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Now let us discuss advanced memory instructions. So, an advanced memory instruction 

is where we can actually see the power of the x86 instruction set. So, what good is a 

complex instruction set? Unless it gives us some instructions that make our life really 

easy; so you know there has to be some justification for the c in CISC. 
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So, we will see that with advance memory instructions. So, let me illustrate a typical 

case, typically in some instructions will prove to be useful, if we look at certain common 

programming patterns. So, a typical programming pattern is that, we move a large 

amount of data, like a large sequence of bytes from one memory location to another 

memory location. So, instructions that help us in moving is long sequence of bytes, from 

1 memory location a to memory location b, these are known as string instructions. The 

string instructions make special use of the edi and esi registers, as we had discussed in 1 

of the earlier slides. edi contains the default destination, and esi contains the default 

source. 
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So, the first instruction that we need to introduce in this category, is the lea instruction, 

because this is what will be used in, you know in the subsequent discussion. So, this is 

very important, it is like the bedrock of all string instructions. So, lea means load 

effective address, and it is used to load an address into any registered, in particular the 

edi and the esi registers. So, in general lea can be used to load an address into any 

register, but we will mostly be interested in edi and esi in the later discussion, but let us 

look at a generic case first. 

So, the standard format of lea is this. So, standard format of lea is register. So, it takes 

two operands, it is a two address format instruction, it takes a register and a memory. 

Also for example, in this case, we have a displacement, we have a scaled index, and we 

have a base register. So, instead of the how does this differ from the move instruction? 

So, what this does is, instead of actually loading something from memory, it considers 

this memory address, and simply computes the address part, does not access memory 

right. 

So, this is very important, does not, this is very important, it does not access memory per 

say right by itself, a memory is not accessed. What it alternatively does, is that it 

considers the memory operand gets the address in memory, computes the address right, if 

you rather be called compute effective address. So, it computes the address, does not 

access memory, and transfers the value of the address which in this case is this right, the 



address, transfers the value of the address to the destination register which is ebx right. It 

just helps us compute the address. 
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So, let us look at our first instruction, which makes our life slightly easy. It is the stosd 

instruction. It does not have any operands. So, what it does is this. it saves the value, that 

is there in eax to edi the memory location in edi. So, basically it treats eax a sort of as a 

default source, essentially it is a store instruction right. So, eax is the register that has a 

default source. 

So, it takes the value in the eax, takes, assumes that edi contains a memory address, 

accesses memory at that address and does a store right. So, edi is assumed to contain by 

default a memory address, and the value in eax is stored over there. if the value of the DF 

flag well. So, in the flags register is essentially the DF bit. It is not the DF flag; it is the 

DF bit in the flags registers. So, maybe I should make it slightly more specific. 

 If the value of the DF bit in the flags register is said to one, what the stosd instruction 

subsequently does, is that it will subtract 4 from the edi register, because we are 

considering a 32 bit instruction set. So, it will subtract 4 from the edi register, if the value 

in the DF flag is 0 instead of subtracting 4 it will add 4 to edi register. So, think of it as a 

post indexed addressing mode, where we do store to memory, the address being in edi 

and the source of the data being in eax. after doing that ,we either increment edi by 4 or 

subtracted, sorry we either decremented by 4 or incremented by 4. Why 4, because 4 



means 4 bytes, and we are considering a 32 bit instruction set, and whether we subtract 4 

or add 4, depends on the value of the DF flag. 
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The lodsd, t this instruction is a load string instruction, it also does not have any 

operands. What it does is essentially the reverse of the previous instruction stosd. It saves 

the value in esi. So, esi is considered as a source register. So, esi is considered to have an 

address, and the address within square brackets becomes a memory address. So, it saves 

the value in memory whose address is in esi to eax. So, this is this is like loading, you are 

loading from memory with the address being the contents of esi, the memory location is 

in esi. And here also we change the value of esi. So, the value of the DF flag in the flags 

register is 1, and then we subtract 4 from esi. 

