
 

 

Computer Architecture 

Prof. Smruti Ranjan Sarangi 

Department of Computer Science and Engineering 

Indian Institute of Technology, Delhi 

 

Lecture – 31 

The Memory Systems Part-II 

 

(Refer Slide Time: 00:26) 

 

Let us start our discussion of caches. So, caches are very interesting and there is a huge 

amount of research on how to make caches efficient. So, we will not be able to cover 

most of it in this lecture, but at least we will be able to cover most of the basic 

mechanisms that underlie today’s modern caches. 



 

 

(Refer Slide Time: 00:50) 

 

So, the overview of a basic cache is as follows, it is a black box, let us first treat it as a 

black box as a memory that contains a set of memory addresses and their values arranged 

into blocks of course. So, for blocks you need to go back to the previous lecture. So, 

what we had discussed in a previous lecture is that the memory system is organized 

hierarchically. So, we have an L 1 cache which is small and fasts then we have an L 2 

cache which is slightly larger and slower. 

And finally, we can have an L 3 or we can have a main memory which is made of dram 

cells right which is which contains all the addresses and. So, these addresses in L 1 or 6 

stripped subset of the addresses in L 2; and the addresses in L 2 are a stripped subset of 

the addresses in main memory. So, we had discussed that and also take advantage of 

special locality right for because having cache hierarchy takes advantage of temporary 

locality. So, to take advantage of special locality, we are discussing grouping memory 

addresses into blocks. 

So, if we group them into blocks of 64 and fetch a block in one go from a lower level, 

where a block is an atomic unit. So, we never add half a block or third of a block. So, if 

we fetch a block in one go, so most likely for accessing you know one data item within a 

block, most likely we will be accessing in the near future, some other data item which is 

also within the block. Since that has already been fetched, we do not have to fetch it once 

again, so this will increase our cache hit rate. So, any cache can be looked at like this that 



 

 

we have a memory address that goes in, say if it is a load then a load value will come 

out, and also hit on miss decision; of course, if it is a miss load value does not make any 

sense. 

So, for a load basically we have an address, and a value for a store. Same way, if the 

block is not there we will have a miss where if the addresses of the block are there we 

can perform a store, so the store will only have a memory address and store value. So, 

for a store a load value makes no sense. So, what are the basic problems we need to 

make a hit or miss decision first, if there is a cache hit, we need to perform the load or 

store. 

(Refer Slide Time: 03:31) 

 

So, let us look at the basic cache operations and describe the operation of an entire cache 

on the basis of some of its primitive operations. So, the first operation let me move to a 

laser pointer. So, the first operation is lookup, if we check if a given memory location a 

given memory address is present inside the cache that is the first thing that we check. If it 

is not present inside the cache well we declare a miss and we just move out, but if it is 

present inside the cache, then we can do several things. If it is a load we can read data 

from the cache as a data read operation; if it is a write we can do a data write operation, 

we can write data to the cache it will be done. 

Now, assume that there was a cache miss and then the block comes to the lower level 

then we need to insert the block inside the cache and to insert a block sometimes it might 



 

 

be necessary that we might find that the cache is full. So, then we have to throw out one 

block. So, we need to first find a candidate for replacement then we need to evict it 

through a block out of the cache and insert the new block in its place. So, these are six 

basic operations lookup, data read, data write if there is a miss we need to do you know 

insert, replace, evict these three operations need to be done. So, we shall look at each of 

these operations in great detail now. 

(Refer Slide Time: 05:15) 

 

So, let us first define a running example. So, we will pretty much devote at least this 

entire sub section. This entire sub section will be using this running example because 

having some example sort of streamlines are thinking and instead of using symbol; it is 

better to use a concrete example. So, let us try to design a 8 kilobyte cache with a block 

size of 64 bytes, and a 32-bit memory system. So, what again is the configuration it is a 8 

kilobyte cache, 8 kb block size of 64 bytes in a 32-bit memory system. Furthermore, 

inside the cache, let us have two SRAM arrays - two arrays of SRAM cells, let us have a 

tag array it saves a part of the block address such that we can uniquely identify a block. 

So, a tag array this contains a part of the address. 

So, let us look at let us may be you know discus block address slightly more before 

moving to the block array. So, block contains 64 bytes. So, 64 bytes is 2 raised to the 

power of 6 bytes. Since, a block is an atomic unit, so we will never in a partition a block. 

So, in the 32-bit memory system, how many possible bits blocks can we have will be 2 to 



 

 

the power of 32 that is the total size of the memory space divided by 2 to the power of 

six which is the block size. So, maximum we can have 2 raise to the power of 26 blocks. 

So, a block address is 26 bits, a block address because you know 6 bits are taken away 

by the address of the byte inside of a block. So, the maximum number of blocks, we can 

have is 2 to the power of 26. So, block address at the most is 26 bits which means that 

we need 26 bits to uniquely identify a block. 

So, let me go to the block address and just add 26 bits here. So, mind you if I change 

these parameters then these parameters will also change, but let us at the moment discuss 

everything in the context for running example. So, then we have along with the tag array, 

we have a block array which saves the contents of the block. So, the contents of the 

block how large is it, the contents are 64 bytes; here is one block we have defined to be 

64 bytes it saves the contents of the block. So, both the arrays the tag array and the block 

array need to have the same number of entries. In fact, they can have a one-to-one 

correspondence right. So, they absolutely need to have the same number of entries. 

