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So, now we have taken a look at Boolean algebra which is the manipulation of bits. We 

have taken a look at how positive integers are represented in binary, how negative 

integers are represented in binary. So, let me maybe just summarize. At this point, so we 

have for a quick recap Boolean algebra had to do with Boolean variables, so each 

variable could take a number between sorry not between a number which is either 0 or 1. 

And we defined basic operations on Boolean variables such as the AND operation which 

means that the AND function is true only when both the variables and all the variables 

involved in AND operation, all of them are 1. And the OR operation is correct only when 

is true only when one of the variables is 1. Then we define a NOT operation that is a 

compliment, and we define an XOR operation which is 1, when 1 is 0 and other is 1. 

Then we define the binary system to represent positive integers with different basis. So, 

the important point to recapitulate you know for at this point of the lecture is that what is 

the relationship between binary between octal which is base 8 and between hex which is 



 

 

hexadecimal which is base 16. And the important result that we had proved is that the 

octal and hexadecimal notations can be thought as short forms you know abbreviations 

or reduced representations of a binary representation. 

So, what do we do for example, in base 16, we these group blocks of four binary 

numbers; and represent them with one base 16 number. For example, a number of this 

form, which can be represented as this becomes 1 and this is actually 8 plus 3 - 11 which 

is B right. So, the instead of having 8 digits you only have 2 digits. Then we represented 

negative integers we looked at different methods of representation; one is a sign 

magnitude representation, which has a sign bit the problem there was that performing 

arithmetic operations was difficult. And there were two representations was zero; the 

other is ones complement same problems two representations. 

The other was with a bias; so in with a bias we had a single representation for every 

number, but even addition and subtraction were relatively easier, but multiplication was 

hard, so that is the reason we introduced 2s complement. Where essentially the 2s 

complement of a positive number is the number itself; and a 2s complement of a negative 

number is 2 to the power n minus u. The fantastic thing about this number system is yes 

it preserves a notion of the sign bit, it is easy to find if a number is positive or negative 

just take a look at the m s b there is one representation for zero and all other numbers. 

And performing addition, subtraction and multiplication is simply as simple as take the 

unsigned representations of the numbers and add, subtract and multiply them. The last n 

bits of the result are the representation of; the last n bits of the result are actually the 

representation of what the actual result should have been right. 

So, then we discussed some properties of this numbers system which is when what are 

the conditions for an overflow that is very important. And we also discussed the issues of 

sign extension which is that when you convert a number from one you know from an n 

bit system to an n bit system, where m is greater than n what do you need to do. 
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Now, let us discuss floating-point numbers, which are numbers the decimal point. So, 

what is the floating-point number is any number with a decimal point inside it like 2.356 

or 1.3 times 10 to power minus 10. So, now the question is the moment we say that a 

number is a floating-point number, we need to answer the question what is the fixed-

point number. So, in a fixed-point number, the number of digits after the decimal point is 

fixed. So, one example of such a number is 3.29. So, any number representing let us say 

currency is a fixed-point number, the number of digits after the decimal point is fixed  

(Refer Slide Time: 05:51) 

 



 

 

So, what is the generic form of a number in base 10, if we consider just positives 

numbers. If we just consider positives numbers, the generic form of a number in base 10 

is 3 times 10 to the power 0, which is 3 plus you know 0.2 which is 2 times 10 to the 

power minus 1 plus 0.09 which is 9 times 10 to the power minus 2. Say, any generic 

form is a form of this type where we make a summation from a minus n to a plus m or 

plus n where we are essentially adding powers of 10 with a coefficient. So, in this case 

the coefficient is 2 and 9 and 3 and so on. So, what would a generic form of a number 

being base 2, all that we can do is that we can take 10 and replace it with 2. 
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So, let us take some simple numbers and expand them in this notation. So, let us say 

0.375 is 2 to the power minus 2 plus 2 to the power minus 3. A number like 1.5 is 2 to 

the power 0 plus 2 to the power minus 1; a number of the form 17.625 is this 

representation as shown over here 2 to the power 4 plus 2 to the power 0 plus 2 to the 

power minus 1 plus 2 to the power minus 3. So, if we can use base 10 to represent all 

floating-point numbers right all decimal numbers like the value of pi and e and even a 

number like 5.36 times 10 to the power minus 17 nothing stops us mathematically to 

replace base 10 by base 2. 
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So, what do we do we take the base 2 representation of a floating-point number. So, what 

we have done here is that we have replaced 4, I am sorry replaced base 10 by base 2 

everywhere just one small correction here this should have actually been minus 3. So, we 

have replaced base 2 by base 10 everywhere. And so as I said if you go to a planet where 

people have only 2 fingers they would use base 2, they would not use base 10, and a 

pretty much any base 10 number has an equivalent base 2 expression, which is an 

expression of this form which is just a binary representation of the number from base 10 

to base 2. 

