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Lecture - 20 

Computer Arithmetic Part-IV 

 

Welcome back. This the second slides set in the Computer Arithmetic chapter. So, since 

the chapter was long, we divided it in to two slide sets. This is the otherwise 4th lecture 

in this series. 

(Refer Slide Time: 00:44) 

 

So, we had promise to discuss a couple of things. We were promised to discuss division 

and floating point operations; namely addition, multiplication, and floating point 

division. 
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So, let us now divide; so let us only considered positive numbers in our discursion 

because dividing negative numbers this is kind of tricky. Well, it is tricky in the sense 

that we need to. First understand that when we are doing integer division, and there is a 

negative number involved, there are different conventions for the remainder in the, some 

convention says that reminder is always positive. Some convention says that remainder 

has the same sign as the divisor. So, actually what most library’s or processor would do, 

is that they would first convert the numbers to positive numbers, do the division with 

positive numbers, and then adjust the remainder according to the convention. 

So, the again there are different ways are doing it, but let us just take to positive numbers 

in our discussion, because number 1 is simpler. Secondly, since division is a fairly long 

operation, and is not possible to have log N time algorithms very easily. It is ok to 

convert negative numbers to positive do the division, and then adjust the signs. 

So, let us now introduce some basic terminology. The terminology is like this, that when 

we are dividing, sorry. Let us say that we are dividing N by D right. So, this is in a slash 

operation same as integer division, N divided by D. So, in this case we will have a 

quotient and a remainder. For example, if I divide 5 by 2, the quotient is 2 and the 

remainder is 1. So, this can alternatively we said, that N which is a dividend. So, 

basically the top number is called the divided, and this is the divisor, N is equal to DQ 

plus R, where N is the dividend D is the divisor. So, we are essentially dividing the 



dividend by the divisor, we are computing N by D then we will have a quotient. Quotient 

is a result of the division for example, if we divide 100 by 20 the quotient is 5. If we 

divide 101 by 20 also an integer division the quotient is 5, but in this case the remainder 

will be 1. So, there are two things the division has two outputs; a quotient and the 

remainder, both of them need to be computed. 

Now, let us take a look at some properties right, in this equation N equals DQ plus R. So, 

1 property is that the remainder has to always be less than the divisor rights that has to be 

the case. The reason that that has to be the cases; otherwise you know the division is 

wrong for example, if I divide 101 by 20 right, if I divide 101 0 1 by 20, the quotient 

cannot be 4 in the remainder cannot be 21. So, it basically means of the division is not 

been done correctly. So, the quotient has to be 5 and the remainder has to be 1 in this 

case. 

So, R is less than D, further more R is greater than equal to 0. So, we all always have a 

positive remainder, if we are considering only positive numbers. We can then. So, let us 

remember these properties, will refer to this is property 1; the property that the remainder 

is lesser than divisor. The other one will refer to as property 2, which says that the 

quotient q, is the largest positive integer, that satisfies equation 1. I should probably call 

this is equation 1 sorry right. That satisfies the equation and this is equation 1. 

So, the quotient is the largest positive integers. So, this is also obvious. So, again if I am 

dividing 101 by 20; so 5 is the largest number that satisfies the equation 1, and 

essentially the equation and the property 1. So, why is this the case, because 5 times 20s 

100 plus 1, 6 will not do, because if I have 6 times 20 then DQ will become 100 20s R 

has to be minus 19, but what we understand from here, from property 1 is said R, is 

always greater than equal to 0. So, as a result it cannot be negative. 

So, both of these properties are otherwise obvious, but you know it is nice to write them 

down, because the any division algorithm has to obey both of these properties and. So, 

these are also sufficient properties, not necessary, but sufficient properties we need to 

find. So, Q is the largest positive integer, which satisfies the equation, and also property 

1 needs to hold, where R is less than D and R itself is greater than equal to 0. So, we 

need to ensure these two property is 1 and 2 always hold. 



So, let us. So, maybe in other way that we should modify the slide is that again a 

satisfying equation 1 and property 1 rights that will fix this slide all right. So, let us do 

one thing, let us do a little bit a math. 
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So, let us start with our division equation which is N equals DQ plus R, and let us 

assume that the quotient q, which is of course, represented in binary the bits are Q n to Q 

1. So, what we can do is that we can divide the Q the quotient sorry. So, we can sort of 

break in any 2 parts 1 is Q n times 2 raise to the power n minus 1 plus 1 number which 

consist of the remaining n minus 1 bits right. So, we have also done this before in chapter 

2. 