Otherwise if the value in the DF flag in the flags register is 0, we add 4 to esi. So, this is 

a post indexed addressing mode. Fair what we do is that we first access memory, in this 

case perform a load, and right perform a load from the memory operand esi. esi contains 

the address, and then we subsequently modify the contents of esi, we either subtract 4 or 

add 4 depending upon the value of the DF bit in the flags register. 
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So, let me summarize the memory instructions. So, the first instruction that we discussed 

in this interesting set, is lea, say lea is load effective address. So, it has a simple form, 

where the first and the only source operand is a memory address, is a memory operand, 

but we do not access memory, we compute the value of the address, and store it in the 

register. Subsequently we introduce stosd. So, stosd is a part of you know that many 

kinds of instructions can be there. So, it is a part of a set of four instructions, which are s 

t o s b s t o s w d and q. So, you already know what this stands for; b stands for byte. So, 

a byte is 8 bits, w stands for a word. So, a word is 16 bits. Means that transfer 16 bits, d 

is we have been using d, if it is a double word which is essentially 32 bits, because our 

example is in 32 bits, q is 64 bits. So, this will be useful in an instruction set with 64 bits. 

So, depending upon the type of instruction that we are using, we add the right suffix. So, 

since we are looking at a 32 bit instruction set, we use stosd, if it is 64 bit use s t o s q. 

So, what does this do, essentially it reads the value in eax, save set in the location, the 

memory locations stored in edi. Subsequently it augments edi it sets edi equals edi plus 4 

times minus 1 to the power DF, a DF is the flag spit. So, if DF is 0 this is edi plus 4 if DF 

is 1 it is edi minus 4. So lodsd is a same thing same format as s t o s we used lodsd, and 

because it is a 32 bit ISA. l o d s q could have been used if it is a 64 bit ISA. 

So, here what was done what was done, is that this is the reverse of stosd here the source 

address in memory is stored in esi. So, we read the contents of that, store it in eax, then 



we augment esi. So, we can either add 4 to esi or subtract 4, depending upon the value of 

the DF bit, if the DF bit is 0 we add 4. Let us now introduce the movsd instruction; this is 

also part of the same family of instructions. So, in this case we what we do is, that we 

read the value, we read a memory operand and we transfer it to another memory location. 

So, movsd also works, without any operands, without any source or destination 

operands. Sorry this should have a square bracket. So, what we do is, that we read the 

contents of esi and. So, basically esi contains the source address. So, you go to memory 

access the source address, read the contents, and we save it in the memory address 

pointed 2 by edi. 

So, think of it as a loadsd and a subsequent store s t, fused into 1 right. So, this is exactly 

what it does. Subsequently we augment esi. So, we add 4 to it or subtract 4 depending 

upon the flag bit. Sorry one more mistake. So, this DF should be at the top. And similarly 

we do the same with edi; we either add 4 to it or subtract 4 to it, depending upon the 

value of the DF flag bit. We have two more instructions std and cld; std sets DF to 1, and 

cld which is like clear d, it sets the direction flag to 0, depending upon what we want to 

do, whether you want to add 4 or whether we want to subtract 4. 
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So, let us consider an example. So let us see; what is the value of eax after executing this 

code snippet right. So, basically this code snippet is fairly complicated. So, we need to 

take a look at each of these instructions and see; what is the value of eax after at the end. 



So, let us see; first we have a mov instruction. So, we mov the value 192 to esp plus 4 

and we mov 32 bit is. So, we mov a dword, a double word 32 bit is to the location esp 

plus 4. So, this is the stack pointer, the stack pointer is pointing to a location, to the 

location on top of that we save 192. Then we load the effective address into esi which is 

esp plus 4. 

So, let us assume that esp was 1000. So, at this point esi is equal to 1004 right. So, which 

is this location 1004? Similarly we load effective address of esp plus 8. So, this is edi 

will be equal to 1008, which is actually the address just above it 1008. Then we execute 

the movsd instruction. So, the movsd instruction will transfer 4 bytes from the memory 

address specified in esi, to the memory address specified in edi fine. 

So, what is there in esi? In esi points to 1004 which has 192. So, these contents will get 

transferred over here. So, 192 will get return over here. Subsequently if we access esp 

plus 8 which is a location 1008, which is there in edi and we transfer the contents to eax, 

what do we get. We get the same, so these contents get transferred to eax. So, what do 

we get, we get 192. So, since we write 192 the memory address specified in esi we shall 

read back the same value in the last line. 
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So, this is a small and simple example, let us now do something. So, where is the power 

of the string instruction? So, what we have seen is, we have seen the lodsd, stosd and 

movsd kind of instructions, which are essentially shortcuts of load instructions, the 



movsd instruction actually, fuses a load and store into one instruction, but that is hardly 

any power we are looking for something clearly much more. 

