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Welcome back. Let us take a look at floating point addition. So, we will take a look at all 

3 floating point addition, multiplication and division. 
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Let us start with the addition. Additional multiplication is done almost similarly. 

Division is how a different is very interesting. 
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So, let us quickly go back to chapter 2, and quickly do a revision of how floating point 

numbers are stored. So, we will use 30 bits 30-bit number system as the running 

example, but you know same results holds for 64 bit. So, I will not you know, in a cost 

of, you know not repeating the same thing. Rather I will not repeat it. 

So, in a 32 bit number system we store 1 bit most significant bit is the sign bit. So, any 

number this has a normalized form. So, normalized form basically says that we take this 

number minus 1 and to the power S if S is 0, the sign bit is 0 means that this is 1, 

otherwise is a sign bit is 1 means that minus 1 to the power S is minus 1. So, this number 

is negative. Then we store a significant. So, the significant is of the form 1 point a 

sequence of 23 0s are 1s. 

So, the significant is less in a greater than equal to 1 or rather 1 is less than equal to P 

and is less than 2. Then we have 2 times E minus bias where E is a real. So E is the 

exponent that is stored and bias is 127. So, for example, if we want to represent a number 

the form let us say 1.5, let me go over here let us say we want to represent a number of 

the form 1.5. So, 1.5 in this then would translate to 1.1 in these 2. So, in this case the sign 

bit is 0, and then we will save a 23 bit mantissa. The main reason being that the 1 here is 

common; so the 23 bits of the mantissa. 

So, go back to chapter 2 just in case you have forgotten what these terms are so, the 23 

mantissa bit mantissa will say one and all 0s pretty much and after that we will save the 



exponent. The exponent is stored in the bias notation, and so if the exponent in this case 

is nothing is 1.1 times it is 1.5 times 2 raise to power 0 right. So the exponent basically is 

0. So, what we will do is that we will set E as 127, such that the real exponent is 127 

minus the bias which is 0. 

So, that is pretty much. So, in a 32 bits the way that we would store is that we will have 

one bit for the sign. We will have 23 bits for the mantissa. Then we will have 8 bits to 

store the exponent. And the exponent is stored in the bias notation. The real notation is 

actually the E minus the bias right that is the real exponent. And we also mentioned that 

we have. So, since this number can verify from 0 to 255 we also mentioned that 0 and 

255 are used to hold special values. 

So, in particular if we use the value 0. So, last 8 bits are 0, it meant that it meant 2 things 

if the significant is 0 then the number is 0. Otherwise if the significant is non-zero then it 

represents a special kind of number. So, we will this special kind of number is called a 

denormal number. And we also said that if the exponent is 255 which is the highest value 

and then if the mantissa is all 0s. Then it can either be positive or negative infinity and if 

the mantissa is not 0 then it is not a number. 

So, I am not discussing these things in detail here, because we already spent a lot of time 

discussing these issues in chapter 2, but let me nevertheless just summarize, let me just 

summarize that information that we require. So, what we require is that any floating 

point number can be expressed in the normal form. Where it will have a sign bit which 

will determine the sign of the number. Then we will have a significant which is of the 

form 1 point then 23 0s are 1s. So, this part is called the mantissa. 

So, it can be any combination or 0s or 1s, but just 23 of them. And then we will have an 

exponent the exponent is stored in a bias notation. And the bias is 127. So, we also took 

into account the fact that when the exponent is 0 then we can have a special class of 

number called denormal numbers. Where the standard form of a denormal number is like 

this. I show here there is a small error in this slide. So, instead of one it should be 0. So, 

0 is less than equal to P is less than 1. 

So, as we can see is that just where the range of normal numbers n. So, let us say these 

are all the normal number. Of course, the graph is not drawn to scale and let us say this 

number is 0. So, there is a tiny buffer of numbers here called denormal numbers. And the 



standard form of a denormal number is that it is of a number of the type 2 raise to the 

power minus 126 times P times minus 1 to the power S, but here the significant has a 

different form, is not 1 point something rather it is 0.23 0s are 1s right it is of the form 0 

plus the mantissa. Because the mantissa is 23 0s are 1s. Right, in the same number some 

combination of 0s and 1s. 

So, given the fact that we have seen this, we are now ready to in a sense take a look at 

the way that we shall do floating point arithmetic. 
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So, let us assume that we want to add the numbers A and B. So, if you want to do that let 

us take a look at the E field and the E field is the value that is stored right. So, it is the 

real exponent plus127 which is the bias. For example, when we try to save a number of 

the form 1.5 which is actually 1.1 in binary then the real exponent was 0. So, what we 

save is 0 plus127 which is the bias. 

Let us now take a look at floating point addition. So, let us first consider the inputs. So, 

we are given 2 32 bit inputs. So, the format of the input is as follows, that we have a one 

bit sign bit. We have a 23 bit mantissa, and we have an 8 bit exponent field. So, the 

exponent is stored in the bias notation. So, if the real exponent is x. So, what we are 

saving is x plus the bias. So, the real exponent is 0 then we are saying 127 because the 

bias is 127. 