So, 1 good idea would be that somebody you know who was forgotten what we learnt in 

chapter 2, all about bits and floating point numbers and so on, can go back to chapter 2 

and refresh the knowledge, because we will be using many results here. So, what did I do 

again? I considered the quotient to be N bit number, and I take the MSB outs. So, is a Q 

n times 2 raise to the power n minus 1 plus the number that is left out of the rest n minus 

1 bits. So, if I bake the quotient in this way I have one component over here, which is the 

first n minus 1 bits of the quotient. I have one more component over here which is 

divisor times this thing, and this thing is the Q n is the MSB of the quotient more 

significant bit times 2 raise to the power n minus 1 plus the remainder r. 



Now, what I can do, is that I can take this term to the left side, and have N minus D times 

Q n 2 raise to the power n minus 1 is equal to D times. So, let the number of the quotient. 

So, so let the number form by the first n minus 1 bits of the quotient let us call it Q dash. 

So, what we will have is, D times Q dash plus R right, and let me call this term over here 

the N dash. 

So, what we sees that this equation looks very similar to this equation right. There is no 

difference at all in the structure, but there is a little bit a difference in the term. So, the 

remainder is the same mind you, and the divisor is the same, but the quotient in this case 

has this is, the N bit quotient in this case is the same quotient, but the first n minus 1 bits, 

in this case is the original dividend, in this case is the dividend the dividend is. So, what 

is the dividend in the upper case, it is the original dividend N minus the divisor times the 

nth bit of the quotient times 2 raise to power n minus 1 right. So, this is the dividend that 

is being used. 

So, what we have done, is that if we can somehow figure out, the nth bit, the most 

significant bit of the quotient, if there is a some way of figuring that out, then what we 

can do, is that we can compute a new dividend which is N dash, and solve a smaller 

division problem with a quotient has n minus 1 bits. Similarly, I can then have one more, 

then you know I can carry on in this same manner, same fashion, I can then have one 

more equation which is Q dash dash plus R, where this contains of the last N minus 2 

bits of the quotient. If I have some way of again figuring out, the n minus 1th bit of the 

quotient I can come to this equation. 

Similarly, I can go down, down, down, down till I sort have reach 1 point. So, let me 

maybe you put a star, sorry this is the bad star, let me erase that. Yes, the better star till I 

reach one point. So, this is the divisor times the first bit of the quotient Q 1 plus R. Now 

at this point if I have some magical way of figuring out what is the least significant bit of 

the quotient, then what will ultimately remain is, we will ultimately what will remain is 

at the end, we will only have the remainder left. So, you know what is left will be the 

reminder, and it every point we will get 1 bit each in the quotients starting with the nth 

bit, till the first bit. 

So, what we are doing is, that we are divide we are. So, gradually reducing the division 

problem from a problem of dividing you know, I am sorry from a problem of computing 



and N bit quotient, to a problem of computing and n minus 1 bit quotient, to a problem of 

computing a 1 bit quotient right. So, we at every stage we are sort of making the 

problems slightly smaller, and slightly simpler, till at the end we need to compute a 

single bit, and finally will be left with the remainder. 

So, this sounds like a good plan it is just that the secret sauce is missing, and the secret 

sauce here is how on earth do we compute the nth bit of the quotient, because if we can 

do that then we will be able to solve the entire problem, because at every stage what we 

will do is, that we will keep on reducing the problem to a smaller version, till we reach 

the end we get all the bits of the quotient, and what is left will be the remainder. 
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So, let us see right, how do we reduce the original problem to a slightly smaller problem. 

So, what is the main issue? The main issue here that is bothering us is how to find Q n, 

the nth bit. The most significant bit of the quotient how is that to be found. So, let us 

think of, it is so simple, but let us sort of locate at from a distance. The nth bit of a 

quotient says after all the single bit right. So, if it is a single bit how many values can it 

have? It can have only 2 values 0 and 1. 

So, since there is a two values what we can do, is that we need to. Well we can try a 

brute force approach, so you can try both the values; both 0 and 1. So, let us first try one, 

so if N minus. So, what do we need to do, we basically need to compute N dash is equal 

to N minus D times Q right. If Q n is equal to 1 then N dash becomes equal to N minus D 



times. So, what we can do is, we need to compute this, and since we have to maximize 

our quotient. So, why do we need to do maximize the quotient, it is property number 2 

that we want to maximize the largest positive integer. 