So, let us consider an example, and let us see what can be done. So, let us assume that we 

have a ten element array of integers. The starting address of the source array is an esi, 

and the starting address of the destination that is an edi, and essentially we want to copy 

the source to the destination. So, the first thing that we do, which we should always do 

for such kind of codes, is that we should set the value of DF, the data flag, either 0 or 1 

depending upon what we want to do. In our case we want to count upwards, start at the 

lowest element and keep going up, up means it was higher addresses. So, we set DF 

equal to 0 by calling the cld instruction. 

Then we initialize the loop index of the array. So, we set ebx equal to 0 and start a loop. 

So, we call movsd. So, what it does is? That it transfers the contents of the memory, 

contents from esi to edi. So, this it does right. Subsequently we increment ebx, which is 

the index. We compare the e b index with 10 as long as the index has not reached then 

we keep on iterating right. 

So, basically if the index is not equal to 10, we do 1 more iteration and mind you since 

the movsd has a built in post increment operation, both edi and esi are incremented with 

4 bytes. We do not need to explicitly increment or in some other cases decrement, edi 

and esi. So, they are being incremented automatically. So, nothing needs to be done. So, 

we just keep on calling movsd in a loop that is all that needs to be done to transfer one 

array from a source location to a destination location. This sounds simple enough in a 

sense it takes six instructions; otherwise it was taken slightly more, because we would 

have had a load and a store. It turns out that, this is not the end, we can do something 

better. 
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So, let me introduce the rep prefix. So, rep basically means to repeat the repetition, 

repeat prefix. So, the semantics is that we put rep. So, rep is the starting of the 

instruction, and then we specify the instruction. any instruction we put rep before it 

example would be rep movsd. So, what we do. So, it will consider the value in the 

register ecx, and let us say it is value is Val. It will execute the movsd instruction val 

times right. So, basically this is a very powerful instruction, because 1 instruction 

incorporates a loop inside it. So, what will this do again? It will repeat the instruction 

inst, the same, you know val times, or val is the contents of ecx. 

So, for example, if ecx contains 10, the rep prefix will ensure that the instruction after it 

gets repeated ten times, and every time the value of ecx will get decremented till, and at 

the end it will become equal to 0. So, what do we do? Here is a simple piece of code. So, 

we call the cld instruction first, we set DF to 0, which is something we need to do. In this 

case we are looking at 10 iterations. So, we set ecx to 10, and all that we do is rep move 

while, we are done, it is as simple as that. 

So, let us look at the previous. So, let us look at this piece of code, which is six 

instructions, and let us now look at this piece of code which is only three instructions. 

And the fantastic thing is that we have effectively incorporated an entire loop into 1 

instruction, and we are all done. So, transferring a huge amount of data from point a to 



point b is not a big deal at all. We will just have to execute three instructions in 

sequence. Let me go through these three magic instructions. 

So, we have cld which essentially indicates the direction in which we will traverse 

upwards or downwards in memory. In this case we decide to go upwards we set the DF 

flag to 0. Subsequently set the number of iterations in ecx which is 10, and then we 

execute movsd 10 times. So, movsd will, what will it do. It will essentially read the 

contents of esi, access the memory location transfer them to the memory location pointed 

by edi. Since DF is 0 esi will be set to esi plus 4 edi will be set to edi plus 4 , esi get set 

to esi plus 4 and edi will get set to edi plus 4, and we just need to execute it ten times and 

we are all done. So, now that we have seen the power of some advanced memory 

instructions, branch instructions. 

Our understanding of integer instructions is per say more or less complete. So, we will 

not talk about it anymore. So, we will now move to floating point instructions. 
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So, all the students that have talked to regarding this issue of floating point instructions 

in x86, have consistently indicated that floating point instructions are fairly complicated, 

and this is a part that they would rather not study, and the you know they want to focus 

on something else, but that is not the case. So, x86 floating point instructions are not 

complicated at all, as long as you understand the basic philosophy behind them. 



So, the machine model is like this memory. So, we can directly load constants into 

memory via the, let me write it. So, we can directly store constants into memory, we can 

directly store constants and registers. The registers can then be stored into memory, and 

memory values can also be stored into registers; however, floating point registers are sort 

of their connections are weak. Floating point registers can only talk to memory, and 

loading constants and so on into them is slightly difficult we shall see how, but then 

primary interface is via memory. So, there is no direct connection between integer and 

floating point registers, is point number 1, FP stands for floating point. They can only 

communicate via memory, and there is also no way to load floating point immediate 

directly, so that also needs to be done via memory. 