Similarly, the B field is formatted in a same manner. We have a sign bit we have a 23 bit 

mantissa and we have a 8 bit exponent. So, we need to add these 2 floating point 

numbers, the result will be another floating point number, which is stored in exactly the 

same format. And we need to design an algorithm such that given A and B we can 

compute C. So, what we do is that let me just describe the pseudo code algorithm. So, 

what is the pseudo code it is basically a list of steps written in a kind of high level 

description of what the algorithm will do. Then hardware designers can take this 

algorithm and implement the circuit in hardware. 

Let us do one thing. Let us unpack the E fields, and unpack meaning let us extract them. 

So, let us call the E field of A as E A and the E field the B as E B and let the E field of 

the result be E C. Similarly let us unpack the significant. So, the significant recall that it 

is a number for in a normal floating point numbers it is a number of the form 1 point m 

where m is the mantissa. And mantissa itself contains 23 bits it is a number basically of 

the form 1 point you know 0 0 1 0 1 1, 23 bits. 

So, the one bit before the decimal point and the 23 bit mantissa make it 24 bits let us do 

one more thing. So, let us then assign it to a number of the form W where we add a 

leading 0 bit. So, let us say let me consider an example. Let us assume 1.5 in decimal. 

So, 1.5 in decimal is 1.1 in binary. So, in this case the significant is 1.1 and the mantissa 

is one followed by 22 0s. So, we will define a number of the form W. So, W is our form 

0 1.1. 

So, mind you the point cannot be stored in binary. So, we are only using it to enhance 

readability. So, it is position is implicit. So, W thus becomes a 25 bit number quantity 

and. So where does this 25 come? Again from once again the significant is of the form 1 

point the 23 mantissa bits. So, the significant is 24 bits, and we add a leading 0. So, this 

will become 0 1 point m where this is 2 bits and this is 23 bits. So, total it is a 25 bit 

quantity. 
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So, with no loss of generality let us assume that E A is greater than equal to E B. And let 

the let us call the significance of A and B as P B and P B respectively. Furthermore, let 

us define a temporary variable W which is of the same 25 bit form that we had discussed 

in the last slide, and let us get it by unpacking the significant of B, which has the smaller 

exponent. So, let us unpack P B and get W. So, now, let us take a look at the way that we 

want to do the addition, but before that let me motivate you by saying how we would do 

it in the case of decimal. 

So, let us assume I want to add 2 times 10 to the power minus 1 plus 4 times 10 raise to 

the power minus 3. So, I would first in a sense unpack it. So, this would be 0.2 this 

would be 0.004. Subsequently what we will do is I will write it in such a way that the 

decimal points are aligned. Then we will go forward and do the addition. So, what we 

need to do in a similar. So, let us there is also another way of looking at this let me may 

be erase part of it. 

So in this case the exponent of this minus 1 is greater than minus 3. Say instead what I 

can do is that I can write this as 2 raise to the power 10 to the power minus 1 no problem 

with that; however, this can be written in a different way. This can be written as 0.04 

times 10 to the power minus 1. So, 10 to the power minus 1 part being common I can just 

you know write it in this side and then I can add, 2.00 and 0.04 to make it 2.04 and then. 

So, this is the final answer is 2.04 times 10 to the power minus 1. 



So, what we can do is that we can do something similar. We can first make their 

exponents the same and then we can align the decimal points and perform an addition. 

To make the exponents the same what we would do is that we will make the exponent of 

B the same as the exponent of A and the exponents can be made equal by shifting W to 

the right by E A minus E B positions. So, another simple way you know very simple 

thing. So, E A minus E B is a difference in exponents. And so, what we will do is that if 

we shift W to the right by these many positions then effectively we will be multiplying 2 

to the power E A minus E B with E B to make it to the power E A. 

So, then we will have we will be able to align the decimals point and then add right. So, 

this is the first thing you mean any floating point addition we always align the decimal 

points. Aligning the decimals points essentially means that we make the exponents the 

same and we write it in such a way that we can just do a normal addition. 

So, we are doing exactly the same thing. We are setting the exponent of A and B to be 

the same, and this we are doing by right shifting W by E A minus E B positions. 

Subsequently, now that the exponents are same so their exponent field for both of them 

is A and the real exponent is of course, E A minus the bias. So that is fine. So, then what 

we can do is we can do W equals W plus P B, which means that I am adding the 

significant of P B plus the significant of P B in a sense right shifted by E A minus E B 

positions. 
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So, this is the same as equivalent to aligning the decimals points setting the exponents to 

be the same and add it now let the significance. So, basically registered W now contains 

a result of the addition the result of the addition. So, let the significant represented by 

registered W be P W right. So, this is the significance that is there this is this will be at 

the form you know something point something right. So, the position of the point is 

implicit or can be inferred. So, there is a certain possibility that P W can be greater than 

equal to 2 for example, if you are adding 1.5 and 1.5. So, it is actually 1.1 and 1.1 in 

binary. So, then what is the result 1 plus 1 is 0 1 plus 1 plus 1 is 11.0. 

So, where we consider all these points to be aligned; so result is essentially 3 and this is 

greater than equal to 2. So, this is not a valid significant for us. So, in this case we need 

to do something called renormalization. Which is basically what we do is that we right 

shift. So, 11.0 we make it 1.1. This is done by right shifting W by one position. And we 

increment the exponent E A because E A is now the exponent of both E A is the 

exponent of the result. So, we increment the exponent by one position. 

