
Computer Architecture 

Prof. Smruti Ranjan Sarangi 

Department of Computer Science and Engineering 

Indian Institute of Technology, Delhi 

 

Lecture - 25 

Processor Design Part-III 

 

(Refer Slide Time: 00:25) 

 

Let us now discuss the implementation the beq and bgt instructions. So, recall the beq is 

branch of equal. So, equal means the equal flags dot E flag bit set. Means that the last 

comparison resulted in an equality, and flags dot GT is used for the bgt instruction. 

Means, the last comparison resulted in one number; the first operand being greater than 

the second operand. So, let us look at beq first. Sorry this should be q all right. So, first 

thing that we do is that we test the flags register. 

So, we invoke the m beq micro instruction to test flags dot E. So, recall that flags dot E is 

also a micro register; that is exposed on the shared bus. So, we compare flags dot E with 

one. If there is equality then we jump to the dot branch label otherwise. So, otherwise 

pretty much you know if there is no equality, this instruction is as good as no (Refer 

Time: 01:42). So, then again proceed to the next instruction. So, we jump to mb dot 

begin which means, sorry this should again be here mb dot begin, which means that we 

move to the beginning of the preamble. 



So, if let say we are branching, then what we need to do, is that we have already 

computed the branch target. So, recall that the branch target, once computed in the 

decode stage. So, the branch target was saved in a separate micro register. For non 

branch instructions it contains junk, but for branch instructions it contains a valid branch 

target. So, we move the branch target to the pc register, and then again we jumped to the 

next instructions. So, beginning of the preamble, but this time when the preamble 

execute, it will see an updated value of the pc which is the target of the branch, not old 

pc plus 4. So, it will start execution from that point. 

The bgt instruction is exactly the implemented in exactly the same way. It is just that 

instead of comparing flags dot E with one. We compare flags dot GT with one, if there is 

equality we move to dot the dot branch label; otherwise we move to the preamble, and 

then we move the branch target to the pc, and we start executing preamble for the next 

instruction at the branch target one again. 

(Refer Slide Time: 03:17) 

 

Let us now take a look the call instruction. So, the call instruction is very similar to the 

branch instruction, is just that little bit of more works needs to be done. So, what we 

need to do is that we need to save the value of the pc, after the call instruction the next pc 

into the written address register. So, if you recall in the preamble. So, in fact, in the third 

statement of preamble, we are actually incremented the pc by 4. So, we are set the 

current pc equal to the old pc plus 4. So, that we are already done. So, what is there in 



the current pc is actually the old pc plus 4. So, we do not have that incremented once 

again. We can directly write it to the written address register. So, what we do is, that we 

transfer the contents to the regData micro register. Then this is what is supposed to be 

written to the register file, and then we transfer 15 to regsource. So, why 15, because 15 

is the id of the written address register, is the id of r a, and simultaneously we sent the 

right command on the shared pass. 

So, basically what we are doing, is that we are writing the value of pc, the value in the pc 

register, which is the current pc plus 4, which is essentially the address of the next 

instruction, to the register file, and which register the register file register 15 r a. Once 

we have done that we can jump to the branch target. So, we load the branch target in the 

pc which is equivalent to a jump, and we move to the beginning of the preamble such 

that we can execute the next instruction. 

(Refer Slide Time: 05:08) 

 

Let us next look at the ret instructions which is nice and simple. So, what this does is that 

we read the return address register number 15, and save it is content in the program 

counter pc. So, what we do is that we load 15 into regsource with the mmovi instruction 

then mmovi immediate, and we simultaneously send the read command on the bus, so 

we read the register. The data will be available in the microreg micro register regVal; we 

should essentially contain the return address, this we move to the pc. So, once we have 



done that, we can again jump to the beginning of the preamble, and execute the 

instruction at the return address. 

(Refer Slide Time: 05:59) 

 

Let us now consider an example. So, let us change the call instructions, to store the 

address on the stack, instead of the in the r a return address register. So, we will just 

show the microcode, the preamble will not be shown, because it is common to all the 

instructions. So, stack based call instructions is like this, that the first thing that we need 

to do is, that we need to read the value of the current stack pointer, then we need to 

decrement the stack pointer and store the return address there, and we need to return. 