(Refer Slide Time: 08:29) 

 

So, the structure of a cache is now as follows. We have defined two arrays a tag array 

and block array. Of course, they are not drawn to scale and they have the same size the 

same number of entries; both of them exchange data with a cache controller which is a 

piece of logic that controls the cache. So, the cache controller gets the address in the case 



 

 

of a store the stored value, it interacts with both the arrays. It has two outputs one is the 

hit miss decision and other is a value of a load, if the operation is a load operation. 

(Refer Slide Time: 09:06) 

 

So, let us discuss one of the simplest kinds of caches called a fully associative cache. So, 

let us do a little bit of math. So, our cache size is 8 kilobytes. So, let us try to find out 

how much this is in bytes, this is 2 raised to the power 3, which is 8 multiplied with 2 

raised to the power 10 which is 1 kilo. So, 1 kilo means 1024 which is 2 raised to the 

power of 10. So, this 2 to the power of 3 times 2 to the power of 10 is 2 to the power of 

13. So, this is the number of bytes that we have in our 8 kilobyte cache 2 to the power of 

13. And since one block is 2 to the power of 64 bytes; so what is the maximum number 

of blocks that we can have in the cache 2 to the power of 13 divided by 2 to the power of 

6 which is 2 to the power 7, so 128. So, we can have 128 blocks of the cache fill up 128 

entries. 

So, in this case in a fully associative version of our cache, we will have 128 entries. So, 

128 entries in the block array 128 entries in the tag array with a one-to-one 

correspondence. And in a fully associative cache, if we have 128 entries given a block, it 

can be stored in any entry all right it is a given a block, it can be stored anywhere inside 

the cache in any of the 128 entries. So, recall what we have done in the previous slide we 

have said that we can have 2 to the power 26 possible blocks, the reason we said that is 

basically because we have a 32-bit memory system and a block size is 64 bytes. So, 2 to 



 

 

the power 32 divided by 2 to the power of 6 is 2 to the power of 26. So, our block 

address is 26-bits. And then since a block is 64 bytes which is 2 to the power of 6, this is 

6 bit offset of a byte inside of a block. 

So, let us do one thing since our block address is 26-bits let us save the entire 26 bits in 

the tag array. So, we will require it, but let us try to understand this gradually. So, in the 

tag array let us save 26-bits, which is the block address all right. So, you know we will 

have different sets of 26-bits for different entries; and in the data array we will have the 

contents of the block which is essentially 64 bytes, capital B for byte. 

So, what we see over here the way that we do the addressing is that given memory 

address, we first complete the tag part of the memory address which is the upper 26-bits, 

and then there will be a byte offset part which is the 6 bits. So, where does 6 again come 

from it comes from the fact that the 2 to the power of 6 is 64, and 64 bytes is that block 

size. So, these lower 6-bits we will ignore, we will take the upper 26-bits which is this 

tag over here, and will compare them with each of the entries of the tag array right. So, 

with every single entry of the tag array, we will compare 26-bits, you know more 

significant 26 bits of the address to find out if there is a match. 

So, because this is the block address inside the address, so we will compare each of these 

26-bits, with the 26-bits stored in the tag array. So, mind you what are these 26 bits they 

are the addresses of different blocks. So, address of block 0, you write the block address 

of block 127. Now, from we have been given a new block address we need to check with 

each one of them. So, for this the best structure that we can use is a CAM recall from 

chapter six that a CAM is a content addressable memory where instead of accessing the 

memory via its row address, we access it via its contents. And this is an ideal application 

of a cam where given the block address in the address given the block part of the address 

this is also called the tag part. We compare the 26-bits with each of the 26-bits stored 

here and. So, this is done in a typical cam array. 

And after each comparison we send them to an OR gate. So, if let us say, so since there 

is no duplication inside a cache, if there is a hit, it will hit in only one entry. So, let us say 

it hits in this entry. So, this will be 1. So, the output of the OR gate is one. So, if this 

output of this OR gate is 1 it means that there has been a hit, otherwise if the block 

address does not match any of these entries any of these tag entries then it means that 



 

 

there is no hit and there is a miss. So, basically this is a hit the OR gate will give a one 

which means there has been some match here, otherwise the OR gate will yield a 0 

which means there has been no match after that you know if there is a hit only one of the 

lines will be one to get the address of that line. We will use an encoder which will tell us 

this case what is the address of that line and it will be a 7 bit address because there are 

128 bits here. So, this will be a 7 bit address right for which line actually hit. 

And the data array will be a regular array of SRAM cells. You know a simple regular 

array of SRAM cells nothing very sophisticated about it. So, let us say there is a hit in. 

So, this is 00 01 and 1 0. So, basically it is a second entry in which we have had a hit. So, 

we will go to the second entry of the data array, read the data and that will be the output. 

So, if it is a load the output is the 64 bytes, or any subset of this, if it is stored then we 

will essentially write to this entry. So, in any case we are doing lookup for aim of the 

lookup stage is to indicate in which entry of the data array does the memory locations 

value exist? 