So, let me give a similar example. In decimal let us assume we have 23 times 10 to the 

power 4, but we do not want 2 digits to the left of the decimal place decimal point. So, 

we can alternatively write this as 2.3 times. So, essentially I am right shifting it by one 

position and times 10 to the power 5. So, increment the exponent. So, we are doing 

exactly the same in binary to ensure that our significant is between 1 and 2. 

So, the final result is like this. Where the sign bit will be same as the sign of A or B. So, 

mind you we are doing addition and we are thus assuming that the sign bit is the same 

right. So, how do we define how are at least we defining addition. We are defining 

addition by the fact that we are either adding 2 positive numbers or 2 negative numbers, 

the sign bit is different it will essentially become subtraction. 

So, sign bit will be the same as sign of A or B right. So, 2 positive numbers we add the 

result is positive. 2 negatives we add the result is negative. Now we also have the 

significant P W and we have the exponent field E A. So, given the fact that we have all 3 

we can construct a floating point number let me just quickly go back. Given the fact that 

we know the sign of the result; so let this be the result. So, we know the sign of the 

result. So, we know the significant. So, from the significant we can find the mantissa 



right 23 bits after the point. And we also know the final exponent field what it supposed 

to be. So, we can have E A over here right after these doing these 2 steps. 
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So, let us explain with an example. So, let us consider this example let us add the 

numbers 1.01 in base 2, times 2 cube plus 1.1 1 again in base 2 times 2 2 raise to the 

power 1. So, the decimal point will be showing in W to enhance readability, but in the 

hardware it will not be there. So, let us set A as 1.01 times 2 cube. And let us set B as 

1.11 times 2 raise to the power 1. So, the exponent in a will be greater than the exponent 

of B. And also you know for the sake of readability let us not use the bias notation for E 

right. So, let us also you know avoid doing that. 

So, let us not use the bias notation. Instead let us assume that E is stored as is even 

though in hardware that is not the case. So, in this case W will be 01.11 which is the 

significant of B. E is 3 E the exponent of a E A the final exponent is 3. So, to align the 

decimals points, what we need to do is that we need to right shift W 01.11 by 3 minus 1 

places why 3 minus 1 because there is exponent of A and one is the exponent of B. So, 

we need to right shift W by 2 places. So, this will give us 0 1 1 1 after the decimal point 

and 0 0 before the decimal point. 

So, now the decimal points of both A and B are aligned and the exponents for both of 

them is E or E A same thing which is 3. So, then we should add W with the significant of 

P A. So, W is 00.0111 with the significant of P B which is 01.0100. So, if I do the 



addition. So, let me see plus, I will have 1 1 here 1 plus 1 is 0. It is 1 here and 0 1. So, the 

final result is 01.1011. There is no reason to re normalize because this is between 1 and 

2. So, the final result C is 1.1.01 1 times 2 to the power 3 right because we are taking the 

exponent of A. 

So, this is one example of how we would do it in hardware of course, we have made 

some simplifications we are not using the bias notation, but this should capture most of 

the idea, and the idea is simple we are using exactly the same algorithm as we would 

have used for decimals numbers. So, exactly the same algorithm and the same technique 

is being used that we first make the exponents the same then we align the decimal points 

and add. 
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So, let me consider one more example. So, in this case we are adding 1.01 in base 2 

times 2 cube, plus 1.1 1 in base 2 times 2 square. Again the decimal point in W is shown 

for enhancing readability and we will not be using the biased scheme right. So that is 

what we will not be doing. So, a is 1.01 times 2 cube B is 1.1 1 times 2 square and the 

exponent of A is greater than the exponent of B. So, the significant of B is 01.11 and E 

the final exponent that at least we are planning at the moment is 3. 

So, to make W the first stage would be is that we take the significant of B and shifted to 

the right by 3 minus 2 positions. So, this will make it 0 0.1 1 1 then we add 0 0.1 1 1 

which is the value of W the right shifted version of B significant with the significant of 



which is 1.01. So, let us take a look at the addition 1.01 0 plus 0.1 1 1. So, 0 plus 1 is 1 1 

plus 1 is 0 carry a 1 1 plus 1 is 0 carry of one. So, it is one 0 point 0 0 1. 

So, as we can see this number is greater than 2. So, is greater than or equal to 2 and that 

is a problem. So, as a result this needs to be fixed. The way that we fix it is that we sort 

of re normalized. So, we shift it to the right by one position. So, then this becomes 1 

point 3 0s and 1 and we increment E by 1. So, 3 plus 1 is 4. So, the final result that we 

have over here is 1.0001 times 2 to the power 4. So, as we see that after doing the 

addition there was a need to renormalize the result. And so, what we did is that we right 

shifted W and we added 1 to E. So, we added 3 plus 1 and made it 4. 
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Let us now discuss a very tricky issue in the word of flooring point math. So, let us 

discuss rounding. So, assume that we were allowed only 2 mantissa bits in our previous 

example. So, let us go back. So, assume that here right we are allowed only 2 mantissa 

bits. So, we can store only 1.00 and we need to discard these 2 bits. So, well if a 0 1 

maybe we can discard, but assume that the final result was a they form 1.0011 it might 

have been inappropriate to discard 1 1 without making a change in the 0 0. So, we it 

would have been may be more appropriate to round it to 1.01. 

