
Introduction to Parallel Programming in OpenMP
Dr. Yogish Sabharwal

Department of Computer Science & Engineering
Indian Institute of Technology, Delhi

Lecture - 30
Completion of tasks and scoping variables in tasks

 (Refer Slide Time: 00:01)

Now, when do these tasks complete? How do I know that all these tasks are done? I have

launched all these tasks. Suppose I want to do something at the end once all the work is

over, I want to let us say print that you know how many matrices did I inverse or

something on the other or maybe the sum of the elements that are added. So, how do I

know that the tasks have completed, right. So, tasks complete on barrier. So, this is

something that I have just added on this slide, right. So, suppose this is not there, this

nowait is not there, in that case, what happens is there is an implicit barrier at this point

when the for ends, right, all the threads proceed beyond this point only after they have

completed their part of the for loop.

So, this is an implicit barrier that openMP has whenever you encounter a barrier at that

point if there are any tasks that have been created all of them have to complete before

you go pass the barrier.

Student: is it only that brace or if I put any brace, it will become a barrier?

No, no, no, this is nothing braces, we saw earlier, right hash pragma omp single even that

has an implicit barrier right a lot of openMP constructs have an implicit barrier at the end

master does not hash pragma omp master does not have an implicit barrier at the end, but

single for all of these have an implicit barrier lot of constructs have an implicit barrier at

the end task; obviously, does not.

So, now what happens if I put nowait over here; what happens if I say hash pragma omp

for nowait and I execute that same code.

Student: (Refer Time: 01:51)

So sum was been printed here, right, it was coming out correct because there was an

implicit barrier over here.

And all the tasks were completing, but in this case, now I have added a no wait. So, what

is going to happen? This is what happened on an actual run; I found sum to be equal to

400 sum of the threads were still executing their tasks right one of the threads reached

over here and executed this piece of code.

So, one thing I can do is I can explicitly say hash pragma omp barrier here, right. So,

even if I have nowait and I have put an explicit barrier over here, in that case what is

going to happen; again all the tasks have to be completed on barrier. Therefore, I will

again get the correct result, all right. So, the important takeaway is that tasks complete on

barrier.

(Refer Slide Time: 02:53)

Here is a more involved piece of code that actually shows you what happens to private

variables that are declared after the parallel region starts, all right.

So, we are going to look at this variable tsum, right, it is declared after the parallel region

starts and what do I do here? I print the thread id, I print the address of tsum; I am

printing a memory location that points to tsum, right, that is what this is doing ampersand

tsum, all right, then I have this hash pragma omp for and again inside hash pragma omp

for; I again print address of tsum. So, I mark here that I am delegating this summation

from this start to this end and I am again printing the address of tsum and finally, inside

the task again print the same thing the address of tsum; how do you differentiate what is

what.

So, here I am just printing tid percent d; here I am printing delegating sum and here I am

printing task sum. So, just look out for those indicators. So, when I run this code.

(Refer Slide Time: 03:59)

What do I see?

Student: (Refer Time: 04:04).

In this particular case, there are only 2 threads, I run this with 2 threads. So, initially

these are the addresses of these memory locations; obviously, they both had their own

copy of tsum. So, they had different addresses right now when I was delegating. So, as

you can see over here this was being delegated by thread id 1 so; obviously, this address

is same as this address, right and these 2 were being delegated by thread id 0. So, these

were the same as this address, right; obviously, the same thread is accessing the same

variable, but what happened inside the task this is a completely new address well in this

particular case what happened was that all three of them ended up being executed a

thread id 0, right, but if I had thread id one executing something else, I would have seen

another address, right.

So, I see another address over here inside the task which is different from these addresses

sometimes what I want to do is I want to access the variable of the delegator, right the

thread that invoked this task; I want to access that variable. So, how can I do that? So, all

you need to do is you say hash pragma omp task shared tsum; what that tells openmp is

that you want whenever tsum is accessed inside this code inside the task it actually refers

to tsum for the thread that was invoking this task thread one create a new copy, it will

keep a pointer to that location of the delegator.

So, this is the run of this. So, now, what you see thread id had this address thread id one

thread id 0 has this address and while delegating also you see the same addresses and

when the thread is executed then also you see the same addresses. So, thread id 0 is the

one which was delegating the work from summation 0 0 that was executed over here and

you see that this pointer is the same as this pointer here similarly thread id 0 was a

delegating sum 1 1 and you see the same pointer over here for sum 1 1 and sum 2 2 was

delegated by thread id 1, right.

So, the address of tsum was this, but it was executed on thread id 0, but the address of

tsum is that of the delegator just think of it as what do you do in hash pragma omp

parallel or at other places right what does shared mean shared means that whenever I

access this variable in this region I wanted to refer to the same variable that is just before

this region starts. So, that is exactly what it saying the delegator is the one which was

creating this task. So, all its saying is that this variable inside the task is going to refer to

the same location that this variable was referring to just before the task started.

Student: Could it (Refer Time: 07:28) up to the (Refer Time: 07:30).

(Refer Slide Time: 07:31).

Student: If barrier was not there and all thread would have printed some sum, right?

Yeah. So, I have just showed you one output all threads would print sum some of them

may end up printing correctly one of the threads would definitely end up printing it

correctly, the one which executes the last task, right.

But all I wanted to show was that you can get incorrect results right in some cases one

thread may give you one digit.

(Refer Slide Time: 08:10)

This sum over here; right this is actually defined out say it omp parallel. So, it is actually

shared again its printing these values I see that all of them, whether I am accessing it

from the parallel region or inside the for or inside the task all of them are actually

pointing to exactly the same location its treated as shared. So, all addresses of the same

and this is just demonstrating that you know you can create tasks from single thread

using single right we already spoke about this in the context of a link list.