And so if you consider 10.11 in decimal this would be 2 plus 0.1 is 2 to the power minus 

1 which is 0.5 plus 0.25 which is 2 plus 0.75 or 2.75. So, this gives us a very easy way to 

at least represent positive numbers with by just simply extending the logic and instead of 

a base 10 using base 2. 
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So, let us now create a standard form of all floating-point numbers. So, in this case, we 

will use the sign magnitude representation, because otherwise that will become too 

complicated. So, any number A can be represented as minus 1 to the power S, where S is 

a sign bit. If S is 0 then minus 1 to the power S is 1; and if S is plus 1, which means the 

number is negative minus 1 to the power 1 is minus 1, so number becomes negative. 

Then we can define P which is a significand, so the significand is typically a number 

between 1 and 2. In this case, not typically it is a number between 1 and 2 

 So, we can represent the significand as a number as 1 plus M. So, 0 is less than equal to 

M and M is less than 1 multiplied by 2 to the power X, where X is an integer right. So, X 

is element of Z, which is the set of integers and the significand. So, let us just go over 

this terminology once again is very important say any floating-point number, we are 

representing as minus 1 to the power S, where S is the sign bit multiplied by the 

significand, the significand is the number of the form 1 plus M, where M is strictly less 

than 1 and it is positive M is called the mantissa. So, the M is given a name and the name 

of this term is the mantissa. Multiplied by 2 to the power X, where X is the exponent and 

X is an integer  

So, as we see any numbers can be represented in this form there is absolutely no 

problem. Like a number of the form 2.6 can be represented as minus 1 to the power 0 

multiplied by 1.3 multiplied by 2 to the power 1, where 1.3 is a significand which is 1 



 

 

plus 0.3 where 0.3 is the mantissa. So, this is also called the normal form or the 

normalized form. 
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So, let us see some examples at least in decimal, we will go to binary later. So, 1.387 

times 10 to the power minus 23. So, the significand is 1.3827, Mantissa is 0.3827. Since 

we consider in decimal instead of base 2, it is base 10, so the exponent is minus 23 and 

the sign bit is 0. Similarly, 1.2 times 10 to the power 5, the significand is 1.2, mantissa is 

0.2; the sign bit is 1, which means is minus 1 to the power 1 at the leftmost point and the 

exponent is plus 5. 
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So, let us now take a look at the IEEE 754 format for representing floating-point 

numbers, and take a look at the general principles. So, the significand should be of the 

form one point something. So, there see if you think about it, if we have 32-bits, so this 

is a 32-bit number system. If we think about it if every number significand is one point 

something right, there is no need to waste 1-bit representing that 1, we can assume it as 

the default that is always there. We just need to save the mantissa bits right, for example, 

if a number is 1.384, we just need to save 384 right need a binary representation for 384, 

we can automatically assume that 1 is in there. We also need to store the sign bit S, and 

the exponent X. 
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So, the IEEE 754 format is something like this it is a 32-bit format. The MSB is for the 

sign bit where we use one bit for the sign bit or we use 8-bits for the exponent which 

means it can take 256, values and we use 23-bits for the mantissa. 
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So, let us now take a look at the representation of the exponent. So, the exponent uses the 

biased representation in the sense that if the exponent is equal to X then we actually 

saves X plus the bias. So, in this case it allows us to represent negative exponents as 

well. So, we can actually represent exponents in the range of minus 127 to plus 128 right. 



 

 

So, since the bias is 127, what we actually save in this case is 0 till 255, which is a total 

of 256 numbers. So, what was the need for having a biased representation over here well 

the need was that the exponent can be positive or the exponent can be negative. 

Hence, we need to have some kind of a representation 2s complement was found to be 

bit too complicated, and it was also not required because typically in floating-point 

numbers, we do not multiply the exponent with some other number. Most of the time you 

only add and subtract the exponents; in that case it was not necessary to go for something 

as heavy weight as 2s complement, the biased representation was found to be nice and 

simple. 