So, rounding is an issue especially when the number of mantissa bits is finite. And this 

issue has to be considered. So, let us first define some normal standard terminology, and 

then we will talk about rounding. And why does rounding comes there is another reason. 



So, the reason is that we are essentially right shifting. So, initially you know if I consider 

the significant of a it is of the form 1 point you know something for 23 bits that is fine, 

but this is being added with W which is the significant of B right shifted by certain 

number of bits. So, for all we know this can be of the form 0 0 0 and then a certain 

number of bits. Let me just erase and clean this right and then 23 bits. 

So, when we do an addition it will be 1 point something you know it might be like you 

know greater than 23 bits. So, there will be a requirement to stop this at 23 bit because 

that is all that we can store, and the remaining bits have to be discarded, but they should 

be discarded in a in a way that result is the most accurate, and for that reason we have to 

do some amount of rounding. So, let us the terminology first. So, consider the some W of 

the significance that we have, and note that in hardware we are not storing the decimal 

point it is implicit. So, in a sense that we know where it is, but is not being stored. So, the 

significant is pretty much being stored as a 24 number in hardware. 

So, it is in reality it is 1 point the mantissa which is 23 bits the way that the significant is 

being stored in hardware is one continuous sequence of 24 bits. So, it can be in a 

alternatively interpreted as a 24 bit unsigned number. So, let us use that interpretation 

over here. And so, this is all that we can keep we do not have space to store any more, 

but it is possible that during our operation there will be some additional bits which 

actually have to be discarded. 

So, let us do one thing let us assume that this is you know let us logically assume that 

this 24 bit significant is one kind of number. And the bits that are been discarded is 

another number. And let us say that the final number W is P plus R times 2 to the power 

minus 23, where if I multiply the significant with 2 raise to the power minus 23 the 

decimal point will come here just after the first bit. And let us define the R portion the 

residue as the part that we will ultimately throw out right. So, the residue we can treat it 

as less than 1 in this particular equation, we are assuming that since we are taking 2 to 

the power minus 23 out the decimals point from this point is actually moved to this point. 

So, that is what we are assuming. 

So, any number we have your regular significant and residue and the residue part is 

thrown out. So, we want to round the significant in such a way that it reflects the residue 

correctly. 
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So, the term terminology again P represents a significant of the temporary result it is 

stored as a 24 bit unsigned number. Right that is P and we are storing the residue as a 

number which is strictly less than 1. So, aim is to modify P to take into account the value 

of R and then we can happily discard R. 

For example, if I you know let me give an example in the world of the decimal numbers. 

So, let us assume we are allowed to store only the 2 digits after the decimal points and 

the number is of the form 10.5093. So, since these 2 are the residue they can be 

discarded, but we should update the significant to make it more accurate which will be 

10.51. So, that is exactly what we want to do and then. So, in this process we have 

created a new significant which is P dash and P dash reflects the residue correctly right 

because the residue cannot be stored we do not have the space for it. 
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So, IEEE 754 which is the floating point standard that we have discussed in a fair 

amount of depth in chapter 2 has several rounding modes. So, let us discuss what these 

rounding modes are so, one rounding mode is called truncation. So, truncation basically 

means that P dash is equal to P. So, we just get rid of the residue. So, let us say you know 

I am not allowed to save a single, even a single digit after the decimal point. 

So, in this case what I will do is 9.5 I will just round it to 9. And I will completely 

discard the residue. In this case I will discard 6 and even 9.6 I will round it to 9 and even 

9.99, I will round it to 9. So, I am just truncating I am just discarding the residue and I 

am not updating the significant. So, this is a very simple mode of rounding and this is 

typically you know not advisable to use, but you know we can use it if you want to. So, 

this is called truncation. 

The other is round it to plus infinity which means that we add the residue to the 

significance. So, mind you once again the significant is a 24 bit consigned number and 

the residue is less than 1. Basically if we will add both of them, and we will take that 

ceiling; so the ceiling operator essentially takes you to the next higher integer. For 

example, the ceiling of 3.4 is 4 the ceiling of minus 6.2 right. The next higher integer is 

minus 6. So, pretty much we will take the ceiling of the value. So, 9.5 will round it to 10 

because that is the next higher integer. Minus 3.2 you know if we have a number of this 



type we will round it to minus 3, because that is the next higher or greater integer. So, 

this is rounding to plus infinity. 

So, this also is something that can be done is supported by the IEEE 754 format, and the 

advantage here is that we always choice the higher integer. So, for example, what we are 

doing is we are considering a 24 bit significant and then we are so, since we have taken 2 

to the power minus 23 out of the equation I will just go back. So, this equation is the crux 

and we need to ensure that all of us are understanding it. Otherwise it will cause a little 

bit of an issue lot of issue rather. The spirit of this equation is as follows that in the 

course of our algorithm we will produce intermediate results which are more than again a 

24 or 25 bits can even have 40 bits. 

