
Introduction to Parallel Programming in OpenMP
Dr. Yogish Sabharwal

Department of Computer Science & Engineering
Indian Institute of Technology, Delhi

Lecture – 11
OpenMP Shared Memory Consistency Model

 (Refer Slide Time: 00:27)

So, one relaxation to the sequential consistency model is called the weak ordering. It is a

relaxed model. So, what does this model say? It says that the memory operations are

classified into 2 categories; data operations and synchronization operations, the intuition

is that the one segment of data operations the operations that are happening in one data

operation before some synchronization operation do not affect the data operations that

are happening after the synchronization operation what does it allow the compiler to do.

So, the reordering memory operation to data regions between synchronization operations

does not typically affect the correctness of the program. So, what does it mean that

within the segment of data operations, I can move instructions around without impacting

the correctness of the program, all right.

So, now what can the compiler do? Now within a data segment. So, you will have some

data operations. So, these are all data operations and then you will have some sync

operation, then again, you will have some data operations and then maybe again you

have some sync operations and now the compiler knows that it sees the sync operation it

is aware of these synchronization operations and it sees these data operations and it

knows that it can move these instructions around as it wishes it is not being to impact the

correctness of the program that is the agreement between the programmer and the system

that we did the data operations, I am allowed to reorder as I wish as long as I do not see a

sync operation I should not reorder across the sync operations, right.

So, I should not move any instruction from here to here or here to here it should not cross

any boundary, but between these instructions, I can reorder right and I can keep the

values in the registers as long as I do not hit the sync operation right if I when I hit the

sync operation then I need to be careful about a lot of thing whatever I have in my

registers, I need to write them all back to the memory, right.

Any updates which are pending in any write buffers or something need to complete,

right. So, a lot of things have to be taken care of when the sync operation happens

because at the point of the sync operation the state of the processor has to be consistent

with the memory.

So, synchronization operations enforce program order by disallowing reordering of code

around them right and essentially a temporary view is maintained between

synchronization operations. So, it is between the synchronization operations there may

be a view that the that particular processor has which is not the same view as any other

processor of that memory right I may have a local in the register which the other

processes is not able to see. So, it is a temporary view.

(Refer Slide Time: 03:12)

What is the openMP consistency model? Well, it is the weak ordering with further

relaxation.

So, we will talk about that, but first let us understand that with respect to weak ordering

there is a key synchronization operation this is called flush. What it prevents is? It

prevents reordering of memory accesses across the flush instruction; all right, you can

give a list of variables to the flush instruction. So, what does that mean; that means, that

suppose I am doing something with a reading writing something I do something with a, I

do something with b, right and then I say flush a and then I do something with a I do

something with b.

So, this flush ensures that I cannot reorder the instructions which access a across the

flush instruction I cannot move this instruction here I cannot move this instruction here

these are not allowed what is allowed. So, moving this instruction before this instruction

is allowed I can do that I can move this b before this a axis, I am allowed to do that.

As a matter of fact, I can even move this be down here why because this flush only wants

a to be synchronized, right. So, it does not care about b, if I say flush a comma b, then

even this will not be allowed, right, even b cannot be moved across this if I say flush a

comma b, it will ensure that all these instructions get executed then flush gets executed,

then all these instructions get executed.

Student: only if a is not depending on b then only the statement can be moved like this.

 Yeah, I mean there are lots of other things that you have to consider before moving any

instruction around right that the compiler figures out. So, we are not getting into that

discussion that what all the compiler is allowed to do the compiler will take care of lot of

things before moving any instruction around, it has to take care of a lot of things

dependencies, right and a whole lot of stuff. So, we are not getting into that discussion

we just think that if the compiler wants to move this around is he allowed to move it

around or not and this flush instruction says no you are not allowed to move it around

clear.

(Refer Slide Time: 05:28)

Let us try to fix this code Dekker’s algorithm for critical sections or this is similar to the

code we saw except for now; it is actually what it is meant for critical sections, right. So,

where should I put flush instructions in order to ensure that this code works properly and

what is the flush instruction that it should use.

Suppose that we are no longer in the sequential consistency model right now we are in

the week ordering model where now the compilers allowed to move things around now I

am asking the question in openMP where do I have to introduce the flush instructions.

So, that the compiler does not mess this up otherwise, it is going to move this flag one

down and then both of them are going to enter the critical section together.

Student: (Refer Time: 16:19).

We do not want that to happen.

Student: Between the critical section and the; if statement.

Between critical section and the If statement, here, this does not help, right, if both of

them enter the If condition the damage has already been done.

Student: Between It and assignment.

Between if and the assignment, yeah. So, I need to add a flush here and I need to add a

flush here; what is the flush instruction I need to add?

Student: (Refer Time: 06:50) flush flag (Refer Time: 06:51)

Flush flag have to that way the easiest way out, right, you do not know which one to do.

So, they will do allow them.

Student: (Refer Time: 07:00)

That is the safe way around.