So, as I said. So, let us consider some examples the exponent is 0, we actually save 127 

if the exponent is minus 23, we save minus 23 plus 127 which is 104; last example is the 

exponent plus 30, we save 157. So, what are the different fields once again the one bit 

sign bit is there; after that we have 8-bits, and the 8-bits are for the exponent. But the 

exponent is actually x it is representation is E, and what is the relationship between E and 

X, we are saving E, where E is equal to X plus the bias. So, whatever is a real exponent 

we add 127 to it and we save it in this particular number system. 

(Refer Slide Time: 16:21) 

 

Now, let us con consider normal floating-point numbers in the IEEE 754 format. So, 

IEEE by the way is an Association of Electrical and Electronics Engineers. So, they 

IEEE typically makes standards and formats for representing a variety of information. In 



 

 

this case, the 754 format has been made 754 standard has been made to represent 

floating-point numbers in binary. So, normal binary numbers have an exponent between 

minus 126 and plus 127. So, the other exponents which can be represented minus 127 

and plus 128 are reserved for special purposes so which we will discuss later. 

So, now the standard form or the normal form of an floating-point number in IEEE 754 

format is exactly what we had seen before and with a little bit of modification. So, we 

have the sign bit minus 1 to the power S multiplied with the significand, where the 

significand is of the form 1 plus M, M being the mantissa strictly less than 1. Multiplied 

by 2 to the power E minus bias where E is the representation of the exponent. So, E is 

between 1 and 254 right. So, the values of 0 and 255 are reserved for special purposes. 
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So, here is the food for thought, what is the largest positive normal floating-point 

number, what is the smallest negative normal floating-point number. I will not answer 

them, but I have kept them as exercises for the reader and the answers are in the book. 
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So, let us now take a look at some of the special values for the floating-point numbers. 

So, in this case, so if you would recall the valid values of E or E actually has to be in the 

range of 1 and 254. So, the other the values that we are excluding as 0 and 255 which 

basically means that exponents with a value of minus 127 or plus 128 are not allowed. 

So, if they are not allowed what does it mean it means that we are using these values for 

denoting something special. So, what should it be what it should be is something like this 

that if E is equal to 255 and the mantissa is 0, let us treat this number as positive infinity 

plus infinity if the sign bit is 0. If E is 255, the mantissa is 0, and let us treat another sign 

bit is 1, let us treat this number is minus infinity. So, let us give an example 1 divided by 

0 is plus infinity; and minus 1 divided by 0 is negative infinity; and infinity is 

represented with the fact that E is 255 and M is 0. 

Now, let us consider the case the third case where E is 255 and M is not equal to 0. So, 

there can be many such values, but we say that all of these values represent an NAN for 

an NAN is an not a number. For example, what is 0 by 0, 0 by 0 is undefined. So, we 

treat this case as a NAN or what is log of minus 1, log of minus 1 is undefined. So, let us 

again treated as a NAN or sin inverse of 5, a sin inverse of 10, it is undefined. So, we 

treat this as an NAN. Any arithmetic expression that has an NAN will always evaluate to 

NAN. So, NAN plus NAN is equal to NAN, NAN minus NAN is equal to NAN, NAN 

plus any other number is equal to NAN. So, the moment any part of an expression 

evaluates to not a number. The entire expression will evaluate to not a number. 



 

 

So, in this IEEE format, we sadly have two representations for zero which is not 

desirable, but this is still there. So, in this case, if E is equal to 0, which is one of the 

special cases that we had excluded if E is 0, and the mantissa is 0, then the value is 0. So, 

of course, there are two representations are sign bit can either be 0 or the sign bit can be 

1, we thus have two representations for 0 in this particular number system which is not 

something that which is not much that we can do. So, the sign bit can be 0 or 1, but then 

the E field has to be all 0s to represent a 0, and the mantissa field also has to be all 0s. 

And a sign bit can either be 0 and 1, it does not matter it will still be in a both the 

variants will be treated as a 0. 