So, once this sorry basic diagram is understood, we are in good shape. 
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So let us understand; what are some of the basic floating point instructions? How are 

they to be invoked? And what is to be done to learn them correctly. So, this is basically 

one major problem that happens while writing floating point programs is that is students 

do not understand the machine model, they can make mistakes, and this is something we 

want to avoid. So, let us consider the fld instruction; fld’s is very simple floating point 

load. So, this instruction pushes the value of the first operand, which can either be a 

register or memory. 



So, that is the reason I actually have written it twice, or it in a registered form and a 

memory form, on to the floating point stack. So, let us see. So, recall that in the floating 

point stack, you actually have 8 floating point registers right. So, this is like the FP 

stacks, I am not drawing 8 boxes, but that should be the connotation. So, the top of the 

stack is always st0. So, a floating point register is actually a pointer to the floating point 

stack, and the bottom of the stack is s t 7; that is the idea. So, essentially the values of 

registers will change. So, if I let us say push something onto the stack, let us say push 

3.5. So, previously there were 4.5 over here, and then I push 3.5. So, 4.5 goes over here, 

it becomes stl and 3.5 becomes in st0. 

So, when I call something like fld mem. So, first thing I need to do is, I need to specify 

how many bytes am I interested in. So, here this is the memory operand, stored the 

address stored in eax. If I am interested in four bytes, I specify the dword modifier. So, it 

pushes a floating point number. Well and FP number fine grammatically it is still. So, it 

pushes an FP floating point number, stored in eax right in square brackets, to their 

floating point stack. 

So, there if the number stored is 3.5 it gets stored on the floating point stack. Similarly 

there is a register form as well, but mind you this is not an integer register, this register 

form of the instruction, this is a floating point register. So, what we can do is, we can do 

fld stl the floating point registers are st0 to s t 7. So, it will push the contents of stl to the 

top of the stacks, it will read the contents of stl. So, let us say push 4.5, this four point 

five is stl. So, then this will again get pushed to the top of the stack right. So, these are 

the two most common variants of the fld instruction that we can either read directly from 

memory, or we can read another floating point register, but we read the contents and 

simply push them on the floating point stack. Similarly we have the fild instruction, 

which basically what this does is, that i stands for integer. So, this pushes an integer 

stored in memory to the floating point stacks, essentially it converts it does an int to float 

conversion, think of it that way. 

So, in this case we read the value of eax, which is an address in memory and we read in 

32 bit is, but the 32 bit is are not in the floating point format, they are in integer format. 

So, this integer which is stored in eax, is first converted to a 32 bit floating point number, 

and then pushed to the floating point stack. So, what are the basic instructions 

fldFloating point load and fild, where actually load an integer, but we convert it to the 



floating point format and we push it onto the stack. So, this is how we load memory 

values right. So, there are two ways to load a floating point immediate the first is that we 

first load it is hex representation to memory and. So, what do we do let us take a number 

3.5. So, we will first, well this technically should not be load, it is better, so actually call 

it store right, it is a better idea to actually call it store. 
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So, what we can do is, that we can store it is hex representation, write the representation 

and IEEE, I should also maybe call it the IEEE 754 format. We can store it to memory 

and use the fld instruction, to bring the value into a floating point register. Otherwise we 

can use an assembler directive, to store the immediate of the constant before the program 

starts. So, what would the assembler do, the assembler will essentially insert code, to 

basically convert it into hex, and store it in a certain area of memory, and then we can 

use the fld instruction, to transfer the value to the FP stacks, in a sense both these 

instructions, you know both of these points are the same, or the points basically say that 

either the program, assembly programmer manually converts a floating point number to 

it is hex representation, and stores it to memory and then reads it to the floating point 

stack. 

The other is we let the assembler do exactly the same thing. So, in nasm, we can have it, 

there is a data section in which all of these constants can be declared, section dot data. 

So, what we do is that we can define a 32 bit floating point constant called num, which 



is. So, so this specifies 32 bit is, and this is it is value 2.392. So, this is something that 

can be done, that we can specify a number in a decimal format and. So, the num the label 

here is actually the name of the variable, the memory variable which can be referenced 

later, and this is the value. So, what the assembler would do is it will take 2.392, convert 

it to its hex representation, store it somewhere in memory right, and associate that 

memory address right, mem address with the label num. 
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So, that is exactly what will happen the assembler will associate the label num with the 

memory address that saves 2.392. In the assembly program all that we need to write in 

the case of nasm, but all similar other assemblers have a similar format as well, is that we 

will write fld, dword for 32 bit is and num. So, the assumption here is that num will get 

replaced, by the actual value of the memory address by the assembler. 
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So, with this method we do not have to save the hex or binary representation of a floating 

point number. This will automatically be taken care of by the assembler for us. , so now, 

we will look at another instruction which, works exclusively on floating point registers, it 

is called floating point exchange or fxch right, f for floating point x c h for exchange. So, 

we can think we can call it fxch. 