So, since we want to maximize our quotient, what we would like to do, is that we would 

try to set Q n is equal to 1, if the new dividend is still positive right. So, N minus D times 

2 to the power n minus 1 if that is still greater than equal to 0, then it means that the nth 

bit of the quotient can be set to 1, and we in a sense will maximize the quotient. So, then 

find if this is the case we set Q n is equal to 1, because the original N was to have a 

quotient as large as possible. And if we can get away with setting the nth bit of the 

quotient is 1, this means that it is a right guess, it is the correct guess, and we will set the 

new dividend to be this, and solve the smaller division problem right, where will get the 

rest n minus 1 bits of the quotient. 

However if this term is less than 0, then it means of the largest bit of the quotient cannot 

be 1; hence we set it to 0. We set what to 0. We set Q n to 0 all right. So, what we have 

done is, that we have does computed Q n, and we have also reduced the problem. 

Problem was initially to compute an N bit quotient. Now we are computing an n minus 1 

bit quotient right. So, how are you doing that, we consider the quotient to be an N bit 

number we make 2 guesses for Q n; 1 guess was 1, and the other guess was 0 with 1. 

We tried to see that whether the problem still remains valid if you make a guess of 1, and 

if it remains valid we agree that in a Q n should be 1. So, we set it to 1 the nth bit of q; 

otherwise we set it to 0. And then we compute the new dividend, which is N dash is N 

minus D times 2 to the power n minus 1 times Q n right, and we proceed recursively. 

Which means that we call the same process over and over again I will bit with reduced or 

smaller arguments, till we are left with a single bit. 

So, the long and short of this slide, the summary of this slide, is that we now have a 

method of computing a single bit in the quotient, which is the most significant bit we 

have a method. What we do is, that we first make a guess we see if you know whether if 

it is 1 little work or not. The reason for this is that we want to maximize the quotient. If 

N minus D times 2 to the power n minus 1, if this number is greater than equal to 0 then 

it means that the quotient can be set to 1; otherwise it means to the quotient cannot be set 

to 1, and in this manner we proceed and we gradually reduce the problem. 



Alright, let us proceed and then I will show an example. 

(Refer Slide Time: 18:14) 

 

So, before I actually show the mechanism, let me make it quick trip to the previous slide, 

and let me in a delete all of this stuff and explain within very quick and small example. 
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So, what I do, sorry. So, let me try to divides. So, let me cons considered a 4 bit number 

system all right. . 



So, in this case N which is the number of bits in the number system; that is equal to 4. 

Furthermore let me try to divide 13 by 4. No let me try dividing 13 by 3. So, what is the 

quotient, well the quotient in this case is 4 and the remainder is 1. What is the binary 

representation of quotient, it is 0 1 0 0. So, let us try to do something. So, in this case N 

is 13, the divisor is 3. So, let me first, in the first iteration number 1, let me try to 

compute N minus D times 2 raise to the power n minus 1, which is equal to 13 minus 3 

times 2 to the power 4 minus 1 which is 2 cube which is 8. So, 13 minus 24 is less than 

0. So, as a result we will set the most significant bit of the quotient to be 0. As you can 

see this is the correct answer. So, in this case N dash which is the new rim dividend will 

remain the same as a old dividend, which is 13 fine. 

After that let us go to the second next iteration; in this case let me do the same thing 13 

times. So, say in this case N was 4, now in this case N will become equal to 3, because 

we are moving to a smaller number system right. So, say is the next iteration pretty 

much. So, in this case what we do, is that we do 13 minus 3 times 2 raise to the power 3 

minus 1 which is 2 to the power 2, which is equal to 1, which is greater than equal to 0. 

So, as a result we set Q n is equal to 1, and as you can see this is exactly, sorry not given, 

but this is Q n minus 1. So, let us call it Q 4 and Q 3 you know; that is slightly easier the 

4th bit of the quotient and the third bit of the quotient. Just quickly erase this part erase 

this part. 