The last subclass is very interesting is called a denormal number. So, we will discuss this 

in later slides. In this case, E is equal to 0, but M is not equal to 0. So, we will discuss 

this case in the next few slides. 
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So, let us but before going to denormal numbers, I just wanted to give an example of 

how we would represent a floating-point number. So, let us maybe consider a number of 

the form minus 1 point let us consider number of form minus 3. So, minus 3, the first 

thing would be to reduce it to standard form or a normal form which is minus 1 to the 

power 1 multiplied with 1.5 multiplied with 2 to the power 1. So, this is equal to minus 1 

to the power 1 multiplied with 1 plus 0.5, where 0.5 is the mantissa multiplied with 2 to 

the power 128 minus 127, where 127 is a bias. 



 

 

So now, if I consider the representation of this number in binary then the sign bit will be 

equal to 1, because the number is negative. The exponent right the E field will actually 

be equal to plus 128, because we are subtracting the bias minus 127 to get 1. So, this is E 

minus bias right for 127 is the bias. So, E is plus 128. So, let us have the binary 

representation of 128 and the binary representation of that would essentially be 1 and 

seven 0s  

Now, let us come to the mantissa. So, the mantissa part is 0.5. So, 0.5, if you want to 

represent the way that we would represent, so it is essentially is 0.5 is basically equal to 1 

times 2 to the power minus 1; the mantissa contains 23-bits. So, is a 23-bit mantissa. The 

first bit corresponds to 2 to the power minus 1, the last bit corresponds to 2 to the power 

minus 23, and the ith bit corresponds 2 to the power minus i. So, the mantissa can be 

thought as a summation from i is equal to 1 to 23 the coefficient x i multiplied by 2 to the 

power minus i. Since, this is 0.5 which is 2 to the power minus 1 we will have one over 

here which is the MSB position and the rest all will be 0s. So, this is how we would 

represent a number of the type minus 3 in the IEEE 754 format. 

And this is actually very easy the first we represent the sign bit then we figure out the 

value of the E field by adding the bias to the exponent which is 128. And then we figure 

out the mantissa. So, the mantissa mind you is strictly between strictly less than 1 and it 

is greater than equal to 0; and it is essentially a summation from you know 2 to the 

power minus 1 to 2 to the power minus 23 each term multiplied by a coefficient in this 

case we just need to stop at 0.5. So, the MSB needs to be 1, because it is 2 to the power 

minus 1 and rest all the terms need to be equal to 0. So, this is the representation of our 

floating-point number in binary. 

Given this, let us take a look at some of the clear aspects of floating-point math. So, the 

smallest normal floating-point number that we can have, the smallest normal positive 

floating-point number that we can have is let us work it out. So, that basically since it is 

positive the sign bit is 0 and the smallest value of E that we can have is actually 1. So, 

basically this is minus 126, this is the exponent and the smallest mantissa that we can 

have in a positive setting is all 0s. So, assume that f is 1 such number, which is a smallest 

normal floating-point number. So, we have a floating-point f is 3 to the power minus 

126. We take another number g which is f divided by 2. So, this number is 2 to the power 



 

 

minus 127 which is g, and g can clearly not be represented in our system of normal 

numbers because we do not have a representation for it. 

Now, let us consider the next statement if g is equal to 0. So, now, the question is that 

what is the value of g, if g is equal to 0, let us print error and should this code print error 

and do you think this is the right behavior, well intuitively no right. So, let me maybe 

you know write a big no over here, intuitively no, because f is a positive number g is the 

same positive number divided by 2, it is not equal to 0. So, there is as such no reason of 

concluding the g is equal to 0 and printing error, but we also do not have a representation 

for g. So, we somehow need to solve this situation. 
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So, what we can do is that we can define a set of denormal numbers, where the E field in 

the representation is 0, and the m field is not equal to 0. So, the normal form of a 

denormal numbers here we change the significand; instead of assuming that the 

significand is of the form 1 plus M, we assume it is 0 plus M, 0 becomes the default and 

mantissa remains the same between 0 and 1. And the exponent we assume is 2 to the 

power minus 126. So, in this case, E is equal to 0, and we assume that X is equal to 

minus 126, mind you it is not minus 127, this is a common mistake that students 

typically make, it is not minus 127, it is minus 126. So, and a common question that 

instructors typically ask is why minus 126. 