So, let me just quickly summarize what is a fully associative cache. A fully associative 

cache the block can reside within any entry of the cache. So, we did some amount of 

math and from that we figured out that we will have 128 entries in our cache. So, in this 

case the block can reside in any one of the entries. Now the block is residing in any one 

of the entries how do we know which one? So, our look for a lookup operation; so let me 

I think let me cleanup small part of it and such that I actually ended up erasing all of the 

text on the slide, so that is ok. Let us just abstract the problem. So, let me may be move 

out of power point. 



 

 

(Refer Slide Time: 17:15) 

 

So, the problem that we have at hand is that we have a cache with one 128 entries. So, a 

block comes and address comes. An address is a 32-bit quantity and we need to map I 

can may be change the fine with the color. So, what we need to do is that we need to find 

out this address where exactly this address is contained within the cache. So, what we do 

is that we consider the 32-bits, and we try to break the address into two parts; one part is 

the offset of the byte within the block and the other is a block address. So, since a block 

is 64 bytes and 64 is 2 raised to the power 6 this means for the first six bits represent the 

address of the byte within the block. So, this is something that we can ignore or discard 

the remaining part which is the next 26-bits is what constitutes the block address. So, this 

part is the block addresses the 26-bits. 

So, what we need to do is that we need to find out which entry out of these 128 

corresponds to the block address which is represented by these 26-bits. So, this cache can 

further be divided into two parts one is I think it is fine, so sorry medium, so one is the 

tag array and the other is the data array. So, basically the tag array contains a portion of 

the address. So, I said we can uniquely map the block. So, in this case, since the block 

can be present in any entry the tag need to contain the block address for the entry that it 

corresponds to. So, recall that both the tag array as well as the data array, we will have 

128 entries right both of them we will have 128 entries. So, and there is a one to one 

correspondence between a tag entry and a data entry. 



 

 

So, what we need to do is that we need to compare each tag with the block address which 

is 26-bits. So, the tag also needs to be 26-bits, because it also contents need to content 

the address of the block whose contents are in the data array. So, we compare the block 

address that we get the block address that we get with each and every entry of the tag 

array. If there is a match we figure out for which entry there is a match assume that there 

is a match for this entry then we access the corresponding entry in the data array. And we 

return if it is a load we return the contents of the data array which is 64 bytes out of 

which we can choose a subset or if it is a store then we write to the relevant potion of the 

block inside the data array. 

So, the basic problem here is essentially search problem that given 128 entries in the tag 

array we need to find if any of the entries in the tag array matches the value of the block 

address; if it does we are done. The way we do that is basically via the CAM array over 

here. So, recall that a cam is content addressable memory. So, the block address which is 

essentially the tag part of the address this thing is compared with each and every entry 

stored in a tag array. So, we either if we do not find an entry it is a miss, if we find an 

entry. So, we will never have duplicates then we access that entry of the data array. So, 

this is called a fully associative cache. 

Well where does a name come from the name comes from the fact that a given block can 

be associated with any entry in the data or tag arrays which means it is completely your 

fully associative, so that is why the name comes from right can be associated. So, 

associative and in particular is also called a 128 way associative in this case because 

there are 12 entries in any entry we can map. So, we will any way discuss about ways 

later, but the basic idea always in the look up stage of any cache is the search. Once we 

do the search we can progress to the next stages. 



 

 

(Refer Slide Time: 23:17) 

 

So, basically this slide essentially discusses much of what we have talked in the previous 

slide that in the can it summaries what the CAM array the tag array does. And the for any 

doubts on how a content addressable memory works, readers can go back and refer to 

chapter 6 - the chapter on digital logic right where we discuss registers memories in 

logic, so that chapters. 

(Refer Slide Time: 23:46) 

 

Now, let us discuss a very different kind of cache. So, what was the problem with cam 

arrays that we talked in chapter 6? So, one problem was that cam arrays instead of a 6 



 

 

transited cell they have a 10 transited cell, so they are larger as a result they are slower. 

And also we need they are not fare efficient at all because we need to compare the block 

address with every single entry of the tag array which is not fare efficient by any means. 

So, let us look at a different part of the spectrum. So, let us have a cache again with a tag 

array and the data array, but let us divide the address in a different manner. So, if you 

consider the address the lower six bits will always remain the offset within the blocks 

this is something that we can happily ignored, but for the upper 26, let us divide them 

into two feats a 19 bit tag and a 7 bit index. 

So, 7-bit means it can specify it can uniquely address 128 entries. So, let us use this 

index to map to only one element of the tag array. So, direct mapped cache means that 

given block can reside an only one entry of the direct map cache unlike a fully 

associative cache where it could reside anywhere. This can reside in only one entry. And 

how is that entry decided we basically remove the 6, you know remove the block part, 

the block address part which is 6 bits in this case because it is a 64 bite block. We take 

the remaining 7 entries why seven, because our tag array has 128 entries, and 128 is 2 to 

the power 7. 

So, we take the remaining seven entries we compute an index with that index we access 

the tag array. And we read the tag that is stored and we compare that with the tag part of 

the address. If the comparison results in equality, well it is a hit; otherwise it is a miss, if 

it is a hit then with the same value of the index. There is a one to one mapping here again 

this we have located the block inside the data array that we need to either read or we 

need to write. 

