
Introduction to Parallel Programming in OpenMp
Dr. Yogish Sabharwal

Department of Computer Science & Engineering
Indian Institute of Technology, Delhi

Lecture – 06
Cache and Temporal Locality

So, how do we address this issue? So, we know this is a major issue, the gap between the

rate at which the professor works and the; you know time it takes to fetch data from the

memory.

(Refer Slide Time: 00:12)

.

So, what we use is something called a cache it is essentially a smaller, but faster memory

that sits between the processor and the main memory, it turns out to be much costlier. So,

you cannot you know have your entire memory being replaced by this, but it turns out

that you know you can actually gain a lot by using a cache, and even small caches help

you a lot. So, how does the cache work? So, this is your main memory this is your data

path, and this is your processor and what we do is that, we put a fast a memory right next

to the processor, then whenever the processor access; processor accesses some data, if

that data are resides in the cache it is simply returned from the cache. I am giving a very

simplistic view of what a cache does, right. So, if data is in cache get from cache

otherwise get data from main memory and store it in the cache and now what happens is

that ah.

So, the latency to main memory was something of the order of 100 nanoseconds or 100

cycles, but the latency to the cache is just a few cycles right. It can be as small as one

cycle. Does cache always give you benefits no depends on the code if I am doing

something like let us say something that that is just accessing data randomly in the

memory, it is not going to give me a lot of benefit, but if I am accessing data in a in a

structured way in the memory it gives me a lot of. So, let us again look at the same

example that we were looking at earlier.

(Refer Slide Time: 02:48)

.

So, we will look at matrix multiply again like. So, we wanted to compute C is equal to A

times B, we are assuming that all the matrices are of size 64 cross 64, and each element

is a 4 byte floating point number right. So, let me assume that my cache size is let us say

64 K, what is the total size of matrix a in bytes? There are 64 times 64 elements and each

of them is 4 bytes, right.

So, the size of A is.

Student: (Refer Time: 03:26).

16384 let us compute in terms of K right. So, this is 16 K.

Student: (Refer Time: 03:35).

Similarly matrices C and B are also of the same size each of them is 16K and so, the total

data size is 48K. So, all of it fit into the cache, I can fit all of this in the cache if I want

to. So, how would my matrix multiply perform now? Let us assume that the cache gives

me a latency of one nanosecond or one cycle, and the main memory as before is giving

me a latency of 100 cycles or 100 nanoseconds . So, now, what happens is that first time

that I access an element it is going to have to go through the memory and get it right

which is going to take 100 cycles or 100 nanoseconds, but every subsequent time that I

access the data it is going to come from the cache right. So, let me just simplify it let us

just say that I just load all the data into the cache first right, although that is not the way

you do it, but let me just assume that just to do a simple analysis right. So, we load all

matrices into the cache how long is that going to take? 100 nanoseconds into;

Student: (Refer Time: 04:50).

Into 64; into 64.

Student: (Refer Time: 04:53).

I do not need to load see.

Student: (Refer Time: 04:59).

So, I will just stick with 2, right. So, that is about 800 microseconds, 32 times 32 is about

a1000, it is 1024 right. So, I am going to approximate 1024 with 1000 for now. So, 800

microseconds is what it takes to load the matrices. Let us see now I start the execution of

the code right what did I have I had the instructions load R 1 from address in R 3, load R

2 from address in our 4, this was actually fetching aik this was fetching bkj and finally, I

was doing an madd into R 5 from R 1 comma R 3 right that is the instructions and then I

was repeatedly executing this way.

Now how long is it going to take to execute each one of these instructions one

nanoseconds well I am talking about throughput right I am assuming that the we are

pipelining right, and the latency the memory latency is going to be one nanosecond right

and if I am able to get perfect pipelining then each of these instructions will complete in

one nanosecond right and then I do this a madd I increment the addresses I go back and

so on.

So, actually it is going to be a few cycles that are going to execute right. So, let me just

approximate this and say that maybe takes 20 cycles, I am just taking your lose

approximation right suppose it takes about 20 cycles to execute one iteration. So, this is

much better than 200 nanoseconds, it used to take earlier side because the data is coming

from the cache. So, your memory latency is just one nanosecond. So, you are able to do

the operant fetch within a single cycle, what is the total number of iterations I have to do

n cube.