(Refer Slide Time: 07:02)

So, what about this is this code good; well, I have already written incorrect code so;

obviously, it is not good what is wrong with this code. So, remember flush how does

flush work flush ensures that operations involving that variable or that list of variables is

not moved around the flush, right. So, what can go wrong?

Student: I will not reach any of the critical section.

It will not reach; why?

Student: (Refer Time: 07:40).

So, you understand this is not a barrier right you understand what a barrier is barrier is

where both processes must come together before proceeding further this is not a barrier a

flush is just saying make the memory consistent with what I have that is all; nothing else

it does not care where the other processor is.

So, what the compiler may do is that it may pick up these 2 instructions and move them

down that is perfectly valid, right, why it has not moved memory accesses involving flag

one beyond the flush for flag 1, it has not moved instructions involving flag 2 beyond the

flush for flag 2, but its move them both together that is allowed the compiler is allowed

to do that right.

So, you see the problem and now both of them can enter the critical section by the same

sequence of code instructions that we saw earlier. So, what is the correct code flush flag

1 flag, right that is the correct code now it cannot move both of them down because then

it will not maintain the order between the flush of flag 2 and the if condition of flag 2,

right.

So, you need to go back and just look at these examples and study them very very

carefully, right, the more you look at it the more you will understand why it is the way it

is.

(Refer Slide Time: 09:20)

So, we said ppenMP is a weak consistency model and this is further relaxations which

we have not come to yet, but the crux is that we have written. So, many openMP

programs and we never bothered about flush why is that we never talked about flush and

still be wrote program and we run fine and everything seemed to work fine why is that.

Because openMP implicitly puts flush instructions at various places where all does it put

the flush at barriers wherever it sees a barrier omp barrier entry exit from all the parallel

regions right wherever the parallel work sharing sections are there; hash pragma omp for

right hash pragma omp single, it puts flush instructions around that critical sections it

puts flush instructions around that.

So, it carefully puts all these flush instructions. So, if you are accessing your data

properly then you will not face any issues you will not need explicit use of flush why

because when you are accessing a shared variable if you are updating a shared variable

you will use a critical section. So, that critical section ensures that the flush is happening,

right. So, if you are careful about all your data accesses whenever your accessing shared

variables that are using critical sections or atomic right. So, what are the other implicit

flushes around locks and entry to and exit from atomic right hash pragma omp atomic

remember atomic instructions.

So, whenever you are accessing global variables if you are careful shared variables if you

are careful to use hash pragma omp; atomic hash pragma omp critical, right, then you

will never land into the trouble where you need to start using flush as a matter of fact

using flush is discouraged right you should just always carefully use hash pragma atomic

and hash pragma critical and so on, right.

(Refer Slide Time: 11:12)

So, when will you encounter this issue we saw this Dekker’s algorithm, right. So, when

do you have to write this flush look I am updating a shared variable flag one and I am not

saying critical I mean I am writing code I have not put a critical section around flag one I

have not said it as atomic I mean, I am trying to bypass the constructs that openMP has

built for me critical and atomic. So, some people do this because they want to write

really optimized code, right. So, then they have to use flush, but they have to use it

carefully.

(Refer Slide Time: 11:46)

So, most of the time, you do not need to worry about flush that is the crux couple of

reasons why openMP consistency model is weaker than weak ordering one is that

synchronization operation and disjoint variables are not ordered with the respect to each

other that we saw right the flush for a did not ensure anything for b memory accesses to

b, it did not that say that they cannot cross this boundary right they cannot be reordered

around the flush.

That is one way to weaker than weak ordering.

(Refer Slide Time: 12:18)

Another important thing which is more of an advanced concept is that the openMP

consistency model the model that it offers is the release consistency model that is a

further relaxation of weak consistency. In this what happens is that the synchronization

accesses are further divided into 2 kinds of operations acquire and release acquire a kind

of operations that happen when you try to get a lock and release operations happen when

you try to unlock right and now what this model does is that for acquire it ensures that

the acquire must complete before all following memory accesses.

So, what happens when you try to lock and unlock right you are doing something over

here, these are the instructions you are trying to protect within the lock. Suppose I have

an instruction here and suppose I have an instruction after the unlock will it matter if one

of these instructions before the lock completes after the lock has been acquired.

No what is more important is that the instruction inside the lock must not take place

before the lock has been acquired that is the critical thing right. So, that is going one

level beyond just ensuring that memories can sustained it is saying that when an acquirer

operation happens, then the acquire operation must complete before all following

memory accesses and similarly when a release operation happens, then all memory

access operations that are before the release must complete before the release happens,

right.

All these instructions which are between the lock and unlock between the lock and

unlock, they must complete before the release happens before the lock is released and

accesses after releasing program order need not wait for release, right. So, some of these

instructions some of these red instructions may even get executed before the lock has

been released does not matter, right, these blue instructions between the lock and unlock

are the once that we really care about.

So, this allows even more optimizations to be done by the compiler by the ten time

system and so on. So, it is here, it relaxes the constraints even further you understand this

is important right because of the compiler and the runtime system do not do these

optimizations your code is going run very very slowly.