So, let us say that this is Q 4 and this is Q 3. Fine let us go to the next iteration which is 

iteration number 3. So, so in this case what is N dash, N dash is equal to 13 minus 3 

times 2 square, which is 1. So, then I will again compute 1 minus 3 times. So, in this case 

N again becomes 2. So, 2 to the power 2 minus 1 is 1, which is less than 0 so basically Q 

2 is equal to 0. Well, say again Q 2 here is equal to 0. So, we have computed this 

properly. So, go to we go to the last iteration, which is the 4th iteration. So, here again 

the new N dash is equal to 1, because no change was made in the last time. So, what we 

need to compute is, 1 minus 3 times 2 to the power. In this case is 1 minus 1 which is 2 

to the power 0 is 1, this is again less than 0. So, we can say that Q 1 is equal to 0. 

So, as we can see Q 1 is equal to 0 over here. So, what we basically get to see, is that we 

have computed the quotient which is 0 1 0 0 correctly, using this method. So, we will get 

to see some more examples of this method, but this is at least a quick way of explaining 

how this method works. So, how will we actually implemented in hardware. Well, very 



similar to the iterative multiplied, so we will have the divisor here in D initially. So, we 

will have 2 registers here, and the same way we had for the iterative multiplied in the 

purpose for the, purposes of shifting, they act as the same registered. So, initially we will 

hold the dividend n, and you will contain the number 0 and D will contain the divisor. 
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So, here instead of addition every since division is repeated subtraction; every iteration 

will subtract, in a possibly subtract D from U and write the value back to the U register 

all right. So, let us take a look at the algorithm which is very simple, its call the restoring 

algorithm. So, the restoring algorithm what it does is, we divide 232 bit numbers, 32 64 

does not matter. So, the input is a data the divisor is in registered D. So, as we can see 

the divisor is here in registered D, the dividend is an registered V. So, which is this 

register, the dividend is loaded over here and. So, if you left shift then the essentially this 

bit will come here, and at the end we want u, the registered U to contain the remainder, 

and registered v to contain the quotient. So, U will at the end contain the remainder; that 

is what we want and register v we wanted to contain the quotient at the end. 

So, what we do, is that we run in the iteration of for loop for 32 times for I equals 1 to 

32; that is all that you know these lines 2 is that you run a for loop for 32 times. So, then 

we left shift the UV register, the same way we did with the case the multiplier. So, in that 

case we were right shifting in this case we left shift. So, we do a left shift by 1 position. 



Then what we do is, we subtract D from the register U. So, so we subtract the divisor 

from the registered U. If U is greater than equal to 0 right, then we set Q to 1, Q is a 

temporary variable we set it to 1. Otherwise what we do is we restore the value of U. So, 

U becomes its old value; that is the reason is called a restoring division, because initially 

we subtract it, but if you find that the result has become negative. Then what we do is 

that we add the value of the divisor back to u, so U becomes its old value, and we set Q 

to 0, and then we set the quotient bit least significant bit of v to Q. So, that is what we do. 

So, before we look at an example, it is very very important for me to give a certain feel 

of why this algorithm is working, because to get a feel is very important. So, let me use 

some real estate here to draw. So, let us consider the 2 registers. The 2 registers that I 

have R registers u; let me just write them at the corner I need some space, and registers 

v. Say initially the dividend is completely loaded in registered v till we come to this line, 

in which the dividend is shifted to the left right. So, the dividend is shifted to the left by 1 

position, so basically the dividend occupies. Let us consider this much to be 1 position. 

So, pretty much occupies this much. 

So, let me call this the dividend version. So, I am just considering the first iteration, but 

all iterations will are give in the same fashion. So, this is the dividend N. of course, the 

sum amount of space created over here, but let us ignored this. So, so this will not 

coming to our calculation, so it can ignore. 

Now, what I do is that I subtract the divisor from registered U. So, if I consider this part 

as the divisor right, from register U. and if I consider this as an entire number starting 

from here to the right of this I ignored, but let us it starting from here if I consider this 

much to be a full number. What I am essentially computing is. I am computing and N 

dash which is equal to N minus the divisors. So, mind you the divisor as compared to the 

beginning of this number is shifted to the left. How many positions are it shifted. So, 

basically this entire distance is N bits. 

And this distance here is 1 bit. So, as compared to the beginning of the place where is 

dividend starts right. So, the as these bits we have ignored, because we have left shifted 

anyway in this line. So, as compared to the beginning of where the dividend starts, the 

divisor is n minus 1 position to the left all right. So, if you are looking at the screen, the 

divisor is n minus 1 position to the left. So, when I am doing the subtraction U is U 



minus D. What I am essentially doing is that for this number, which begins from the 

beginning of the dividend, till the end of registered U. So, this number at the beginning is 

all 0s. 