Student: (Refer Time: 07:09).

So, that is about 256, 256000 around 256000 right that s the number of iterations I will

have to do. And I have just taken a bound of 20 cycles that roughly the time it is going to

take.

(Refer Slide Time: 07:33)

.

So, what is the total time 256 k into 20 nanoseconds and what is the number of

operations are performed? 2 n cube right number of multiply adds I am counting

multiply and add separately 2 into 64 cube right and this is 64 cube into 20 right. So,

what is my flops? So, that is the number of aops divided by time which is going to.

So, this time is actually not just 64 cube into 20, but 64 cube into 20 plus 800

microseconds right. So, this is going to be plus 800 microseconds. So, what is 64 cube?

64 cube is 256 k. So, this is 512 K, 256 K into 20 plus 800 microseconds this is

nanoseconds which is 512 K divided by 5120 microseconds plus 800 microseconds these

about.

Student: (Refer Time: 09:39).

Similar 90 megaflops what kind of performance was I getting without the cache? You

were getting about 10 mega flops right and with the cache you are getting about 90 mega

flops. Well there is a lot more you can do. So, the idea here is how we can utilize the

cache right to overcome the memory latency issue. So, what happens if you have very

very large matrices to multiply which do not fit in the cache? So, what is the important

part here right the important part is that once you have fetched the data, you want to

reuse it as much as possible.

(Refer Slide Time: 10:18)

So, how does the cache work right? So, you have some data loaded over here there are

different locations right. So, when we say 64 k cache and let us say the word sizes 4 byte,

then it is essentially it storing 16 K words each of 4 bytes right. And what happens after

you access 16 key element, when you access the next element what is going to happen?

It is going to replace one of these entries, it has to replace one of these entries and there

are lots of different algorithms for a doing cache replacement right how the replacement

is to be done you simply use and so on, but you are not going to get into back, but the

important part to understand is that you have to make sure that if you loaded some data

you are going to reuse it, before you know enough accesses happen that this data gets

thrown out. Eventually it will get thrown out, when because the cache size is limited and

if you are working on data which is of size more than 16 k elements in this case

eventually your data will start getting thrown out.

So, now if you have large matrices and you are working on large matrices, you cannot

assume that all the matrices are going to be sitting in the cache all the time. So, how do

you write code that makes efficient use of the cache? So, I will just give you a high-level

idea of how that is done right. So, if you want to multiply 2 matrices, let us say these are

the two matrices what you do is you divide them into blocks. This is something that we

are going to get deeper into later in the course we are going to focus a lot on linear

algebra problems. So, what you do is you divide your matrix into blocks and each of

these blocks is of size 64 cross 64, because we know that as we are working on a block

of size 64 cross 64 then I can fit it into the cache right I can fit a block of a and a block of

b and a block of c if each of them is each one of them is of size 60 cross 4 64.

So, now, suppose that this is my matrix A this is my matrix B and finally, I need the

output in matrix C. So, I will take a block view of all of them what is this block? It is a

sub matrix of size 64 cross 64, when you do C is equal to A times B, what do you get in

this block? If I correct index these blocks is the 2 comma two th block of C. So, it is

actually nothing, but the product of second block row of matrix A with the second block

row of matrix B.

So, it is the product of this with this, plus the product of this with this, plus the product of

this with this plus the product of this with this that is what this 2 comma 2 th block is.

So, if I want to do this what will I do how will I make efficient use of the cache, first I

am going to load this block of A and this block of B into the cache, do the multiplication

store it in C which is going to be in the cache just this block of C. So, that can be done

quickly at the rate of 90 mega flops, then I load these two blocks I would again do the

matrix multiplication, now all the data is in the cache again I am able to do it at the rate

of 90 mega flops and so on while computing C 2 comma 2.

Student: (Refer Time: 14:03).

Right I am doing all these operations these two blocks, and then these two blocks and

then these two blocks, and then these two blocks, when I am done computing c two

comma two block number 2 comma 2, then I need to basically write it back right and I

do this for all the blocks of C. So, this is called temporal locality. So, essentially what it

is saying is that.