So, what is the advantage of a direct mapped cache? The advantage of a direct mapped 

cache as follows that is very simple unlike a fully associative cache, it is very simple. We 

do not need to use CAMS at all. So, the tag array can be an SRAM array. So, both the 

tag array and the data arrays can be an SRAM array right array of SRAM cells and both 

of them. Also in this case, we will have 128 8 entries is, but it is just that a given block 

cannot reside any where it has a fixed place. And the place is decided by the lower 7- bits 

least significant seven bits of the 26 bits that remain after the 26 bits of the block address 

(Refer Time: 27:12) block address. 



 

 

So, this is a nice simple circuits SRAM are much faster than CAMS. So, it is a very, very 

simple circuit that can be used, but is just that it is also faster. So, a direct mapped cache 

is also faster than a fully associative cache. The only problem is that it will have lower 

hit rate and the reason being that assume that there are two lines say block is also called a 

cache line, say block is also refer to as a cache line. So, block well we will use both the 

terms interchangeably. So, assume that you know two cache lines mapped to the same 

entry. So, if they mapped to the same entry then what will happen they will just be 

displacing each other and that will lead to a lower hit rate or a higher miss rate. But at 

this in a fully associative cache, they would have found space within the cache and one 

could have may be resided here and another could have resided over here. 

But in this case since multiple conflicting lines or cache blocks can reside in the same 

entry, we will have a more displacement from the cache as a result a lower hit rate. 

(Refer Slide Time: 28:40) 

 

So, let us now a look at something, which is in the middle. So, this slide I am not going 

through because we have just discussed this operation of direct mapped cache in a 

previous slide. So, without any further discussion, I will just move to the next slide. 



 

 

(Refer Slide Time: 29:00) 

 

Which talks about an intermediate solution called a set associative cache? So, what was 

our assumptions fully associative cache? That a line can reside in any of the 128 entries 

for our running example of course; for a direct map cache, we said at line can only in 

reside in our particular specific entry well. So, in a set associative cache, what we will do 

is that we will make sets of let say 4 entries. So, let consider 4 entries. So, we will call 

them a sets right a set of 4 entries is the set. So, what we will do is that if we create such 

four entries sets how many sets will we have, we will have 128 divided by 4 - 32 sets. 

So, the logic is as follows. 

So, that we first we will consider the block address part, the part that determines the 

addressing of the block at the lower six bits of course, we will discard. Then since we 

have 32 sets we will first take the lower five bits of what is remaining and 2 to the power 

5 is 32. So, just so that we have a discussion in the right context we will use a lower 5 

bits. 

So, first index and access the right set. Once we access the right set, we will find four 

entries over there; inside the four entries we will compare the block address with each of 

these entries. And wherever there is a match we will if there is a match just among these 

four entries, then we will declare a hit, otherwise we will declare a miss. So, what is the 

basic idea, the basic idea is that this is solution which is in the middle of the spectrum 



 

 

between a fully associative cache and a direct map cache. So, in a fully associative cache 

or choice was ok let us talk about the cache type and the choice right. 

So, in a fully associated cache where a choice of 128 entries a block could be there 

anywhere; in a direct map cache let us choice only one entry; in a set associative cache 

our choice in this case is 4, which means that the line can be anywhere in the set of 4 

entries. So, we in general we can define what is called a k way set associative cache 

where k is a number of entries in each set. So, instead 4, it will become k. So, this 

particular example is a 4 ways set associative cache. So, if you want me to explain at in a 

different way I can do that as well. So, let me just clean up the ink on the slide. So, what 

we can do is we can take all the 128 entries. 

(Refer Slide Time: 32:22) 

 

And we just have to group them into entries of 4 each right create such kind of right. So, 

if this is a tag array, so the data array remains exactly the same, there is no different data 

array remains the same in all the caches more or less in both direct map set associative, 

fully associative. The data array remains the same is only the tag array which we change. 

So, we will first create 32 such sets where each set contains four entries. Now, let say we 

take a block and we read its five index blocks. So, index is a set index. So, we read it five 

bits after discarding the lower six. So, let us say it points to this sets; after this we 

compare the remaining part of the address because these five are fixed right on the basis 

of these five, we have come to this set. 



 

 

So, we need not considered it anymore then we consider the remaining part which is 21-

bits. So, block address I really was 26, but out of that 26, we took 5 out and we use those 

five to access a set. So, all the entries in the set will have those 5 bits in common. So, we 

did not store it we take the remaining 28 bits and. So, here we have a 21-bit tag and we 

extract the 21-bit tag from the address as well and we just compare with each and every 

entry in this set. What do we compare, we compare what is stored in this in these entries 

and the tag part of the address which is 21 bits if there is a match we declare a hit 

otherwise we declare a miss. 

And furthermore, if there is a hit then we take where there is hit and read the 

corresponding entry from the data array. 

(Refer Slide Time: 34:27) 

 

So, there is a nice diagram over here. So, what the diagram says is that we first consider 

the address. So, the address will have lower 6 bits will be the block address I am sorry 

lower six bits will be the address of the bit within the block, so that is something that is 

discarded then we take 5 more bits, so that is the set index. And using the set index we 

access four entries of the set. And we take all four entries and compare that with the tag 

part of the address which is 21-bits. 