 

 

So, let us try to understand what is happening. So, let us consider the number line and let 

us assume that these are all the floating-point numbers that we can represent. So, the 

smallest normal floating-point number is 2 to the power minus 126. So, basically we 

want to define a very small region or numbers after this such that. So, mind you the 

diagram is not drawn to scale. So, this part is normal right. So, we want to define a very 

small regional numbers around here called denormal such that you know we our 

programs make sense and this particular program does not print error. To actually ensure 

that this is the case we define a normal form of this type, but the significand is assumed 

to be 0. 

So, in this case, let us find out what is the value of the largest possible mantissa. The 

value of the largest possible mantissa is pretty much equal to the mantissa or the 

significance. So, they are actually the same is equal to 2 to the power i where i is pretty 

much or I would say minus i for i is going from 1 to 23, which is equal to 2 to the power 

minus 1 plus 2 to the power minus 2 all the way till 2 to the power minus 23. So, this is a 

simple geometric series summation. So, when we look at you know any kind of 

geometric series summation, so we can expand the geometric series and we can do some 

maths. So, I will write down the result directly and the result is 1 minus 2 to the power 

minus 23. 

So, this is an important result and this will come many times in the book and in our 

discussion. So, users might want to memorize this, readers might want to memorize this, 

but the important point over here if I want to find the largest denormal number, this is 

essentially equal to 1 minus 2 to the power minus 23 multiplied with minus 126 which is 

2 to the power minus 126 minus 2 to the power minus 149. So, this is the largest 

denormal numbers. So, pretty much if we take the number line right and if this point is 0, 

so the largest denormal number is at this point and the smallest normal number is at this 

point. 

So, as we see the difference between them is really small 2 to the power minus 149. So, 

some difference needs to be there, because it is after all the discreet number system, it is 

not a continuous number system, but the important point to appreciate is that this should 

not have been minus 127, it should be minus 126. Because that is only when we get this 

property over here that we have a very, very small distance between the largest denormal 

number in the smallest positive normal number. 



 

 

So, what is the smallest, what is the range of the denormal numbers the range of the 

denormal numbers, the smallest positive denormal numbers would pretty much have the 

mantissa the last 23rd bit would be equal to 1. So, it will be minus 2 to the power minus 

23 multiplied with 2 to the power minus 126, which is 2 to the power minus 149. So, just 

to summarize, what is happened is that we have the set of all the normal numbers, we 

have just created a little bit more room of denormal numbers such that a lot of our maths 

in a programming actually makes sense. And we do not come up with very non-intuitive 

answers, so that is the reason denormal numbers have been defined in this particular 

fashion. 

So, I would request the readers to take a look at the normal form for both normal in a 

standard or normal form for both the normal floating-point numbers as well as the 

denormal floating-point numbers, find out what are the differences do some of the maths 

that I did just now and convince themselves for the utility of denormal numbers, and how 

they can help avoid non-intuitive results. 
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So, we had pretty much the same thing in the slides but I have over written that. So, but 

here is the example the ranges of denormal numbers which you just found out. So, the 

positive denormal numbers starts from 2 to the power minus 149 to 2 to the power minus 

126 minus 2 to the power minus 149, and the normal numbers then start from 2 to the 



 

 

power minus 126. Similarly, for negative denormal numbers, the range is minus 2 to the 

power minus 149 to the same thing albeit with a sign reversals. 
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So, as I said all that denormal numbers do will to extend the range of floating-point 

numbers a little bit, and mind you such diagrams are never drawn to scale such that again 

our maths make sense. 
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So, what we saw is that the range of floating-point numbers, so let us take a look at the 

range of the number systems. So, for an integer with a 32-bit, so typically an integer is 



 

 

32-bits right and that is what an int in C or in java would typically correspond to in a 32-

bit number system it 2s complement roughly the largest number that you can represent is 

2 to the power 31. So, maybe let me write it down that for a 32-bit integer, you know 

these are just rough figures; the maximum that we can go to is like plus minus 2 to the 

power 31. For a 32-bit floating-point number, the maximum that we can go to is roughly 

you know in the range of plus minus 2 to the power positive 127, but then of course, the 

mantissa can be higher. So, I can make it 128 that is maybe another largest that we can 

go to a very approximate figures; and 2 to the power 128 is around 10 to the power 40 

typical numbers. The approximate range of doubles is much more a double precision 

number because this user 64-bits and does not use 32-bits. 