So, let us do, let us read the stack pointer first. So, the first thing that we need to do, is 

that we move the id of the stack register, the stack point register 14 into micro register 

regsource, and simultaneously we do a read command. So, we are basically reading the 

value of the stack pointer from the s p register. Once we have done that, the value of the 

stack point will be in the regVal register, which is the output of the read instruction of 

the read micro instruction. 

So, now what we do is that we will decrement the value of the regVal by minus 4, which 

essentially means that we are creating some space on the stacks. So, if say let say this is 

the last element on the stack; we are decrementing the stack pointer by 4 bytes, which is 

the size of an integer in the 32 bit system. And we are creating the some new empty 

space where something can be stored. So, we are essentially decrementing the stack 



pointer here. So, we read it first, then we use the m add instruction to add minus 4 to it. 

So, we decrement the stack pointer. And once we decrement the stack pointer, this 

becomes the new value of the stack pointer. 

So, what we simultaneously do is that since we need to store something over here. We 

send this to them mar memory address register, in a mar micro register. So, we send it 

there using simple mmov call. So, we send the updated value of the stack pointer which 

is the old sp minus 4, to the mar micro register, using an mmov instruction. So, this is to 

be required. So, I will use store the return address. 

Now, let us come back now that the stack pointer has been updated, it needs to be return 

back to the register file right. So, what we will do is that we will write it back. So, since 

we will write it back which register are we writing it back, we are writing it back to 

whatever is stored in regsource. Since 14 the id of the s p register has been stored in 

regsource, and we are subsequently not changed regsource. So, the value 14 will remain, 

the stack pointer will remain. regVal has been updated with this mar instruction, where 

we have essentially computed the new stack pointer, which is old s p minus 4. 

So, this value will be written to return back. So, the way we will do it is that we write it 

to regData which contains the data that needs to be written, and simultaneously we will 

issue the write command. So, this will update the value of the stack pointer inside the 

register file, and the new stack pointer will be the old stack pointer minus 4. So, the 

register file will thus contain the updated value. 

Once that is done; so we need to write the return address, to the you know to the new 

location on the stack that we have just created, and the return address will be there in the 

pc register, the reason being that if you recall the third or the fourth instruction in the 

preamble was that we are incrementing the pc by 4 right. So, pc is equal to pc plus 4. We 

already had this part in the preamble, so may be quickly go back to the preamble and 

show you. So, this is where we are m add pc 4. 

So, back, all right. So, we have already incremented this by four. So, this contains a 

return address. So, we move this to the m d r micro register, and simultaneously we issue 

the store command on the bus. So, this ensures that we store it to this location on the 

stack. So, let us see how. So, the mar register which contains the address, already 

contains the location of the new stack pointer, this has been done here. So, the address is 



correct, and now we transfer the data, that what is the data. Well the data is the value of 

the return address which is stored in the current pc register. This is transferred to the m d 

r micro register, and simultaneously we issue the store command. So, as a result in a new 

stack location that has been created the return address is stored over there. Now that we 

are done we finish the execution, and we jump to the beginning of the preamble by 

calling the micro instructions mb dot begin. 

So, this instruction is. I am sorry, this example is indicative; it is representative of the 

whole host of optimizations and complex instructions that we can add, with the micro 

programming mechanism, and we can also change the behavior of current instructions. 

for example, let say we take the call instruction, we change this behavior to actually 

write the return address on the stack right, instead of in the r a register, and similarly we 

will have to modify the ret instruction as well, but it is possible to do all of that, and it is 

possible to all of that fairly easily. 

So, the important point that we are making here is by exposing details of the internal of 

the processor. We can implement new instructions, make existing instructions work 

differently, and this can help us add a lot of additional extremely sophisticated 

mechanisms, to word processors. All right, now that we have seen most of micro 

programming. Let us quickly take a look at the micro control unit, or the unit that runs 

these micro instructions. 

(Refer Slide Time: 12:36) 

 



So, this is the shared bus we have until we will be looking at it, as one set of parallel 

wires right; that is the only way that we have been looking at this. We are not been 

looking at it you know very differently, but now we will sort of create a more 

complicated structure, and we will see how it works. So, the way that we design the 

shared bus is like, this that we actually have two buses write bus. So, write bus is the set 

of copper wires, where all the registers, sorry the micro registers that can write to it or 

connected. So, all the decode registers like I r and r s 1 r s 2 r d, all of those decode 

registers the pc register, they are all connected to the write bus. 