So, let it remain in that fashion. So, this number that I have, I am essentially subtracting 

the divisor multiplied by 2 raise to the power n minus 1. Well, I can maybe clean up the 

minus 1 a little bit. And since I initially assume that I am multiplying this, you know the 

quotient bit is 1 I can add Q n, where Q n is 1 well. So, does this particular equation look 

familiar? It definitely should because this equation is exactly this equation over here. So, 

let me may be a good idea to clean the slide, this is exactly this equation right. This is the 

same term N dash is N minus divisor times 2 raise to the power n minus 1 times Q n. 

So, this is exactly what we are doing, that we have computed the new dividend, and the 

way we have done that is via this particular hardware mechanism, but in a sense what is 

being computed inside, is the old dividend minus the divisor multiplied by 2 raise to 

power n minus 1 times Q n, where we are assuming that the quotient bit is 1. So, this is, 

you know this is just a hardware implementation and the algorithm that we have 

discarded. 

Now, if the new value of U is less than 0, which means that you know this new dividend 

is not valid, then we will set the quotient bit to 0, and restore the value of U right. So, we 

do not want a negative dividend, so we will restore it that is what we have been doing; 

otherwise it is greater than equal to 0. Well fair enough we have completed the quotient 

bit to be 1. So, once we have done that the quo quotient bit that we compute that is set to 

this a new space over here which is Q n, because this space is anyway not used we are 

not factoring it into the dividend. So, this will become Q n. So, gradually what will? 

Now, let us consider the next iteration right. So, this is the first iteration. If I consider the 

next iteration the situation will be very similar. I am just trying a smaller version of the U 

and v registers. 

The situation will be very similar, we will instead of. We will start a dividend from a 

newer position and it will be 2 bits here that instead of 1 bit, and we can consider the rest 

as a new dividend N dash that was computed in the previous iteration. 1 bit over here 

will be the nth bit of the quotient Q n which we have computed, and this bit will be Q n 

minus 1 that needs to be computed and the current iteration, which is the second 



iteration. Then we can do exactly the same right in the next iteration, and compute Q n 

minus Q n minus 1. Exactly the same logic and the same logic will work. The reason that 

this will work, is basically because you know this equation has a recursive structure. So, 

initially you know N is 32, and then N is 31 30 29 and so on. 

So, in consonance with these equations, this hardware will perform appropriately. So, 

what will happen as I keep on going towards the end? What will happen is it at 1 point 

the dividend will start from here. So, this entire register here, the v register will contain 

the quotient, and what will be left here will be the remainder, after we have computed all 

the quotient bits. So after all, the quotient bits have been computed, what will essentially 

remain is the remainder in registered u, which is what we initially started out to find. 
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So, when an example is worth a thousand words. So, let us do it in a proper way. So, let 

us assume that we are trying to divide 7 by 3. So, 7 is a dividend. So, similar to 

multiplication to avoid overflow issues, we considered a 5 bit dividend. So, in this case R 

N dividend is 0 0 1 1 1 and the divisor is D. So, how do we start algorithm. We started 

algorithm, by loading the dividend N register v, which is 0 1 1 1, and we load the divisor 

into the D register 0 0 1 1. Subsequently we will compute our results at 2 points; 1 is 

after the shift which is this point, and 1 is at the end of the iteration which is this point. 

So, after the shift 1 1 1 comes here, and x means that this in a bit we do not care. 



Then what we do is we try to subtract the divisor from this number, and since we do not 

have anything, we write a 0 over here. So, since the result is negative, will be negative 

right, 0 minus any number is negative, we write a 0 here. Fine then after the shift we do a 

1 bit shift so this numbers come here and the quotient bit that we have computed comes 

here. Again we try to subtract 3 from 1 we are not successful. So, the next quotient bit 

we compute to be 0. 

Again we do a shift. So, this one comes here, this one comes here, this one comes here, 

and these 2 bits come over here, and one extra space is created where we need to write 

the next quotient bit. So, we see here the 3, the divisor D can be subtracted from 3. So, 

we go ahead and subtract, so the end of the iteration will have all 0s, and here since you 

able to successfully subtract, we will set the quotient bit to 1. So, what will have here is 1 

0 0 1. Fine after that we do one more shift so this one comes here this one comes here. 

And since we cannot subtract 3 from 1; 1 will remain and 0 will come here, because we 

can do the subtraction. 