So, in this case, we have a one bit sign bit we have 11-bits for the E field, mind you not 

8-bits, but 11-bits. So, this means that. So, the bias is also different instead of a bias of 

127 the bias is 1023 right; and we can cover a much larger range of numbers from minus 

1023 till plus 1023. So, the range is typically plus or minus 10 to the power 308, which is 

a fairly large range and we would typically not need more than this for most of our 

calculations. So, this is a lot right and we do not typically need more than this. 

So, I can add note over here that for a 64-bit double precision, what we have double in C, 

we are roughly at plus or minus 2 to the power 1023 and this is roughly 10 to the power 

300. So, this is roughly 10 to power 300, this is roughly 10 to the power 37 or 38, and 

this is much, much smaller. So, 2 to the power 30 is around a billion. So, this is roughly 

10 to the power is actually 3, 4 billion something like that. So, this is roughly a 10 to the 

power 9 kind of figure slightly more than that. So, it is several billion is limit, around 4 

billion is the limit; and if I consist it is around 2 billion to be precise plus minus. 
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Let us now take a look at some basic floating-point math that we want to add, we have 

two numbers A and B, where A is 2 to the power 50, and B is 2 to the power 10. We 

want to add A plus B and then we want to subtract A, but A plus B we want to be done 

first that is the reason is there inside a bracket. So, if we add if A and B, we are 

essentially adding two raised to the power 50 plus 2 raised to the power 10. If we do this 

the result, we would look something like this that a sign bit will be 0, the exponent has to 

be the larger one cannot be the smaller one, the 2 to the power 50 plus the significand has 

to be something of the form 1 plus 2 to the power minus 40, so this is the only way that 

we will be able to represent such a number. So, the mantissa has to be 2 to the power 

minus 40, but the smallest value of the mantissa that we can possibly represent in our 

system is 2 to the power minus 23. So, this is the smallest value that we can represent as 

a result this number cannot be represented in our system. 

So, this is the problems. So, what most hardware would do is that they will actually take 

2 to the power 50 plus 2 to the power 10. And since the mantissa cannot be represented 

they will just produce 2 to the power 50, as a result; and then when we subtract 2 to the 

power 50 minus 2 to the power 50, C will be computed to be 0. So, this is a non-intuitive 

result mathematically. So, mathematically we do not expect this result, what do we 

expect we expect A and A to be canceled in a result to be B, which is to the power 10. 



 

 

So, what a lot of smart compilers can possibly do is reorder the operations to increase 

precision and in this case actually break down the bracket, but this is again not what the 

programmer wants. So, as a result, there is a big gray area over here, but the most 

important thing that we need to understand is a floating-point math is approximate, it is 

not you know exact. The reason it is approximate is because we have a limited number of 

bits; and with those limited number of bits, we can own and also with a lot of constraints 

we can only represent a very limited set of numbers within our constraints. In this case, 

we cannot represent a number of the form 2 raised to the power 50 plus 2 raised to the 

power 10, it is simply not possible for us to represent a number of this kind. As a result 

here we will have a non-intuitive result are coming at the end where C, will be computed 

to be 0. 

At least most compilers would do that a lot of compilers might want to reorder the 

operations or locally resolve the operations, but it is very much conceivable that this 

program on a lot of programming languages and hardware would actually produce 2 

raise the power 10 sorry would actually produce 0. It would not produce to raise the 

power 10, which is a non-intuitive result. So, programmers need to keep these things in 

mind while writing programs with floating-point numbers and always keep in mind that 

is an inexact approximate representation. Now, let us take a look at the fifth part, fifth 

and last part of this chapter, which is representing strings. What is a string? It is a piece 

of text. 
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In any piece of text any the same way that these slides are there where I have written 

ASCII is American Standard Code this is a piece of text. How should we represent it. So, 

the most common way of representing pieces of text was with the ASCII format, and 

ASCII is American Standard Code for Information Interchange. It has 128 characters. 

The first 32 characters are actually non-printing characters therefore, control operations 

like. Character number 8 is for backspace to actually delete characters; character 10 is 

line feed which used to tell printers to jump to the next line; 27 is the escape character it 

corresponds to the escape key on our keyboard. And then the remaining letters small 

letters capital letters special characters like exclamation mark enact and numbers of 

course. So, since there are 128 characters, each character encoded using 7-bits. 
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So, the ASCII characters set looks like this that is a here is a code of some of the 

common characters from small a to small z, the code goes from 92 till 122. Similarly, 

from capital A to capital Z, the code goes from 65 till 90. So, basically then we have a 

numbers from 0 to 9, where the codes are assigned from 48 to 57 and there are different 

kinds of code for different kinds of special characters and punctuation marks that we 

used like exclamation, hashed, all their brackets, comma, semicolon and so on. So, the 

problem with the ASCII set is first is only for English and English is a very simple 

language. 



