
Introduction to Parallel Programming in OpenMp
Dr. Yogish Sabharwal

Department of Computer Science & Engineering
Indian Institute of Technology, Delhi

Lecture - 08
OpenMP Tasks

 (Refer Slide Time: 00:26)

We will start with tasks what are openmp tasks. 

(Refer Slide Time: 00:31)



So here is a code an openmp code for computing the sum of an array right; some of the

elements of an array which uses openmp tasks. So, as usual you have your hash pragma

omp parallel  right that is where your parallel  region begins. So, at  this point of time

multiple threads start executing right and what we are doing here is we are dividing this

array up. So, array is of size ARR size right.

And we are dividing it up into pieces each of size step size all right. So, this is what this

for loop is doing for I is equal to 0, I is less than the ARR size I plus equal to step size

right. So, it jumps in blocks of step size and what does it do inside the for loop. So, it sets

a start and an end. So, start is set to I and end is set to I plus step size minus 1 right is

going to work on this piece of chunk starting at location I, up to location I plus step size

minus one right. So, it is a its a chunk of size step size and here we are assuming that we

are all size is a multiple of step size right we do not want to get into boundary cases for

now and then it basically prints that I am computing the sum from which thread number

right.

So, the first integer here is going to be the thread number and the second integer here is

going to  be the  number of  threads  right.  So,  it  is  just  saying that  who is  doing the

computing right. And now at this point which specifies something called a task what is a

task? A task is a piece of code that can be executed independently at any point in time.

So, it is an independent piece of code that need not be executed right, now it can be

scheduled later, but it is something that can be spawned of that can be put aside that this

is some piece of code that needs to be executed and executed whenever you have time

something of that sort right.

So, what is being done here is that a task is being created, whatever is specified in the

structured block immediately following hashed by more mp task, that is a piece of code

that is going to get executed independently at some point in time right all right and what

do I do inside this task? I basically initialize a partial sum variable p sum to 0 and then I

report that again which task is computing this sum right.

So, I say task computing sum from which thread number and what is the total number of

threads right and it actually computes the partial sum over here and finally, it adds this

sum to the shared variable sum right. So, this is sum is a shared variable over here.



(Refer Slide Time: 03:29)

And when I execute this code, this is what I see. So, first this print is coming from here

right this print computing some 0 to 99 from thread 0 or 4. So, this hash pragma omp 4 is

dividing this for loop amongst the.

Student: (Refer Time: 03:51).

Different threads right. So, different threads are going to execute different iterations the

first iteration went to thread 0 right. So, it was responsible for computing some 0 to 99,

because step size is 100 and the total error size is 600. So, there will be 6 iterations and

then the second iteration was also done by thread number 0.

So, at this point of time what did it do it spawned off a new task, it is just a block of code

which is going to a get executed at some point and time, it could be executed by some

other thread it need not be executed by the same thread. It is just like creating work is

just  saying  that  this  is  some piece  of  work  that  needs  to  be  done,  whoever  is  free

whenever he is free comment do this work all right. So, what happened here is that this

sum 0 to 99 was created by thread 0 or 4, and if you see down here right this is printed

from this print f inside the task.

So,  what  does  this  indicate?  This  indicates  that  this  task was actually  performed by

thread  number  three.  The  task  was  spawned  by  thread  number  0,  but  the  task  was

performed by thread number three all right and similarly here what you see is that task 0



spawned this task which was supposed to do the summation for 100 to 199 and in this

particular case thread 0 itself ended up executing that task ok.

So, why do we need tasks? Look it is not always simple to say that who is going to do

what right. So, we have been looking at simple examples where you have simple for loop

which you say I divide among 4 threads it is very easy to divide you just divided in 2

iterations, either you put a hash pragma omp 4 or you yourself divide the work up and

tell if my thread number is this I will do this piece of work right.

But life is not always that simple, a lot of times you do not know what is the work that

needs to be done. You do not know how much work needs to be done; you do not know

how to divide it amongst the threads. This is a very very simple mechanism which just

says that here is an independent piece of code that can be executed by anybody I am just

telling you that this  is  an independent  piece of code right  execute it  whenever some

thread is free ok.

So, I can spawn off work as and when I wish all right. Also we have been looking at

examples like arrays right, but what if you have to traverse more complex data structures

like let us say trees right or hash table or something of that sort right where you do not

know what  is  the number of elements  what  is  the number of iterations  you have to

perform. So, there as in when you are traversing the data structure you are realizing that

more and more work needs to be done, you cannot divide it up front right.

So, in all these cases tasks are very very handy all right. Let us complete this example

first then we will get into more details of tasks. So, at different points of time, different

threads  are  executing,  different  iterations  the  spawn  of  the  tasks  and  the  tasks  get

computed on some thread or the other right and so on and finally, I print the sum down

here and I get a sum of 600. 