So, we do four comparisons. So, this can be an SRAM array does not have to be a CAM. 

So, we can still be verily fast. So, we compare the four entries, the four tags that are 

stored here with the tag part of the address; and after comparison we send the result to an 



 

 

OR gate. So, any of the comparisons was successful it means to the data is there in the 

cache. So, we can declare a hit; otherwise we declare a miss. 

And further more the encoded tells us that there was a match in which entry right this 

one this one this one or this one, and then what needs to be done. Well what we need to 

do is that we need to take the four indices inside the tag array and we want to choose one 

of them because one of them must have matched. So, let us assume it is this one. So, this 

one will flow via the multiplex to the entry in the data array and this one actually 

corresponds to this entry. So, basically corresponds to this entry, and we will go to the 

corresponding entry in the data array which is this one. If let us say we are a hit in this 

entry then we would have gone to another one. So, it does not matter. 

What we need to remember is that each entry in a tag array has a corresponding entry in 

the data array is a one to one correspondence. So, what is the new addition in these 

circuits? When the new addition in this circuit is this block and this block; so let me 

erase the ink once again and explain these blocks only in some amount of greater detail. 

So, instead of searching for a block inside all the entries we only search for it within a 

given set of lines that is the reasons called set associative cache this particular say each 

of this lines is called a way. 

(Refer Slide Time: 37:11) 

 

So, this particular set associative cache one second this particular set associative cache is 

called a four way set associative cache which means that any of the four ways is the any 



 

 

of the four entries can contain the line. So, we take the set index which we again get 

from the address and we access the set in the part in specific the four entries within the 

set for each of them we combine. If there is a match when we get a hit and also we find 

out which one matched say with this line that is fine then we choose the corresponding 

entry which is this entry and we use it to access the data array. So, here is the 

mathematical look at it. 

(Refer Slide Time: 38:12) 

 

So, let the index be i, and the number of elements in a set be k. So, then the inde the 

indices that we access pretty much i times k plus i times k plus 1 till i times k plus k 

minus 1. We read all the tags in a set, we compare the tags with the tag obtain from the 

address within use an OR gate to compute a hit or miss. And finally, we use an encoder 

to find the index of the matched entry. 



 

 

(Refer Slide Time: 38:44) 

 

After that we read the corresponding entry from the block array further more each entry 

in a set is known as a way and if there are k blocks in a sets its called a k way set 

associative cache or a k way associative cache. 

(Refer Slide Time: 38:59) 

 

So, before I going to the data read operation, I would like to look at this particular figure 

once again and the best way to look is to it is what we are did in earlier. So, in this 

particular cache what you would recall is. So, let us take a look at the tag size tag is what 

is stored in the tag array in the case of a direct mapped cache the tag was only nineteen 



 

 

bits right. So, in a cache of a direct mapped cache tag was only 19 bits in the cache of a 

fully associative cache the tag was 26-bits, because we needed a larger tag in the case of 

a set associative of cache the tag can vary between 26 and 19. And the reason being that 

we allocate some of the bits for the index for the set index for finding out with set, and 

the remaining bits become part of the tag because they are require to uniquely identify a 

block, because the total block address is 26 bits. 

But we can use a part of the bits to first find the set; and essentially once that gets fixed, 

the remaining bits have to be use to compare with the tag array. So, as we can see is that 

as we increase the number of sets. So, as we increase the number of sets, the tag will 

actually gets smaller and smaller and smaller till you cannot increase it beyond this point 

which means at every set at this point contains one entry. Similarly, if we decrease the 

number of sets then what will happen is there a tag will get larger and larger and the in 

index part will get smaller and smaller till we reach the fully associative point. 

At this point, a block can be there in any of the 128 entries of the cache. So, there is no 

index the entire thing the entire cache is like one set at this point the tag becomes the 

largest which is 26 bits. So, the advantage again of this design is like this that it is 

somewhere in between fully associative cache and a direct map cache. So, if you 

consider speed, speed of operation then clearly a direct map cache is the fastest followed 

by a set associative cache followed by a fully associative cache. 

Now, we consider the hit rate we have the maximum amount of flexibility in a fully 

associative cache. We reduce the flexibility in a set associative cache and further reduce 

it in a direct map cache. So, as a result you know so there is no hardened fast rule that in 

a particular situation a particular kind of cache needs to be used, but as a general rule 

people prefer the middle path which is the set associative cache, it either a two way or 

four way in some cases 8 way associatively. 

So, now let us take a look at the data read operation. So, this is a regular SRAM access 

into the data array in some cases the read and the lookup can be overlapped for a load 

access. So, let us see how. See, if we consider a set associative cache, what we can do is 

that we can. So, we will the first thing that we will do is that we will compute the index 

of the set; and if the set is 4 ways, we need to compare the tag with each of the with 

contents of each of the ways in the tag array. 



 

 

Simultaneously, what we need to what we can do is that we can do a little bit of 

additional work; we can read the contents of all the four ways from the data array. So, in 

this sense, we are overlapping the data read with the lookup after that once we compute 

the index of the matching tag. So, let us assume that the third entry was the matching tag 

then the third entry of the data array is what can be chosen. So, we can sort of overlap 

both in the sense we are doing additional work otherwise what would we have done 

otherwise we would have read all the four tag entries done a comparison, found a match 

then for that particular match we would have read the entry in the data array. 