Similarly, all the register file ALU and MEM unit micro registers are connected to write 

bus. So, all of them dump their values to the write bus. Of course, all of them are not 

activated at the same time. So, we have separate activation signals for one. So, only one 

of these registers is activated. So, an activated state means, that it can write it is value to 

the write bus, and the rest of them are quite. So, we will need separate control signals for 

them I am not shown that the details are in the book, subsequently what we do. So, this is 

one of the inputs from the write bus which can go to this multiplexer. We call this 

multiplexer the transfer multiplexer in the book, mainly because it transfers you know 

data from a writer to reader; that is all you know, we do not use any other sophisticated 

terminology. 

In the addition we have a micro control unit. So, the micro control unit peruses the 

immediate (Refer time: 14:27) just in case that is a micro immediate, that we are using 

like a m arrow something or moi. So, in this case, the micro immediate is added to 

whatever register value is being sent on the write bus, and the added value is the second 

input, like an m add instruction the added, the result of the addition of the micro 

immediate with the micro register value, this will be sent to, at the second input of the 

transfer multiplexer. 

So, let me give an example, let us assume that we have a microinstruction of m add pc 

and 4, so essentially pc will dump it is value in the write bus, and the micro immediate is 

four. So, both of them will get added, and that will be, the result of the addition of the 

second input. The immediate it iself can be an input to this transfer multiplexer, and this 

will be in the case of mmovi which we have actually seen. We have seen where it. This 

is where we saw right mmovi regsource 14. 



So, what mmovi is doing is. So, let us see. So, in this case we take the micro register, and 

we move a constant to it, and this micro immediate can be one of the value which is 

being, you know one of the values which is being transferred, from a writer to a reader. 

So, that is the reason it is also one of the inputs to the transfer multiplexer, which is 

controlled by a set of control signals, which we shall discuss later. In addition for the, for 

finding out, whether you know the microinstructions, whether the branch instruction mb 

q, whether there is an equality or not between the immediate and let say the value in a 

register. We also have an equality circuit here, which compares the value that, you know 

compare the value of the immediate, and also the value of one of the registers. So, it 

compares both. And then what it does is that it generates an equality signal. If there is 

equality, then ism branch signal is true; otherwise it is false. 

After this, so, these are all you know micro registers that are writing to the write bus, on 

the read bus. The read bus will essentially transfer values to the micro register. So, the 

read bus will transfer values to the pc and that. So, in the sense the pc can be updated. 

And how will you get updated; by you know any one of these mechanisms that can be 

used to update the pc. So, that will read it is new value from the read bus, and also you 

know there is a micro registers of the type m a r m d r right regVal and so on. So, all the 

other micro register associated with the register file ALU and MEM unit, they can be 

updated via values coming from the read bus. So, they will read it from the read bus and 

update themselves. So, that is the way we will build our circuit. 

(Refer Slide Time: 17:54) 

 



So, there are two kinds of, there are two kinds of ways, there are two types of 

microprogramming; one is called vertical microprogramming, which is, well which has 

some advantages, and the other is horizontal microprogramming. So, let us consider a 

micro instruction, how it is encoded. So, this is one particular way of encoding the 

microinstruction. So, in this case we use 3 bits for the type of the microinstructions. So, 

we have 8 microinstructions we need 3 bits, 5 bits for the source register, actually if you 

count we have lot of source registers right. So, basically 5 bits for the source register, 5 

bits for the destination register, 12 bits for the micro immediate, 10 bits for the branch 

target in the micro code memory. 

Because we are assuming the memory is not very large, and also from you know. So, we 

are also assuming the memory is organized in this fashion that in each entry there is 1 

microinstruction. So, we do not have to go from one entry to the other, we do not have to 

add 4 we just have to add 1 which means the next entry. So, ten bits means a table with 

thousand twenty four entries. So, 1024 microinstruction; that is the size of all the 

microinstruction; that is the size of the microcode sequences of all the instruction that we 

support. Then we can have a ten bit value for the args field, out of this 3 bits can be for 

the unit id. So, which unit are the arguments meant for and. So, you know the other 

meant for the register file or the memory unit or you know the ALU, and 7 bits for the 

type of operation that we want to perform. So, this part is slightly over design; 

nevertheless it is over designing and also useful if you want to extend the design. 