So, they will have a certain significant part which is of the form 1 point something and 

then they will have a certain residue part. See if I take 2 to the power minus 23 out then 

pretty much what happens is that the decimal point in a sense significant was of the form 

1 point something, the decimal point is going to move from this point to this point. Also 

thus we will have a purely positive number even a pure integer a pure not positive, but a 

pure integer called P which is 24 bits can be more does not matter it is a pure integer 

does not have a decimal portion. And a residue which is after the decimal point and the 

residue is thus less than 1. 

So, our aim is to consider P plus R, I sorry, our aim is to consider P and R both of them. 

And come up with a new significant P dash and discard R. So, to discard R will any way 

have to be discarded, but we will have to see how can we take the effect of R into 

account you know R is small we can get rid of it, but ever it is large then P has to be 

incremented. Some rounding has to be done. So, our aim is to move from P to 1 more 

significant P dash and discard R and, but take the value of R into account. So, we 

discussed truncation we have discussed rounding to plus infinity. 
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So, one more method is rounding to minus infinity or negative infinity, which means we 

go to the lower integer it is the opposite of rounding to plus infinity. So, in this case what 

we do is that we actually go down. So, from 9.5 we go down to 9, and from minus 3.2 we 

will go to the lower integer which is minus 4. So, mathematically represented we will 

add R to P. And we will take the floor of the value. So, floor means go to the lower 

integer for example, 4.6 the floor is 4. Minus 3.8 we go to the integer that is lower than it 

that is minus 4. In fact, even from minus 3.1 we go to the next lower integer which is 

minus 4. 

So, what are the 3 modes that we have discussed right now? Straight forward truncation 

round to plus infinity and round to minus infinity. Now we will discuss slightly more 

sophisticated mechanism which is also more popular. So, in this case what we do is that 

we said P dash is equal to P plus R; actually some function of P plus R. So, we will 

discuss this function is called the box function, but we will discuss this function in detail. 

So, what we will do is that we will round it to the nearest is called round to nearest. So, 

we will round it to the nearest integer. So, 9.4 will become 9 and 9.6 will become 10. 

So, 9.4 the nearer one is 9 and 9.6 will become 10 similarly minus 2.3 the closer integer 

is minus 2. So, that is fine, but the difficulty comes with 9.5 and minus 3.5 because they 

are in the middle. So, what we will do is we will always prefer we will round it. So, 9.5 

can be rounded to either 9 or can either be rounded to 10. So, if equally you know close 



to both 9 and 10. So, in this case what we will do is as a matter of a convention we will 

prefer the even number. So, even number is 10. So, we round it to it. Similarly, for minus 

3.5 we will round it to the nearest even number which is minus 4. So, what is round to 

nearest again, round to nearest is that if the number is not of a form x plus 0.5 we round 

it to the nearest integer; however, if it is a number of the form x plus 0.5 then we choose 

the integer that is even right the nearest integer that is even. 
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Let us now try to summarize the rounding modes. So, the rounding can be thought of as a 

function. So, the inputs or the function are like this. So, let us just draw a black box. So, 

what goes in is the significant as an unsigned number is a 24 or 25 bit it does not matter, 

but what goes in is a unsigned number which is the significant. And so actually even 

before this we compute the final output W, and then we extract the significant which is 

pretty much the amount that we can fit with a 23 bit mantissa. 

So, it should be of the form 1 point something and so, mantissa is over here 23 bits. So, 

that is out significant which we have extracted out of the final result of the mathematical 

operation right be it addition or subtraction, but we will talk about just addition with the 

same signs for the time B. Then what we do is that we send this number which is actually 

24 bit number as the significant and we also send the residue which is less than 1. 

What comes out is a new significant P dash. And so, P dash there are 2 choices one is P 

dash is equal to P. So, that is a default. So, here basically we set the residue to 0. The 



other choice is at P dash is P incremented with 1, so P plus 1. So, in this case we have 

effectively done some rounding. So, in this case we have incrementing the significant. 

So, let us now try to state the basic rules for different rounding modes. Let us consider 

truncation first. So, in the case of the truncation what we do is we completely discard the 

residue. So, P dash is equal to P. So, in both the cases we do not do anything and the 

default remains and the default when the sign of the result is positive and when the sign 

of the result is negative is the same, which is that we just discard the residue. So, that is 

the reason we do not do anything other than mere truncation. 

Let us now talk about rounding to plus infinity. So, let us take a look at 2 numbers 3.1 

and minus 3.1. So, in the case of 3.1 this needs to be rounded to plus 4, because that is 

the next greater integer in the case of minus 3.1 this needs to be rounded to minus 3, 

because that is the next greater integer. So, the conditions are as follows; so if the sign of 

the result is positive and we have a non-zero residue which is exactly this case. Then 

what we need to do is we need to increment the significant. So, we need to increment 3 

to 4. Otherwise if the residue is 0 anyway we do not need rounding. So, we can leave it 

as is. 

