconds, this is going to take another 100 nanoseconds

and then a few mores nanoseconds for the multiply add and some address increments and

branching and so on. So, what is the flops? We have already computed this actually I am

performing two operations in 200 nanoseconds. So, I get a rate of 10 mega flops. Let us

see how this changes if I have 16 byte cache lines. So, now what happens is that when I

do a load R 1 R 2 right what comes into the cache.



(Refer Slide Time: 04:12)

So, what is being multiplied aik and dkj well this is dot product.

So, let me just assume ai times bi right. So, I am loading ai this is going to take 100

nanoseconds to execute, but what is coming into the cache at this time not just ai, but ai

ai plus 1, ai plus 2 and ai plus 3 all of them are in the cache and when I execute this load

R 3, this is again I am going to take 100 nanoseconds, but what do I get in the cache I get

bi, bi plus 1, bi plus 2, bi plus 3.

So, this is roughly taken me about 200 nanoseconds, but what about the next set of loads

in the next iterations after a couple of more statements, I am going to have the next

iteration right which is  again going to  have two loads,  and then I  will  have another

iteration and then another iteration right how long is it going to take for these instructions

to execute? Operant fetches just going to be a single cycle fetch right it is going to a

come from the cache.

So, this is just going to take 2 nanoseconds, 2 nanosecond is just for the memory fetch

part of it and then there are some other overheads, which I am going to ignore for the

time being, but roughly what am I getting in about 200 nanoseconds plus a bit more

which I am ignoring for the time being, I am performing how many operations.

Student: 8.



Eight  operations  8  multiplied,  right.  So,  number  of  operations.  So,  if  I  look at  four

iterations  the  number  of  operations  performed  is  8  and the  time  taken  is  about  200

nanoseconds.

So, what is the flops rate I am going to get?

Student: (Refer Time: 06:19).

Eight by 200 nanoseconds its 40 mega flops, when we do this performance analysis right

instead of doing this performance analysis for like for instance I was looking at  one

iteration and then I had to look at 4 iterations to do this analysis, we typically do this

analysis slightly differently.

(Refer Slide Time: 06:41)

We use  something  called  a  cache  hit  ratio.  So,  what  is  cache  hit  ratio?  This  is  the

percentage of memory accesses found in the cache hit,  in the cache or served by the

cache.

So, if I want to compute the cache hit ratio for this example that we just saw right, what

is the cache hit ratio, how many exercise, what I making and what percentage of those

were found in the cache.

Student: (Refer Time: 07:21).



75 percent right the first iteration I had to get it from the main memory, but the next three

iterations I was able to service from the cache. So, cache hit ratio is 75 percent. So, what;

that means, is for all the memory access time instead of taking different memory access

times, one nanosecond for 3 iteration 100 nanoseconds for one iteration so on. I can just

work with the single quantity, the average memory access time and what is the average

memory access time? That is nothing, but the cache hit ratio 0.75 into the time it takes to

access the cache which is one nanosecond plus 1 minus the cache hit ratio that is the time

it has to go to the main memory, and what is going to be a latency for that time 100

nanoseconds.

And so, this turns out to be 25.75 nanoseconds. So, if I just work with the fact that each

memory access is taking 25.75 nanoseconds I will  get the same rate.  So, let  us says

quickly see that. So, what was happening over here? So, now, we only need to look at

one iteration, I do not need to go across four iteration because I am taking the average

time  right.  So,  if  I  look  at  one  iteration;  what  is  the  number  of  operations  being

performed to one multiplied right and what is the time taken? There are two accesses to

the memory. So, the time taken is 51.5 nanoseconds, let me just approximate that by 50.

So, what is the flops 2 by 50 nanoseconds, which is what 40 mega flops its same as 8 by

200 right it same as 8 by 200 again I mean we were using a lot of approximation, but

(Refer Time: 09:11) yeah because the kind of improvements, we get are you know orders

of magnitudes. So, it is to take some approximations here. So, instead of 4 byte cache

line size now we said we will have 16 byte cache line size.
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So, how do you get a 16 byte cache line size? How do you load the data into the cache?

How do you load 16 bytes into the cache?

So, one option is that you increase the size of your data bus right make your data bus

broader. So, earlier the word size of 4 bytes I was fetching 32 bits at a time, now what is

it going to be if I want to fill cache line sizes of 16 bytes, what is it going to being one 28

bits, but that is not practical it is not practical to build such large data buses or they are

costly right and the take up space, but you want a cache line size of 16 bytes right below

we just saw how it helped us. So, we want large cache line sizes, but at the same time I

do not want to increase the size of the data bus what do you do in the architecture? 

So, you essentially do some kind of pipeline right for data bus size will still remain to be

4 bytes.  So,  what  happens  is  when  you make a  memory  access,  it  takes  about  100

nanoseconds to get the first 4 bytes into the cache right? So, that is just a part of the

cache. So, we filled up this part of the cache in the first 100 nanoseconds. Let us assume

that  we  are  working  with  a  memory  unit  that  has  an  operating  frequency  of  200

megahertz. So, the operating frequency of memory is not the same as the processes it is

considerably slower.

So, we will assume that were working with the 200 megahertz memory unit. So, how

much data can this provides. So, it is going to provide you a word, the word size is going



to fill up the data bus. So, every 5 nanoseconds right 200 megahertz 5 nanoseconds. So,

every 5 nanoseconds it can fill up the data bus again it will give you 4 bytes.

So, what will happen over here is that the first 4 bytes will take 100 nanoseconds to

come,  then  in  this  next  5  nanoseconds  you  will  get  another  4  bytes,  in  the  next  5

nanoseconds you will get another 4 bytes and in the next 5 nanoseconds you will get

another 4 bytes. For a total of 16 bytes which fills up the cache line right. So, this will

take about 115 nanoseconds to get the cache lines right; that is the way typically this

works the larger cache line sizes are handled. 