So, the total number of bits are 10 plus 10 20 plus 12 22 27 that, I am sorry 20 plus 12 is 

32 37 42 and 45. This is the 45 bit instruction that we can create a 45 bit encoding, that 

we can create for every micro instruction. So, what is essentially required you know to 

process this, is a actually a processor which will have a fetch stage for the 

microinstruction. So, these are there in the book, then it will have the decode stage, 

where essentially this 45 bit is decoded. And subsequently an executes stage where the 

actual instruction is executed. So, it is we need a three stage processor to process this. 

So, I am not discussing this in detail, because they are there in the book, and also it will 

be a kind of reputation, because we have already looked at a lot of processing in the 

previous lecture. So, I do not want to talk about the same things over and over again. 

Another way that we can do this is, horizontal microprogramming, where we actually get 

rid of the decode stage. So, you know. So, we assume that, what is decoding give us. 



Decoding gives us the values of all the control signals right. Well in principle we can 

take all the control signals, and, because for every instruction we can compute it is 

control signals, and we can encode the control signals themselves. For example, let me 

consider an instruction of the type m add pc and 4. So, then that would may be in a, 

generate a long list of control signals; some zeros and some ones and so on. 

So, one is that we separately encode m add separately encode the pc registers, separately 

encode four all of that is good, but another way can be, that we you know. Of course, we 

need to encode the value of four and an immediate, but for the rest we can just have a list 

of control signals, which will control which part of the circuit are active, and values of 

the read bus and write bus right, the control signals for the transfer multiplexer and so 

on. So, we do not need a decoding stage at all. So, this is called horizontal 

microprogramming, where you know the control signals will directly be part of the 

instruction encoding. 

(Refer Slide Time: 22:16) 

 

So, in this case we will have 10 bits for the branch target; fine fair enough. We will have 

12 bits for the micro immediate, ten bits for the arguments, same you know in same 

format as this 3 bits for unit id, 7 bits for operation code. In addition you know instead of 

having these other fields, like type of instructions source register, you know these three 

fields right, we will get rid of this, instead we will have 33 bits bit vector that encodes all 

the control signals, where does 33 comes from. 



Well, readers need to go to the books, so breakup is given. But the long and sort of it is, 

the summary of this is that we are getting rid of these decodes state completely, because 

the decoded information will be part of the instructions encoding. So, we do not need a 

separate decode stage. So, this will essentially be a two stage processors will have fetch 

and execute. So, the advantage is we are getting rid of the decode states, so our logic will 

be simpler, and the processing will be faster; that is the advantage of horizontal micro 

programming. 

The disadvantage of horizontal microprogramming is that we will have a longer 

instruction, we will take one instruction, and we will require more bits to store. So, it will 

require 65 bits, as compared to 45 bits of vertical microprogramming. So, number one 

will require more size ,which when some cases, in some cases it is not, but the other 

bigger thing is, that we will have to expose all the details including control signals of the 

hardware to firmware right. So, this is hardware, and this is firmware, where you know 

all are microcode is there. Previously we are just disclosing the names of the micro 

registers and so on. So, for vertical microprogramming that was fine, but for horizontal 

microprogramming we will have to disclose all the control signals right, and this might 

be too much number one from the security point of view. Number two; we have 

absolutely no flexibility in changing the design even. If you change the design a little bit, 

these control signals will change and as a result the firmware it will become useless. 

As compared to that if we use vertical microprogramming, and we still keep the register 

names and id is the same for example, we still have pc and i r and r s 1 r s 2 and so on, 

but if you make some internal changes in the control signals change, it will not affect us, 

because we still have a decode stage and the decode stage inside the microprocessor. Not 

the microprocessor the microcode unit of the processor will generate the control signals 

differently. So, we still have some you know freedom and flexibility. 

In this case the amount of freedom and flexibility that we have is pretty much 

nonexistent, the reason being that we will not be able to make any change. Even if there 

is a mini skew change in the hardware in the control signals change. So, clearly trades 

off flexibility here. If I consider a horizontal microprogramming and flexible and vertical 

microprogramming, if I see the size of the instruction, size of inst. So, in this case; well 

this is bad and this is good. 



If I consider may be you know a speed and complexity, and then you know this is good 

and this is bad. If I consider flexibility of, you know changing the control signals or other 

you know simple details of the hardware, horizontal has no flexibility at all. Whereas, 

vertical microprogramming still gives this some amount of flexibility. So, that is clearly 

a tradeoff between both the approaches, is not the case at one approach is strictly better 

than the other. So, these have to be kept in mind. 