If the sign of the result is negative, as in this case minus 3.1 in that case; so basically if I 

draw a number line in a minus 3 will lie here minus 4 will lie here and all intermediate 

numbers will lie over here. So, since we are rounding towards plus infinity all the 

numbers will be rounded to minus 3. So, what we are essentially doing is that if is this 

can be any number of the form minus 3 point x you will truncate this x and we will round 

everything to minus 3. So, essentially we need to let the default happen which is that we 

said P dash equal to P and discard the residue. 

Let us now after a brief cleanup of course, let me clean this part up, let us now talk about 

and rounding to minus infinity which means choosing the lower integer. So, let us again 

take a look at 3.1 and minus 3.1. So, in the case of 3.1 we need to round it to 3. So, even 

if. So, let me draw a number line. So, let me have I am sorry let me have 4 over here and 

3 over here. So, all the numbers between 3 and 4 will get rounded to 3. So, what are 

doing is that for when the sign of the result is positive we are discarding the residue. So, 

that is a reason we can do a default action here. 



However, if the number if negative then; so let me draw a number line. Let me write 

minus 3 here and minus 4 here, so minus 3.1 will stand somewhere here. So, for all such 

numbers what we need to do is that they need to be rounded to the lower integers which 

are minus 4. So, the logic is that if there is any non-zero residue which means that the 

number is somewhere in this range then we need to perform a rounding which means 

increment the significant. So, what we need to do is we need to check if the residue is 

non-zero. If that is the case, then we will increment the significant and from minus 3 will 

take it to minus 4. 

So, once again just to refresh for all the empty entries, we never increment the significant 

rather we fall back to the default which is to discard the residue and keep the significant 

as is wherever there is a condition, if the condition is satisfied then only we increment 

the significant. So, let us now discuss the last rounding mechanism which is round to the 

nearest which is also by the way the most complicated. So, just give me one second. 

So, rounding to the nearest is the most complicated, but it is it is not that hard. So, let us 

see. So, let us assume that I have a 3 numbers 3.1 3.5 and 3.9. So, 3.1 I need to round to 

3, 3.5 I have a choice between 3 and 4, I choose the even number. So, I round it to 4 and 

3.9 the closest integer is 4. So, the logic is like this. I will first take a look at the residue 

if the residue is greater than 0.5 as in the case of 3.9, then I will increment the 

significance I will increment 3 to 4. Otherwise I will take a look at the other condition 

which is at the residue should be equal to 0.5. So, in this case the residue is equal to 0.5 

and the least significant bit of P which is the significant is 1. 

So, what this basically means that P is an odd number. So, recall that what I am trying to 

say is an odd number implies that it is you know implies and also you know it is implied 

back, that is least significant bit of that number. So, in this case P is equal to 1 in binary 

and the reason is very simple that in this binary notation for an even number. Since these 

sums of powers of 2; for an even number it is least significant position has to contain 0 

because the rest of the number are a power of 2 multiples of 2 essentially and for an odd 

number the least significant bit position should be 1. 

So, what we are essentially checking here is that you know we are checking that P is an 

odd number. So, in this case the significant P is 3 which is an odd number and the 

residue is 0.5 that is the reason we are incrementing 3.5 we are rounding it to 4. If I 



would have rather considered 4.5 then the first sub condition would have been true that 

the residue is 0.5; however, the significant P would not have been odd. So, this condition 

would have evaluated to false hence we would have not rounded it, and we would have 

rather truncated it and the answer would have been 4. 

So, this is the case when the sign of the result is positive. So, let us now see what 

happens when the sign of the result is negative. So, let me again consider the 3 numbers 

minus 3.1 minus 3.5 and minus 3.9 right the negative variants. So, what I do is I will take 

a look at the residue, if the residue is greater than 0.5 I will do something, or if the 

residue is 0.5 I will do something else, but both the conditions for these number are false 

that is the reason I will truncate. So, minus 3.1 will become minus 3. 

Now, if you take a look at minus 3.9 the first condition is true, the residue point 9 is 

greater than 0.5. That is the reason we will increment the significant and this will get 

rounded to minus 4 now we consider minus 3.5 well see in this case the residue is 0.5. 

So, this sub condition is true again what I need to check is that P is an odd number. If it 

is an odd number something needs to be done otherwise we can go with the default. So, 

in this case there is an odd number. So, that is the reason we round it to minus 4, had it 

been minus 4.5 then this condition would have been false because 4 is an even number. 

So, instead we have rounded it to minus 4, which is exactly what we want to do in this 

particular scheme. That we always want to round it to an even number if the residue is 

0.5. So, these are all the conditions for all the 4 rounding modes truncation, which means 

do nothing. So, do nothing means keep the significant as is get rid of the residue, in all 

cases we get rid of the residue, but here we keep the significant as is round to plus 

infinity we check if the residue is non-zero. And of course, if the sign is positive the sign 

is negative again we do nothing and round to minus infinity is just the reverse of round to 

plus infinity, round to nearest is somewhat tricky we need to there are 2 cases. 

We need to check if the residue is greater than 0.5, we increment the significant if the 

residue is 0.5 and the significant is odd, then also we increment. And this is the same 

condition for both positive as well as negative results. So, one very important take away 

point here is that to implement this in hardware we have to have multiple circuits. So, the 

first circuit needs to compare the value of the least significant bit of P with 1 right. So, 

you need to have one comparison circuit that is one circuit that you need to have the 



second circuit’s needs to compare the residue with 0 and compute this expression. The 

third circuit needs to compare the residue with 0.5 and see if the residue is greater and 

forth you need to compare the residue with 0.5 and see whether it is equal. 

