
Introduction to Parallel Programming in OpenMp
Dr. Yogish Sabharwal

Department of Computer Science & Engineering
Indian Institute of Technology, Delhi

Lecture - 02
Parallel Architectures and Programming Models

 (Refer Slide Time: 00:03)

So, I will just go a little bit deeper or into the parallel architecture than programming

model, just give you a very bird’s-eye view of that to understand that what we are going

to focus on in this course. So, if we talk about parallel architectures right there are

primarily two architectures shared memory and distributed memory, and then there is a

third architecture which combines them both which we call hybrid.

So, let us quickly have a look at what that is. So, in shared memory architectures what

happens is that you have a memory unit right and this is accessible to multiple CPUs. So,

there is CPU 1, CPU 2, CPU 3 and so on. So, there is a single memory unit that is shared

by all the processors, that is why it is called shared memory.

So, this typically there is a common bus that is it is between the memory and the

processing units and all the CPU share that bus. So, they have to you know you require

an arbiter to figure out how the CPUs, which CPU gets access to the memory right. So,

anyways we will get into more details of this later, but just to understand that does it that

is what shared memory means at a high level.

So, what happens in distributed memory? So, in distributed memory what happens is that

every CPU has it is own memory unit and now what this, but obviously, if you are trying

to solve a large problem and you are trying to do it in parallel these, you need to divide

the problem and you know you need to sink up at various points.

So, these needs these professors need to talk to each other right. So, how do they talk to

each other? So, typically what happens is that there is a network. So, there are lots of

different types of networks again we will we will get into that later, but for now it is just

important to understand that there is a network that connects all the processors that and

each one of them has it is own memory.

So, now what is the issue with shared memory the basic issue with shared memory is that

it is not very scalable right because how many processors can you add because they are

going to use the same bus to access the memory right. So, there is a limit to the number

of cpus that you can add. So, typically in modern day processors you see 8 course, 16

course right some research professors are pushing it to about 100 of course, but that that

is you know there is a limit to it that is their it will end right you cannot go beyond that.

But in distributed memory because each CPU has it is own memory right. So, you can

just replicate this and you can have as many processors as you want. So, the bottleneck is

going to shift to the network. So, it all depends on what kind of a network you design

right. So, there are different kinds of network systems networks completely connected

network connecting all the processors together or you may have some simple network

like similar to Ethernet or something which is shared across all the processors right.

But the important point here is that them the bus is not a bottleneck right the bottleneck

shifts to the network and depending on how you design the network, you can scale this to

a large number of processors and finally, what we use in real life what we see in real life

is neither the shared memory or the distributed memory system, but a hybrid of the two

right.

So, typically what happens is that you have; you have different nodes which are

connected together by a network, and each node has multiple CPU sitting on it CPU 2 a

CPU 2 b and so on right and similarly you have multiple CPUs sitting over here right.

So, locally on each node it is a shared memory architecture right if you look at one of

these nodes, it is a shared memory architecture, but if you look at the cross nodes these

two nodes are connected together using a network. So, that is the distributed memory

part of it right. So, this is called a hybrid system.

So, just is you have parallel architectures there are different programming models to

write code for these right. So, this is the shared memory model and what the shared

memory model assumes is that there is one huge global address space. So, think of it as

the memory it. So, you assume that there is one global memory that is visible to all the

processors or all the tasks.

So, all the tasks get to see the same global address space which means that if one of the

tasks writes some something to the global address space that is visible to everybody else

and the other is the message passing. In message passing what happens is that each task

gets to see it is own address space right. So, it is private it is only visible to this task.

So, each task will get to see it is own private address space, and now if one tasks wants

to you know get some data which resides with another task, how does it get that data. So,

you have to explicitly do message passing, that is why it is called the message passing

model you have to explicitly send data. So, the programmer has to write code to send the

data across to another task and the other task has to write code to receive that data right

So, this task will have to receive that data. As you can see right in shared memory with

there is no send or receive involved because everybody gets to see the same data, all you

need to do is write into the memory it is visible to everybody else they can just read it off

from the memory right and in case of message passing, you have to do explicit send

receive communication.

So, as you can see right if you look at the left hand side and the right hand side is quite

obvious that the shared memory programming model is kind of like suited to the shared

memory architecture, and the message passing model is suited for the distributed

memory architecture right, because the send receives happen over the network. And here

because all of them have access to a local memory, all of them can use that as the global

address space ok.

But that is not necessarily true. So, you can actually have a shared memory model which

works on top of distributed memory, and you can have a message passing model which

works on shared memory architecture. So, what is that mean? So, let us take this case

right message passing working on shared memory, a process has it is own address space

even on the same node on the same CPU right you can run multiple processes each

having it is own address space.

So, they do not get to see each other the address place unless you do some explicit calls

right; and then you can actually encode message passing you can encode send receive

and so on using the shared memory right. So, you can do that and similarly when you do

shared memory you can do it across distributed memory, where there is one global view

of the entire memory right, but here what happens is that when you access a variable

which is lying somewhere else, it is the responsibility of the underlying operating system

to in somehow get that data for you ok.

So, to the programmer it is its not visible that this is a distributed system the only issue

the programmer is going to have is that some data is going to come back to it very

quickly whereas, other data will take very long to come back right because underneath it

there will have to be a communication over the network and then data will have to be

transferred over the network back to this computer right

But again the most common way of using these architectures is that you use the shared

memory model on shared memory architectures, and you use message passing on

distributed memory architectures. What do you do on a hybrid system? So, you use a

combination of message passing and shared memory. So, typically you have different

processes running on different nodes of the distributed memory architecture, and within

that you use a shared memory model to use the multiple cores that are there on the node.

For shared memory there are lots of models, but one of the most common models is

OpenMp right and for message passing again one of the most common models is MPI

right. So, you have to write your code using MPI which is a message passing interface

library, and in OpenMp you have two adhere to certain directives right in order to

program in parallel and when you use it a hybrid system then you have to code up in

both MPI plus OpenMp you have to make use of both of them right, ok.

(Refer Slide Time: 09:16)

So, what are we going to do in this course? So, this is intended to be an introductory

course in shared memory parallel programming right. So, we will be focusing on the

shared memory aspects that is slightly simpler, in the sense that you know you can start

off with a sequential program and you can incrementally convert it you know introduce

your OpenMp commands into that, directives into that and make it run in parallel and

you do not require a huge infrastructure you can do it on a node which has multiple cores

even your laptops do they have multi cores, right.

So, you can it will be easy to work with that on the other hand MPI requires some

redesigning of the code right it is not intuitive that data is not is distributed across

different nodes right. So, you have to explicitly write send receive or you have to make

calls to send receive and so on. So, you have to redesign your code if you want to use

MPI.

So, we will focus on OpenMp shared memory programming. So, we will understand the

concepts and programming principles involved in developing scalable parallel

applications right we will see how much we can scale we will try to scale up to 8 to 16

course and we will use OpenMp and C to write the scalable programs for multi core

architectures that is the plan.

So, this is going to be for both computer science and non computer science students, I

am going to cover whatever basics of operating systems or architecture is required in this

course, what is expected is that you have reasonable understanding of C, you are

reasonably compatibility with C. I am not going to go into the basics of C programming,

right.