So, the quotient becomes 2 and the remainder becomes 1 right, which is exactly what we 

needed to do, that 7 divided by 3 the quotient is 2, and the remainder is 1, and this is 

exactly what we compute right, the quotient 2 remainder 1. And this is a very simple 

algorithm. So, we just run N iteration, every iteration involves addition and subtraction, 

which are order log N time operations. So, the total time complexity is N log n, N 

coming from N iteration, and log N coming from the fact that we have additions and 

subtractions in each iteration, and it takes log N time for doing an addition or subtraction.  



(Refer Slide Time: 37:07) 

 

So, this is a textual description of our algorithm, we considered each bit of the dividend 

we try to subtract the divisor from the U register. If the subtraction is successful we set 

the relevant quotient bit to 1, otherwise we set the relevant quotient bit to 0 and then we 

left shift. 
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So, this is a proof of you know what we discussed, and since you have already given a 

graphical proof, you know students can take a look at this I will not you know covered 

this, but in a students can take a look at this part of our description, and they will get an 



idea, that you know pretty much what we are talking about and so this is more or like a 

formal proof, so we will find the formal proof in the book, but I just gave slightly semi 

formal graphical proof to, you know which can be further elaborated and written in the 

formal way, but I will not discuss that in the current presentation. 
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I am skipping the proof parts. So, part of the proof, you know at least graphical part we 

have covered the rest, you know I think the best strategy would be to read the proof from 

the book, and try to correlated was written over here. 
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So, as I said it takes N iterations and each iteration takes log N time. So, total time is N 

log N. So, I am just seen, have taken the o outs. So, its order of N log N. 
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So, let us now introduce a new kind of division algorithm for non-restoring division. So, 

what did we see, we saw that we subtract D from u, and we need to restore the value of 

register U right. So, this is a problem, in the sense that we first subtract, you find that the 

result is negative, and then we need to add the divisor back. So, which means we 

restoring the value of registered U. So, this requires either an extra addition, or another 



approach can be that will copy the registered U to another temporary location. We will 

then do a subtraction, and then move the values back, in any case with some of the work. 

So, can we just in a avoid this. To avoid this we do something called non-restoring 

division. 
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So, in this case I will give the algorithm, the entire structure remains the same UV D, and 

everything remains the same. So, I will just give the algorithms. So, we do the same 

thing, we run a loop for 32 iterations and. So, this is the beginning of the for loop, and 

this is the end of the for loop. So, we do the same thing, we first do a left shift on the UV 

combine registered by one position right. Then what we do is as follows. So, so this is 

where you know there is a difference. See first check the sign of u, see if U is greater 

than 0, then we subtract the divisor D from it; otherwise if U is less than 0, which it can 

be because we are not restoring. So, we you know in the first iteration, even if we cannot 

subtract and meaning that the value of U will be less than 0, will still go ahead and 

subtract, and then in a subsequent iterations, the number can remain negative. 

So, that is the reason any iteration you find U to be negative, we will add the value of the 

divisor D right. So, this is 1 if statement 1. So, what is saying is that we take a look at the 

sign of u, we subtract. If it is positive subtract the divisor, if it is negative we add the 

divisor. After that if U is positive, you know a positive or 0, we set the quotient bit to 1; 

otherwise we set the quotient bit to 0. And finally, the least significant bit of v, is set the 



quotient bit, you know Q the number that we computed; that is set to the least significant 

bit of e. And also this is the way that we do this algorithm. 

So, what we essentially do is that, we do not do any restoring. If U becomes negative 

after subtraction, we allow it to remain negative, and in a next iteration we just add the 

divisor. So, so that is the way that we, you know go that we if its U is positively subtract 

if its negatively add, and after that we take a look at the sign of U. if U is positive or 0 

we set the l s p of, you know the current bit of the quotient to 1, otherwise we set it to 0. 

So, after all the 32 iterations are finished. If you find U to be less than 0, then we set U is 

equal to U plus D U U plus the divisor. So, at the end the lower 32 bits, so U is a 33 bit 

register, again to avoid overflows. So, at the end if u; at the end U contains the remainder 

and v contains the quotient. 
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So, before giving the insight into why this algorithm works, it slightly complicated, but is 

there in the book. Let us understand via an example how this works. So, let us again try 

to do the same division which is divided 7 by 3. 