So, let us say this is the tag array and this is the; but now we will let us do some amount 

of additional work, and let us read all the four entries are data array and in parallel read 

and compare all the four entries are the tag array. If we find a match, we can then choose 

one of them, but at least the time for reading the data we could overlap. 

(Refer Slide Time: 44:23) 

 

Now, let us take a look at right operation. So, before we write a value we need to ensure 

that the block is present in the cache. So, most of the time students are not able to 

understand why is this case, why should this be done well it look if this is not done. So, 

so there were students you know I am going to write. So, I am going to write new data 

any way, but there is a problem the problem is that most of the time you are either 

writing 5 bytes if it is an int, you are writing 8 bytes if it is a long int or a double, but 

how large is a block. A block can be 32 or 64 bytes. And since a block we are treating as 



 

 

an indivisible unit, if we just let us replace this part of the block with new data, well we 

will have to remember this somewhere may be after this we can have another write 

operation which will write to this part. 

So, if that is done, we will need to maintain some amount of state somewhere to 

remember which part of the block was written when. And you know which parts are 

untouched and which parts are new that is a lot of additional work. Also it breaks our 

abstraction that a block is an atomic unit. So, we have always had this neat and 

convenient abstraction, but a block is like one indivisible unit. Hence what we do is that 

if we have a miss, we first fetch the entire block old contents of the block after that we 

write the new data. 

(Refer Slide Time: 46:04) 

 

So, how do we do this? So, so we write the new data we also need to remember if you 

know new data was written to a block after it came to a cache. So, we maintain a 

modified bit in the tag array. If a block has been written to, after it was fetched into a 

cache we set it to 1; otherwise by default the entry remains a 0, but if you write to it then 

yes 0 becomes a 1. 



 

 

(Refer Slide Time: 46:37) 

 

So, there are two policies one is write through and one is write back. So, whenever we 

write to a cache well. So, because we have inclusive we have an inclusive cache 

hierarchy any block which is present in the L 1 cache a block will also be present the 

same block the same address will be present in the L 2 cache; however, the block in L 1 

cache can have newer data. So, there are two ways of handling this one is write through 

and write back. So, write through says that whenever we write to a cache we also write to 

its lower level and in a lower level you will have the block that is guaranteed by the 

property of inclusion. 

So, this basically means that if I have a system like this with an L 1 and an L 2, I write to 

any block I do a store to any block in L 1 it gets propagated to the copy of the block in L 

2. So, this has some advantages one advantage is that I do not have to maintain a 

modified bit. Well we needed in some cases, but in general, no. If I want to throw this 

block out of the cache i can happily throw it. So, we can sort of seamlessly evict data 

from the cache. 

So, in that sense for write through actually you know unless we when we are doing a 

simple discussion a modified bit is not required, but in the case of a write back the idea is 

different, we do not write to the lower level and also whenever we write we set the 

modified bit to 1. So, the advantage of write back over write through is that we are sort 

of reducing the number of accesses to the lower level. 



 

 

So, let us assume that there are hundreds or thousands of accesses to the same block in L 

1 if it is write though every single access will go to L 2, so that will waste a lot of power 

and create a lot of traffic to L 2. What the write back cache instead would do is that it 

will keep on writing to L 1 and I will just set the modified bit to 1, nothing else. So, in 

write through cache in advantage was I needs to throw something out of L 1; I can just 

throw it out. In the case of write back, it is slightly different at the time of eviction of the 

line eviction means when it is been thrown out, we need to check the value of the 

modified bit. If it is not modified, well we can throw it out; if it is modified, we need to 

write it to the lower level right such that the changes are at least there. 

(Refer Slide Time: 49:27) 

 

So, after write back and write through here again; what is the trade off actually let me 

just go back one slide. The trade off is that write through is far more traffic at the lower 

level, but evictions are cheap. Write back the advantage is the traffic at the lower level is 

low, but evictions are expensive. 

Now, let us take look at the insert replace and evict operations. So, if we do not find a 

block in a cache we fetch it from the lower level when we insert block in the cache 

within insert operation. So, let us add some new state let us add a valid bit to a tag, if the 

corresponding line in the data array is nonempty which means there is some valid data, 

the valid bit is 1; otherwise it is 0. So, what is a structure of tag in a tag array? Now we 

have the tag part of the address, we have a modified bit and a valid bit. 



 

 

(Refer Slide Time: 50:30) 

 

So, when we are inserting a line, let us say it is coming from a lower level, we check if 

any way in a set has an invalid line, which means its valid bit is 0. So, line is empty, the 

entry is empty basically. If there is 1, then we write the fetched line to that location and 

set the valid bit to 1. So, consider a four way associative cache which has 4 entries for 

each set after mapping to a set we find that the last entry is empty. So, if any new line is 

coming that mapped to this set it can be put in the last entry. If that is not the case, we 

need to find a candidate for replacement throw it out which basically means evict and 

insert in this new position. 