(Refer Slide Time: 26:22) 

 

So, here is the quick description of the, you know of the microcode execution engine of a 

vertically microprogramming processor. So, this is very simple. So, we are not 

discussing this in great detail. So, we have a micro pc which goes to the micro program 

memory, and it basically is incremented, you know which sequentially scans it unless 

there is a jump. It reads each micro instructions which is send to the decode unit which 

enrich the control signals, that go to the execute unit. The execute unit uses the control 

signals to control the data path, as well as shared bus, notably the transfer multiplexer, 

and that is how the execution is performed. In addition the data path sends the opcode to 

a specialized unit called switch, which tells the micro code unit, which location in the 

micro program memory to jump to; that is one input of this multiplexer. 

In addition we can have micro branch. So, then we can have a branch target. So, this can 

go here. So, this location can definitely go here, and then the default will be, that we will 

add one to the current micro pc, which is the next micro pc. not four, but one, because it 



is entry wise not byte wise. Then the micro mux will choose one of these three targets, 

and choose one of the micro pc. This is as such in a extremely simple processor, which 

basically has a fetch unit over here, which has the decode unit over here, and then the 

execution unit over here. And the execute unit basically let us the circuit run with the 

control signals that have been generated by the decode unit in the previous cycle. So, that 

is pretty much all; that is there to this. 

I just have one clarification to make. So, there is little bit of confusion regarding the 

terms, but there should not be. So, this branch target is actually a micro branch target. So, 

maybe even I will update this in other version of the slides, so slides are there on my 

website. So, this should actually be the micro branch target, it is not the simple risk 

branch target, rather it is a branch target in the micro program memory, and this will 

essentially come into being, because of the mb and the mb q instructions. So, they will 

you know make the micro code jump from one place to the other. So, it is that branch 

target, it is not the simple risk branch target that is needed to be kept in mind. 

(Refer Slide Time: 29:16) 

 

So, this is the processor design of horizontal microprogramming, which is equally 

simple, but it is, well it is slightly simpler. So, the most of the circuits remains the same 

we still have a micro pc over here, which supplies the value to the micro program 

memory. And since all the control signals are already embedded inside the micro 

instruction itself, we just have a fetch stage and an execute stage. The control signals r 



send to the data path, where they control the movement of data, and also the transfer 

multiplexer. In addition you know we have actually two multiplexers here. So, this 

multiplexer essentially gets the micro branch target. This should be the micro branch 

target, and because, so that we do not confuse it with the branch target micro register that 

we have, which is actually for simple risk. So, this is the micro branch target, and also 

the default next micro program. So, we choose one of them, and that is one. 

And in addition what we do, is the. So, basically you know the way that we choose. So, I 

will just tell you why we have two multiplexer here. So, we have 1 m 1. So, essentially if 

the instruction is the branch, and if the branch is successful if it is taken, then we will 

choose one of these. Otherwise you know if this instruction is not a branch, and it is not 

relevant. Then essentially we move the both the branch targets, and the default next 

micro program pc right to the micro mux. So, this part could have been designed 

differently, but the main sprit of these two multiplexer is, that we will use ism branch 

signal mainly for comparing with an immediate, which is basically m beq. 

With the m beq micro instruction we compare the value of register with an immediate. 

So, this will only take care of that, other than that for a we will use the micro branch 

target, let say mb kind of instruction, that will directly use in the micro mux, and this will 

serve as the default right, which is the default next micro program counter. In the 

addition we will have, we will send the opcode switch unit which will generate address 

in the micro program memory that we need to jump, to for a given separator instruction. 

So, we need to choose among these four inputs. Of course, in theory, the m one mux 

could have been removed, and we could have just add the micro branch target and the 

default value right. Possible could have been done which is sorted to meet the control 

circuit, slightly more complicated this was slightly simpler to design and visualize; that 

is the reason this design was chosen. 

And you know there is no other reason, there no other reason why this cannot be 

removed, is just the logic has to be changed a little bit, but it is still fine, and once we 

choose a next pc, this can be fed to the micro program counter; the next micro pc that is 

we can send it to the micro program counter all right. So, this brings us to an end of the 

chapter on microprogramming, and we will then look at making processors and 



processor design much more efficiently. So, we will discuss a technique called pipelining 

in a next chapter which is chapter 9. 