 

 

In English the number of characters is few, and we do not have special marks and what is 

there in you know other specialized characters that come up in other languages with also 

combinations and so on. 
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So, for this, we have the Unicode format. So, it is the universal character set 

transformation format is a UTF format. So, the UTF-8 standard enables around encodes 

around a million characters defined in this set and it can use 1 to 6 bytes for this purpose. 

So, what I have done over here is that I have written a couple of characters in different 

languages some of these, so this is Hindi for example, of Devnagari script. This I believe 

is a Tamil character; this I do not recall it might be a Korean character; and this is a I 

think character name from the Kannada language. So, with so many characters it is 

necessary to encode them. 

So, for this the UTF for the Unicode format was designed which has become standard 

now. So, UTF-8 is compatible with ASCII in the sense that the first 128 characters in 

UTF-8 correspond to the ASCII characters. So, when you use ASCII characters, UTF-8 

will require just one byte, and it will have a leading 0, which means that the remaining 7-

bits specify ASCII characters. Most of the other languages that use variants of the roman 

script such as French, German, and Spanish require 2 bytes per character in UTF-8 

Greek, Russian, Hebrew and Arabic also require 2 bytes. 
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So, this has become a standard across all browsers and operating systems. So, nowadays 

it is very common for users to read articles which have been written in multiple 

languages maybe an ad is coming in some other language. So, all of this happens cuts a 

Unicode. So, UTF-8 has been superseded by UTF-16 and 32. So, UTF-16 uses 2 byte or 

4 byte encodings and java and windows support UTF-16. So, as of now at least UTF-16 

is a more popular character set, and UTF-32 uses 4 bytes for every characters and rarely 

use it is not that commonly used, but UTF-8 and UTF-16 are the encoding sub choice 

where basically every character is represented with a certain sequence of bits. 

And in any document, you just have character by character which is essentially a 

sequence of bits that encode each character. So, when the document needs to be shown 

on the screen your word processor program extracts all the bytes out, converts them into 

characters for each character it draws a small image that corresponds to the way the 

character should look on the screen. 

So, this brings us to the end of chapter two. So, what are we achieved in chapter two let 

us go back to the outline slide. Say in the outline slide, we have basically shown what is 

possible to do with a set of bits. So, we can work on them we can define an algebra, and 

we can have basic operations, we can represent both positive as well as negative integers 

using a set of bits. So, they have their constraints, but again we overcame all of those 



 

 

constraints and we came up with a 2s complement notation which is the most effective 

notation as of now to represent negative integers. 

After that, we extended the results that we had to represent floating-point numbers. So, in 

that case, we needed to go for a slightly different representation. The reason being that 

we actually needed to represent the exponent as well, and we also made a trade off for 

simplicity, this is one of the vital learning’s that you need to have that in computer 

architecture sometimes you need to walk a step back and make things simple. So, in this 

case, instead of going for a 2s complement representation of the exponent, we actually 

used a bias based representation. And you also use an explicit sign bit just to make our 

life easy and also to leverage the pattern that you typically do not multiply the exponent 

you would only multiply it when a number is being raised to the power of some other 

number, but that is a relatively rare operation. 

Most of the time, we are only adding and multiplying floating-point numbers; in that 

case, we do not you know for say multiply the exponent lastly we talked about strings we 

talked about the basic simple ASCII format for English. We also talked about the generic 

Unicode formats or the UTF formats two of them are very common UTF-8 and UTF-16. 

UTF-8 and 16 are used to represent almost all the text today in all the worlds’ languages, 

and there are many additional characters as well and many cartoon like characters that 

can be used to make really expressive documents. 

So, now that we have a certain hold on bits, and how they can be used. We need to 

design a language, a simple low level language that can communicate with the processor 

using these bits to accomplish fairly complex tasks which is the main goal of the next 

chapter, the chapter on assembly language to achieve complicated tasks using simple 

bits. So, see you then with chapter 3, which is going to be the next lecture. 