(Refer Slide Time: 51:21) 

 



 

 

So, replace operation means that we are searching for a candidate in a set for 

replacement. So, a cache replacement scheme or replacement policy is basically to find 

you know one victim right in the set. So, there can be many schemes they have their pros 

and cons. So, we can have a random replacement scheme where inside a set we can 

choose any of the ways at random right if all of them have valid data choose any one. So, 

recall that a fully associative cache is also a generalization of a set associative cache 

where the entire cache is one set. So, the same schemes applied. 

So, one solution is just at random chooses any line and just throw it out. At this 

advantage is the temporal locality is being hampered and the reason that is happening is 

because may be you know one of these lines is very frequently accessed and this gets 

thrown out we will have more misses we can then have a FIFO replacement schemes 

FIFO is first in first out. So, in this scheme when we fetch a block we will assign it a 

counter value equal to zero and for the rest of the ways. So, we will keep a countered 

with every way in the tag array. So, when we fetch a block for the first time we will keep 

its counter as 0 and we will increment the counters of the blocks in the rest of the ways in 

the set. So, this will ensure that how do we know which block came the first by the one 

that has the highest counter. 

So, if we have a three bit counter well the counter can at best reach seven, but that is all 

right. We will at least find one of the entries that are the oldest we will be able to throw it 

out. 



 

 

(Refer Slide Time: 53:26) 

 

As mentioned on the previous slide we choose the way with the highest counter for 

replacement. So, let me give an example. Let us consider a four way associative cache 

with fours entries. So, assume that initially everything is empty and we bring in the first 

block. So, it has a counter of 0. After that we bring in one more block into the set. So, 

that has a counter of 0, and this is incremented to 1, then we bring in one more block. So, 

we increment the rest of the counters this to 1 and this to 2, then again we bring in one 

more block. So, we increment this to 0, this is 0 to 1, 1 to 2, and 2 to 3. Then it so 

happens that this block which you brought in which is essentially the earliest the oldest is 

accessed extremely frequently right, this is this block is extremely popular. So, it is 

accessed extremely frequently. 

And then we try to bring in one more block into this set the one that will get evicted in 

this block, but this is may be the one that should not get evicted and may be this block 

was getting accessed extremely frequently. So, this will violate the principle of temporal 

locality and. So, a line that is fetched early might be accessed very frequently. So, this 

might not be the right thing to do. What we want to do instead is evict that line which has 

the least probability of being accessed in the future. There is no way of knowing what is 

going to happen in the future, where at least we should look back into the past and try to 

find a line which most likely, we will not access in the future right in near future. 



 

 

(Refer Slide Time: 55:23) 

 

So, one such scheme is LRU least recently used. So, the idea here is that we replace the 

block that has been accessed the least in the recent past. So, basically from the past we 

are trying to predict the future right from the past we are trying to predict the future. So, 

what we do now is that we try to find that block which let us say in a in a recent past 

right which was may be accessed the least in the last hundred cycles or something like 

that. So, this follows directly from the definition of stack distance. 

So, we are essentially choosing a line which is the lowest in the stack, but we cannot 

really maintain a stack. It will involve a lot of work and it is not possible to that with a 

limited number of bits in hardware. Even though this approach has been proven to be 

optimal in some scenarios a true LRU is hard let us instead implement something called 

a pseudo LRU which in a sense gives us little most of what LRU promises. 



 

 

(Refer Slide Time: 56:45) 

 

So, pseudo LRU is like this let us try to mark the most recently used elements something 

that is not most recently used we can think of it as least recently used. So, let us associate 

a 3 bit counter with every way. So, we will pretty much argument an entry in the tag 

array to have additional 3 bits. Whenever we access a line we increment the counter and 

we will stop incrementing beyond 7. So, we will assume that 7 plus 1 is equal to 7, and 

then what we do is that. So, so let me may be you know till this point show an example. 

So, let us say that we have different line. So, they can have different counts. So, then we 

access this line. So, from 4 it will become 5. Then we access this line it will become 

from 2, it will become 3, we can access this, this will become 3, again we access is 

becomes 4, we access this, this becomes 6 and so on. Then what we do we periodically 

decrement all the counters in a set by 1. So, periodically every few hundred cycles or 

thousand block cycles we decrement the counters by 1. So, instead of 3, 6, 4, 3, we will 

replace it right with instead of 3, 6, 4, 3, what will we have we will have 2, 5, 5 and 2. 

So, why do we this because if you do not do this ultimately all the counters will read 7 

and remain at 7. 

After this, what we do is that whenever there is a new access we will keep on 

incrementing. Now, let us say a new block comes. So, if a new block comes which one 

will a evict well the one we should evict the one with the smallest counter this means in 

the recent past it has been accessed the least. So, let us say there are two with count value 



 

 

of two. So, let us try to evict this one. So, when we throw this out, the question that 

remains is what should be the count of the new block. Well, the new block is the most 

latest say it should have the highest priority as per temporal locality. So, we will set its 

counter to 7. 

Let us assume that after some time you know may be in the next thousand cycles none of 

these are accessed, so then gradually we will decrement that count by one. So, this will 

become 1, 4, 2 and 6. Then assume that we have some more accesses. So, then the counts 

will keep increasing. So, the logic here is that we always evict the block with the 

smallest counter and that is because this means that in a recent past this block has been 

accessed the least right. 