If you can compute the values of all 4 of these expressions, then we can compute all the 

rounding conditions. 
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So, this is exactly what we need we need the least significant bit of P. So, this very easy 

to get I will not discuss this right is just one bit has to be extracted, but to get the rest is 

somewhat tricky. So, what we will do is we will add a couple of more bits to get what we 

want. So, let us consider the residue R and let us refer to it is most significant bit as R or 

the round bit. So, if I consider you know this as the residue. So, let me consider is most 

significant bit let me call it R. And let the logical or of the rest of the bits of the residue 

you know or of all of these bits just a simple or operation let me refer to this as s. 

So, if s is one it means that at least one of these bits is 1; if s is 0 means that all of these 

bits are 0. So, I claim that just with R and s bits we will be able to evaluate all the 

conditions let us see how. So, R greater than 0; if R is greater than 0 it means the at least 

one of the bit in the residue is 1. So, which means that either R is 1 or S is 1. If S is 1 

means one of the bits here should be 1, has to be 1. So, the condition is we just to R or s 

is equal to 1. If any of if this condition is true it means that one of the bits here is 1 and 

we can infer that the residue is greater than 0. Now let us consider one more case where 



the residue is equal to 0.5. If the residue is equal to 0.5 it means that the round bit is 1, 

because you know it is pretty much less than 1. So, we have 0 point here before it which 

is implicit. 

So this is. So, what is a representation of 0.5 in binary? It is 0.10000. So, basically the R 

bit will be equal to 1, but the all of these bits will be equal to 0. So, there or will also be 

0. So, the condition will be that R is one and s is 0. So, this can be inferred as s bar s 

compliment is 1. So, this is the condition R and s compliment is equal to 1, the last 

condition is R is greater than 0.5 this will happen when R is one and at least one of the 

bits in the at least one of the rests of the bits is equal to 1. 

So, then or function will evaluate to 1. So, the s bit will be 1. So, basically the function 

here is at both R as well as S both of them need to be one for the residue to be greater 

than 0.5, why is this again because any number is greater than 0.5. It is binary 

representation has to be at the form 0.1 and then you know can be anything else, but 

among these bits at least one bit at least one bit has to be 1. So, then we can say that the 

number is greater than 0.5. And if one of these bits are equal to 1 then it means that their 

or is 1. So, S is equal to 1 with the condition is at R is 1 and s is 1. So, R and S1 is equal 

to 1. So, we thus see that keeping the R bit or the round bit and the s bit as the sticky bit 

you know just computing them when you output is being created, will help us get all the 

conditions to implement all the 4 rounding modes. 
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Let us look at the process of rounding in a little bit more detail one particular aspect that 

we have not talked about. So, when we increment the significant there is a possibility 

that we might have to renormalize once again. The reason is that the significant might 

become greater than equal to 2. After renormalization it is again possible that the 

exponent field E becomes equal to 255, which is actually an invalid value because 255 

can signify 2 things. Either not a number or plus minus infinity in both cases it is not a 

valid number. 

So, we need to declare an over flow which means that the number the result cannot be 

represented with the number of bits that we have; essentially the number over flows the 

range of the number system. 
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So, let us now look at additional numbers with opposite signs. So, in in the world of sign 

numbers, we technically do not have a difference between addition and subtraction. That 

is the reason we have classified power discussion differently, we have set that let us 

consider a numbers with the same sign and let us consider numbers with the opposite 

sign. 

So, if I consider numbers with the opposite sign the algorithm is more or less similar a 

little bit of difference in some places. So, with no loss of generality let us assume again E 

A is greater than or equal to E B. So, the first few steps are the same we load the register 

W with the significant of B P B. So, since A and B do not have the same sign we need to 



essentially ensure that they have the same sign and this can be done by negating P. So, 

we take the 2s compliment of W. So, essentially set it minus B and then we will perform 

an addition. So, the next step would be to align the decimal points. So, to align the 

decimal points, what we do is we do the same thing that we did in the case of number 

which had the same sign, which was that we right shift W by E A minus E B positions, 

such that the exponents are the same and the decimals are aligned. 

Subsequently we add W with P A. So, this will complete our addition. So, we do that and 

so recall that till this point everything is standard. So, even if let us say we where you 

know to add 2 numbers with opposite signs in regular arithmetic. So, since this 

significant is positive let one number be A, and let the other number be B and B is in this 

case less than 0. So, what we would do is we would add a with the 2s compliment of B 

right. The 2s C 2s complement of B that is exactly what we have done we have taken the 

2s complement of W which contains a significant of B. We have aligned the decimal 

points then we perform the addition. 

Now, it is possible that when we perform the addition. The significant the result might be 

less than 0. So, why would this happen well simple reason that this would happen is that 

let us assume you know one case where we are adding let us say minus 1 you know 

minus 1, point sorry let us say we are adding 1.1 with minus 1.5. So, in this case the 

exponents are the same. So, the first one can be A, and the second number can be B. So, 

then we will see that the sign of the result will be negative. So, that is a reason. So, it is 

very easy to handle this case we will essentially replace W with the 2s complement of W. 

