
Introduction to Parallel Programming in OpenMP
Dr. Yogish Sabharwal

Department of Computer Science and Engineering
Indian Institute of Technology, Delhi

Lecture – 23
Distributing for loops and reduction

 (Refer Slide Time: 00:06)

So, one other issue is that I went through all this trouble; rate of computing from what is

the from? What is the to? Where am I supposed to start from? Where am I supposed to

end? That I went through all that trouble, but if you have a simple for loop typically that

is not something that you have to do openmp can take care of that for you.

So, what do you do for that? So, all you need to do is you just need to say hash pragma

omp for just before the for loop. And now I am not dividing up the work; this is the

whole loop; for i is equal to 0; i is less than ARR size i plus plus 0 to billion minus 1.

And I am doing the addition into psum; psum is what? psum is a private variable; it is

local to the thread.

So, in this case what openmp does for you is that the compiler introduces code to ensure

that this is split up. The splitting may actually happened statically or dynamically, we

will come to that, but openmp takes care of the splitting for you; you do not even have to

specify how the work is divided; openmp will divide the for loop for you. You write it as

a normal for loop and this is not a new parallel regenerate; just understand that new

threads are not being launched over here that happens over here. But this is the parallel

region; new threads got get launched at this point in time and they get joined at this point

in time.

This is just a construct within this to say that this for loop is supposed to be divided

amongst the threads; that is all this is saying. And then you write you code normally as

you do and something are implicit over here; like I am working on i equal to 0 to i is less

than ARR size. So, I am not doing any division; I have just written into the normal loop,

openmp will take care of dividing this loop.

I am writing this psum plus equal to ai; psum is private to its thread; this is a single loop,

but each thread is accessing a different psum when its executing this loop its part of the

loop. And the remaining code is the same and I run this code and I get pretty much the

same time that I got earlier.

So, I do not need to do the work division myself I can have openmp do it for me.

(Refer Slide Time: 02:10)

Another thing you should keep in mind is that this variable i; earlier I had mentioned i to

be private. So, now I have removed this I is no longer private; so I do not need to declare

i to be private; I do not need to scope it. So, openmp automatically in shows that if I have

a hash pragma omp for; then the variable for that for loop is automatically made to be

private.

It has to because each thread will be executed its own set of iterations

Student: How does this work if we have (Refer Time: 02:46) cascades of for loops?

No, this only applies to the for loop appearing immediately after hash pragma omp for.

So, if I have a for loop inside the for loop that for loop is it is like a loop which is being

executed by every thread from it start to end; that is not shared amongst the threads. This

hash pragma omp for only applies to this for loop; not to any for loop which appear

inside it. If I write another for loop for k equal to 0, k is less than 10; k plus plus. If I

have this kind of a loop inside this I loop; then each thread will execute this loop from 0

to 9.

Student: Is it possible that we have multiple for loops and we want the job of multiple for

loops to be divided amongst the threads (Refer Time: 03:40) 10 times (Refer Time:

03:42) processes and one for loop contains another for loop (Refer Time: 03:46).

Yeah

Student: (Refer Time: 03:47) idea also to be generate two (Refer Time: 03:48).

It is possible; so, I mean this near some things once you understand the basics near

something that you can look up the openmp reference manual and see how to do that

right, but it is possible in openmp you can specify how many levels you want to task it

down to distribute the work amongst the threads.

(Refer Slide Time: 04:08)

Another thing that we can get rid of; so I was doing all this psum business; I was

maintaining a private variable psum for every thread and actually I wanted to

accumulated in sum. So, I can actually ask openmp to do all this for me; so, all I have to

do is I have to say reduction, the operation; reduction operation and the variable and then

I am going to write my code as hash pragma omp for i equal to 0; i is less than ARR size

i plus plus; sum plus equal to ai.

Internally worked openmp is going to do what the compiler is going to substitute this

code with this is going to introduce these partial sum quantities, do the partial summing

and then at the end accumulate them together into sum. It will take care of all the things

that we did implicitly; I am specifying its sum is a reduction variable; I want to values

being used for the fits to add up into sum.

It will allocate partial sum variables for its thread and in the end; add them up together;

how do you know what to do the final pursues sum variables; also run specifying here

plus. It will add up the partial sum into the final sum; I again execute the code; it is same

time right; so, looks good.

(Refer Slide Time: 05:16)

So, this reduction plus colon sum that something that I can specify at the directive; at the

parallel region with hash prgama omp parallel or I can specify it hash pragma omp for. In

this case, it will allocate the partial sums and combine them at the end of this for loop. In

this case it will add them up combine them at the end of the parallel region. So, in this

particular case I can define this at either case; for depending upon you application, you

can do it at whichever place it makes more sense.

In this code; I have this hash pragma omp parallel; directive immediately followed with

the hash pragma omp for directive and there was nothing else that this hash pragma omp

parallel was doing other than this part which is inside hash pragma omp for. So, I can

actually combined them both together and the way to combine them I say hash pragma

omp parallel for. That says that; this is the parallel region which is the following

statement and it is nothing, but a for loop and I want to paralyze this for loop amongst

the threads. So, that is it to shortcut way of saying that and everything else remains the

same.