So, if it in the recent past it has been accessed the least this means that even in the near 

future will most likely not access it, but something that has been accessed quite a bit in 

the recent past. We will be accessing it also quite a bit in the near future, so that is the 

reason we do not evict it. And also we set the counter to seven which is the highest we 

can for three bits for a newly fetched block. And the reason is that if a block is coming 

just new, we want to keep it for some time right as per the definition of temporal locality. 

So, pseudo LRU is very popular it is very commonly used and it has a lot of benefits 

associated with its. So, it is known to be one of the best replacement schemes and the 

idea is very simple we have a logic for incrementing whenever we access the increment 

do not go beyond seven in this case. Periodically we decrement because unless we do 

that all the counters will remain at 7. Whenever a block comes in, it comes in the highest 

priority which is 7 and for replacement we choose the block with the lowest counter; and 

the lowest counter means in the past it has hardly been accessed. 



 

 

(Refer Slide Time: 61:03) 

 

Then we consider the evict operation well this is very very simple, if the cache is write 

through nothing needs to be done we can throw out the line. If the cache is write back, 

and the modified bit is 0 nothing needs to be done we can evict it. If the modified bit is 1, 

it means that new data has been written to this line. So, we need to write the line to the 

lower level and then evict that is the only difference. 

(Refer Slide Time: 61:34) 

 

So, let us take a look at all of these operations in a diagrammatic fashion that will 

hopefully clear up things. So, let us take a look at the load operation right to load 



 

 

something. So, we can do a lookup. So, lookup essentially means that we access the set 

in the tag array, and we do we compare each entry in the tag array with the tag part of the 

address. So, a part of this particularly after computing the set index a part of the lookup 

process can be overlapped to the data read operation. So, this can be the period of 

overlap. And we have already discussed how we can get an overlap and this mind you 

happens in the case of a hit and this is what we do in the case of a miss. 

So, let us discuss the case of a hit first. So, in this case, once we have started the process 

of reading all the four tags in the four way associative cache, we can also read they 

corresponding data values from the data array. So, we can start reading them in parallel 

even though all four will not be required, but that is ok we are sort of trying to reduce the 

time. 

Once at the end of the lookup stage we know whether it is a hit or miss, so if it is a hit 

and we know exactly which index has the data value, we can then after the read finished 

choose that one. So, at least by a little bit of overlap, we save some time. Instead if there 

is a miss then so basically we do a lookup in the lower level cache, we read the block and 

then we insert it right, and after inserting the block it is possible. So, these question 

marks indicate that it will not happen all the time it can happen sometime. We find a 

candidate for replacement right one of the lines and then we evict it. 

So, if it is a write back cache it there is a necessity of there can be a necessity of writing 

it to the lower level if it is modified and then again we insert the line that has come. After 

that we again go to this stage where we well in this case we know where exactly we put 

it. So, we can issue a data read after this. I am sorry we do not have to actually go here, I 

am sorry about that I just take back what I said in the last fifteen seconds I am sorry. 

What we need to do is that we do not issue a data read because it already read the data 

from the lower level. So, we do not need to read it once again from the higher level. So, 

since we have read the data, the values are already available. So, this can be passed as an 

output fine. 



 

 

(Refer Slide Time: 64:43) 

 

So, let us take a look at a write operation in a write back cache. So, in the case of a write 

operation, if there is a hit, we cannot have an overlap between lookup and data write, so 

that is not possible because otherwise you know we cannot write to all the four data 

blocks right we will end up corrupting at least three. So, the right approach is that we do 

a lookup first if the data is there, we address the right entry in the data array and we do a 

write to it. 

Similarly, however, if there is a miss then we do a lookup in a lower level cache, we get 

the block and we try to write the block. So, the way that we try to write the block is 

something like this that we first insert it. So, first write the block which basically means 

that the new data that we want to write is written to the block that we read from lower 

level, and then we try to insert the you know block with the new contents into the cache. 

If you find a place to insert well and good otherwise we need to follow the replace evict 

insert you know this sequence of three operation. 

So, you find a candidate for replacement we evict it. So, there can be a necessity of 

writing it to a lower level also, because it is a write back cache and then we insert the 

new line. 



 

 

(Refer Slide Time: 66:27) 

 

If it is a write through cache, something else needs to be done. So, if it is a write through 

cache will this part remains the same, in the case of hit we do a lookup and a data write, 

but we also send the right to the lower level. So, this was what was if you look back at 

the previous slide this was not happening over here, but in the case of a write through 

cache, whenever we write we need to send it to the lower level. 

If there is a miss, what we do is that we do a lookup in a lower level cache, we get the 

block, we write the new contents to the block write, so whatever integer or float or 

double whatever you wanted to write. And the new contents of the block are once again 

written to the lower level cache. And also at the same time we try to insert it in the upper 

level cache. We find a place well and good otherwise we need to do a replace you know 

the sequence of replace evict and insert operations. 

So, note that in this replace, evict, insert sequence nothing needs to be done, we do not 

need to access the lower level cache. And the reason is that is a write through cache and 

we do not have any lines in the upper level which have any modified data. So, the 

modified bit essentially for all write through caches lines is 0. So, this is essentially 

because we have written the block at the time of at an earlier point of time which is this 

point to the lower level. 