So, we start with loading the dividend in the register v, and the divisor can remain in 

register D. So, in the first iteration, after the shift, we basically shift the 3 bits 1 1 and 1 

over here, and then what we do is, since the sign of this. So, since this is a positive this 

number is positive or 0 subtracts the divisor. So, well subtracting the divisor means, 



adding its 2s complement, and the. So, this is the 2, I can just. So, this is 1 1 1 0 0 plus 1; 

if this is a 2s complement of 3 so it is minus 3. 

So, after this the sign of this number is negative, because the sign bit is 1. So, hence we 

set the quotient bit right Q n to 0, Q 4 to 0 all right. So, after this we perform 1 more 

shift. So, we have 1 1 0 1. So, 1 1 0 1 get shifted to here, 1 get shifted here, and here we 

have 1 1 0, and we have 1 bit that will fill later. So, this number is negative. Since this 

number is negative what we do is, that instead of subtracting we actually add the divisor. 

So, we had 1 1 0 1 1 plus 1 1. So, 1 plus 1 is 0 1 plus 1 plus 1. So, 1 is the carry, 1 plus 1 

plus 1 is 1 1 plus 0 is 1 1 1. So, we have 1 1 1 0. So, again this number is negative. So, 

the quotient bit that we set is 0. 

Now, we do one more shift for the third iterations. So, 1 1 1 0 get shifted by 1 position. 

This one comes here, and 1 0 0 get shifted over here. This number is again negative, so 

we add 1 1 once again. So, 1 1 1 0 1 plus 1 1 is 1 plus 1 is 0 carries 1 1 plus 1 is 0 carries 

1 1 plus 1 is 0 carries 1 1 plus 1 is 0 carries 1 and again 0. So, left it all 5 0s, and this 

number mind you is 0 is positive or 0. So, we will set the quotient bit to 1. 

So, the relevant quotient bit is set to 1, because a variable Q in that algorithm is 1 fine we 

do one more shifts, so we set. So, one comes here 0 0 1 comes here and. So, since this 

number is positive, we will subtract the divisors. So, subtracting the divisor means 

adding its 2s complement which is 1 1 1 0 1 plus just 1, and so then this becomes 1 plus 

1 is 0 carries 1 rights. So, this becomes what we need to have, and since this number is 

negative we set the relevant quotient bit to 0. 

Now, the quotient is nicely saved in register v, which is 0 0 1 0, which is 2. So, the 

quotient is correctly computed, is 7 divided by 3, the quotient is 2 this is correct; 

however, we find that the register U. If you consider the last line, you have said if U is 

less than 0 then we add the divisor to U. So, in the last line here registered U is negative, 

because the sign bit is 1. 

So, we need to add the value of U. So, we need to add U as U plus D. So, the way that 

we do is, we add 1 1 1 0 plus the divisor. So, this is 0 plus 1 is 1 1 plus 1 is again 0 

carrier 1, so the rest will be all 0s. So, that is the reason we see 0 0 1 here. So, 0 0 1 is the 

remainder rights. So, the remainder is 1 and the quotient is 2. So, in this case it is not that 

we change the, you know ultimate asymptotic complexity of the algorithm, we did not do 



that. So, we still have a N iterations. So, the time required is order n, it still have a N 

iterations right, and N each iteration at least have a subtraction or an addition, so that is 

log N time. So, we still required order N log n, but it just that we want restores the value 

of U. So, we either do an addition or we do a subtraction that is it right, we do not do 

anything more. 

So, that is the reason this is called a non-restoring algorithm, which is again the standard 

and very popular algorithm. And the non-restoring algorithm is regarded as a standard. 

So, it is used in many many processors for division, and algorithm is again in just to 

summarize. We take a look at the register U is positive is subtract the divisors; else if it is 

negative we add the divisor. We take a look at the sign once again, so if the sign has 

become, if the sign bit is 0 which means a number is non-negative. We set the relevant 

quotient bit to 1; otherwise we set it to 0, which perform a small check at the end if the 

registers U are still less than 0 we add the divisor to u, and U contains the remainder, and 

register v contains the quotient. 
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So, now let me give an idea a very very brief idea of the proof, but the detail proof is 

there in the book. So, is not really you know the proof is slightly involved is also. So, 

that is the reason it is kind of difficult to explain it while presentation, but let me 

nevertheless try. 



So, let us assume that U minus D at some point is greater than equal to 0. So, both the 

algorithms restoring and non-restoring, will produce the same result, and we will have 

the same state right. Now assume that U minus D is less than 0 then both the. So, the 

way the proof is going, is that we are trying to say that our results will be the same as 

that of the restoring algorithm. Since the restoring algorithm is correct we are also 

correct. 