So, basically we replace it with minus W and we will flip the sign of the result rather we 

will flip the sign bit of the result to indicate that. So, initially the sign bit will be the sign 

of A, but if the if after addition the result is negative, then what we will do is we will 

replace W with minus W and flip the sign of the result. So, in this case initially the sign 

of the result is positive, but since we get minus 0.4 over here, we will flip the sign of the 

results. So, it will become minus and pretty much the mantissa significant and exponent 

will encode 0.4. 
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So, after we add to perform the addition and adjust for the sign, we need to normalize the 

result. So, there are some reasons why we need to do that. Let us assume that we are 

trying to add these numbers. So, the result will pretty much be 0.01. So, this is not valid 

significant. The reason it is not a valid significant is basically because it is not of the 

form 1 point something. So this is in a one of the cases where the result W is less than 1. 

So, what we need to do is we need to keep shifting W to the left till it is in the normal 

form which is 1 point something. So, in this case the normal for form would 1.0; 

however, it will be 1.0 times 2 to the power minus 2. 

So, what we have essentially have to do is we have to keep left shifting W or we have to 

keep shifting W to the left till it is in the normal form. And simultaneously we need to 

decrement the exponent E A till we reach the normal form. So, in this case we will have 

to decrement the exponent E A by 2. After that the rest of the procedure is the same we 

need to round number wells. So, rounding in this case is not really required, because if 

you are shifting to the left then we are essentially shifting in 0s, but otherwise it might be 

required, especially if the exponents are the same and some bits are remaining. So, we 

need to round and renormalize alright. So, once we have discussed all of these let us 

summarize our entire discussion in a flow chart. 
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So, the flow chart looks at all possible cases. So, let us assume that we are trying to add 

A and B to floating point numbers A and B and the result is one more floating point 

number which is C. So, they can have the same sign or they can have different signs. So, 

first check that we should probably do is check if A is 0. See if A is 0 it is a simple case 

the result is equal to B. If that is not the case we can check if B is 0, if B is 0 again it is a 

simple case, we can set the result to A and mover forward then we need to swap A and B 

such that E B is less than equal to E A or E A essentially as the higher exponent. 

So, we need to ensure with no loss of generality that E B is less than equal to E A, if that 

is not the case we will just swap A and B. Then what we do is that we will subsequently 

what we do is that we align the decimals points. So, what we can do is we can perform 

this step. So, in this step we align. So, we set the exponents the same and align the 

decimal points and this is achieved by essentially setting W as P B right shifted by E A 

minus E B positions, and we set E A the exponent of A as the default exponent of the 

result and the sign of the A as the default sign of the result. So, recall that in our 

discussion we the order was slightly different, but I will come to it. Then we check if the 

sign of A is equal to the sign of B if that is the case then well that is great. 

So, we just add W we just said W as the old value of W which is the significant of B 

shifted to the right by some places, plus the significant of A. So, we just perform the 

addition. Otherwise we take the 2s complement of W and then we perform the addition. 



So, recall that we had reversed the order of this step and this step in a in one of our 

previous slides. So, it technically does not matter if you have enough number of bits 

because we are not losing precision, and when we are you know inside the hardware we 

are not limited to have 32 bits we can have more bits because they are after all temporary 

spaces. 

So, the constraint is that the inputs will be 32 bits right, and the output also needs to be 

32 bits, but inside the circuit we can definitely represent the significance and the 

mantissa with more number of bits, and later on discard some bits using a proper 

rounding policy. So, that is the reason the order of right shifting in 2s complement does 

not matter, and as long as in a we have sufficient space which any way we have or we 

are assuming to have. 

So, after performing the addition especially if the signs are different there is a possibility 

that W is less than 0, if this possibility is there that W is less than 0, then in if this is the 

case the W is less than 0 well then we again replace W with the 2s complement of W, 

and we flip the sign bit of the result the sign of the result right, as we are showed in the 

previous slide that when the result was minus 0.4. So, we actually set the significant to 

0.4. I mean 0.4 properly adjusted and we flip the sign of the result if it is not the case we 

can directly move over here. 

Then we normalize W and bring it to the standard form, and also update the exponent E. 

At this point it is possible that we can either have an over flow or underflow what this 

means is that we might have exceeded the range of the number system. So, this should be 

reported as an over flow then we need to perform a rounding, because you know the 

mantissa can only be 23 bits the additional bits have to be discarded. So, we need to 

round. After rounding we need to renormalize W and update E. And the process of 

renormalization itself can induce an over flow or under flow. So, this should be reported 

and if we have reached this step means everything is in order. So, we need to construct 

the result C out of W which is the final significant. So, we can construct the mantissa out 

of it the exponent field and the sign bit and then we report the result as C. 

So, our advice all the students to take a look at this flow chart in great detail. The flow 

chart is otherwise very simple as long as all the individual steps are understood, but it is 



very important to understand each and every individual step. So now, let us discuss 

floating point multiplication and division. 