So, we are saying that let us start from the beginning. If you can subtract D from U we 

are at the same state; otherwise v diverge v go on one path and non-restoring. Restoring 

goes on one track and non-restoring goes on another track. So, in the restoring algorithm 

value of the UV register discounting the quotient bits, let it be a. in the non-restoring 

algorithm is a minus you know the divisor sort of shifted by N bits; so a minus 2 to the 

power N D where is this coming from. This coming from the fact that in our UV register; 

U and V, if I consider the divisor it is from the beginning of the v register, where 

assuming all the temporary quotient bits are also 0, this is in a sense left shifted by N 

positions. So, that is the reason 2 to the power N comes. 
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Now, in the next iteration just after the shift, so we will multiply a number by 2. So, it 

will become 2 a. So, in the restoring the number will become 2 a, in a non-restoring the 

number will be 2 a times 2 raise to power N plus 1 times D. So, whatever was there in 

the previous iteration just gets multiplied by 2. Now at the end of this iteration is a 



quotient bit is 1, then we will subtract 2 to the power N times D in the restoring 

algorithm, to get the value of UV, discounting the quotient bits; of course, as 2 a minus 2 

raise to the power N times d. 

In the non-restoring algorithm, we will add 2 to the power N times D. So, what we will 

get is 2 a minus. So, this is what we began with, 2 a minus 2 to the power N plus 1 times 

D. Since we are negative will add 2 to the power N times D. So, what we will get is, we 

will get this. So, as we can see this is equal to this, which means that whenever we set 

the quotient bit to 1, the state of the restoring and non-restoring algorithms becomes the 

same. So, since the restoring algorithm computes the right results, we also compute the 

same set of results, in terms of both the quotient as well as the remainder. 
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So, mind is my proof is slightly in hand wave in nature. The main reason being that I the 

book has a more detailed proof, and in a presentation is just my aim is to give a very very 

high level overview. So, just you know containing in an overview style, whenever we set 

the quotient bit to 1 we will find that the value in the UV register, discounting the 

quotient bits between the restoring and non-restoring will be the same. Otherwise the 

quotient will also keeps it, I am sorry, the restoring algorithm will continue to set the 

quotient bits is 0, and a non-restoring algorithm will continue to also set the quotient bits 

is 0, and whenever the quotient bit is set to 1, both the algorithms will have the same 

state, in the sense all the registers will other the same set of values. 



Now let us say at some points, you know quotient bit is 0, then the partial dividend N 

dash, in the case of restoring is 2 a, and in the case of non-restoring is another value. So, 

like that we can keep going, but we can easily proof, that whenever the quotient bit is set 

to 1, the states of both the restoring and the non-restoring algorithms become the same. 
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So, I explained 2 kinds of algorithms restoring and non-restoring, and with the help of 

this example, where the slide has to be cleaned up, also with the help of this example. 
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We explain how to divide 7 by 3 and compute the quotient and the remainder. So, in this 

context 2 algorithms were discussed; restoring and non-restoring. So, in the restoring 

algorithm 1 subtraction needs to be done in each iteration, and 1 addition. Alternate 

versions are possible, but still a fair amount of work needs to be done rights. So 

essentially here one subtraction and one addition need to be done, but in a non-restoring 

version, either you do a subtraction or you do an addition, but not both. 

So, in that sense the work is roughly half; that is the reason the non-restoring algorithm is 

used, and the way that you prove it works is that you start. So, the first state is the same, 

after that what we need to prove is that every quotient bit is computed correctly, and 

whenever a quotient bit is computed to be 1, the state of both the algorithms is the same, 

you know the values of all the registers is the same. 

So, pretty much we can say that. Let us see that we compute the quotient bit to be 1 right 

maybe small q. After this as long as the bits are being computed 0 the algorithms will 

take to separate paths, in the entire region the quotient bit is being computed to be 0. 

Finally, when we again compute a quotient bit to be 1 the states merge, then again if the 

quotient bits is 0 the states diverge. Again the next time that the quotient bit is 1 the 

states will merge and be the same. 

So, that is the way that we can proof a detailed proof is there in the book, but in any case 

the summary is that the non-restoring algorithm is faster than the restoring variant. So, 

now we shall take a look at floating point addition. 