So, here the it has two variants, and in both the variants it exchanges the contents of two 

floating point registers, an st0 which is the floating point stack top, is always one of the 

FP registers, if I write fxch st3, it will exchange the contents of st0 and st3. If I just write 

fxch without any arguments, it will exchange the contents of st0 and stl. So, pretty much 

if this is the floating point stack and the top is referred as st0, and the second is stl, then 

essentially their contents will be exchanged, interchanged. 
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So, now that we have taken a look at load instructions, let us take a look at floating point 

store instructions. So, similar to an fld we have an fst, it does exactly the same thing. So, 

let us take a look at the two variants are fst that we have. So, the fst mem instruction 

takes a memory address, a memory operand and it is argument and. So, it can save it in 

multiple formats, but let us only stick to the 32 bit format right now dword. So, since you 

are not specifying which floating point register st0 is assumed to be king the stack top. 

So, it takes the contents of the stack top, and saves it at the memory address specified in 

eax. 

Alternatively it is possible, to specify a certain floating point register. In this case what 

we do, what happens, is that the contents of st0 are. So, these acts like a floating point 

register move pretty much. So, it takes the contents of st0 and saves it in this case in st4 

right. So, basically st0 is always the source, we can either save it in memory, we can 

either save it is contents in memory, or we can save it is contents in another floating 

point register. 

So, let us now look at this variant over here fst p, which is exactly the same as fst, but in 

addition p stands for pop. So, let me maybe write here, the p over here stands for pop. 

So, it does exactly the same thing as fst, but the additional p after doing, what fst would 

have done it pops the floating point stack. So, fist is an analogue of fild. So, what this 

does is, that see here also we specify a memory address, and of course, the size how 



many bit is need to be saved. So, what this does, is that let us just compare fst mem and 

fist mem. So, it is this line over here and this line over here. Say what this instruction 

does is that it first converts the floating point number into an integer representation, 

pretty much by truncating everything after the decimal point. So, that is what it does, that 

it first converts it into an integer. 

After converting it to an integer, what does it do, what it does, is that it saves it in 

memory. And the fist p instruction is the same that we read in the value of the floating 

point register st0. So, st0 is almost always the default source or the default destination, 

and, so st0 sort of as a special place, it is a top of the floating point stack and if an 

argument is not specified, most likely it is st0. So, in this case the fist p mem, an 

argument is not specified which register. So, that is st0. So, we convert it to an integer 

and save it in memory, and because that p suffix is there we pop the floating point stack. 

So, what are we looked at? So, till now we have looked at fld, and it is variants like fild. 

We have looked at floating point exchange which exchanges the contents of two 

registers. we have looked at fst which stores the value of a floating point register, either 

in memory or in another floating point register, and again in a different variance with a p 

suffix pops the stag and ever fist for integer conversion and so on. So, the main 

instructions are fld and fst that we need to bother about right; fld and fst. 
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Let us now consider an example. So, the 32 bit floating point number is loaded in st0. So, 

it is present in st0. Let us convert it to an integer, and let us save it is value in eax. So, to 

do this; one thing that is clear is that from the set of floating point registers. So, the 

direction of data flow is from the floating point registers to memory. So, this is a store. 

So, we needs to use some variant of the fst instruction, and since conversion to an integer 

is also there, the instruction that we need to use, is fist right, fst for store and i for the 

conversion to integer. 

So, we want to save this in a memory location, first and then transfer it from memory to 

a register, to an integer register, because we cannot directly transfer a floating point 

value to an integer register. So, what we do, is that we assume that let us say this location 

on the stack esp plus 4 is available is free. So, there we transfer a dword or 32 bit is, 

because it is a 32 bit floating point number. So, the contents of st0 get return to this 

memory location, this is what the first statement achieves, then the second statement is a 

simple register mov which we have seen, you know in great detail in the previous 

sections. So, here what we do is that we specify a memory address, and from this 

memory address we essentially read in 4 bytes into the register eax. 
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So, let us now look at the floating point add instruction, which is in a sense similar to 

some of the earlier instructions that we have seen, and so, but let us take a look it also 

has different forms, and some of these forms are slightly involved. So, let us start taking 



a look at least the most basic form. So, the 1 operand forms of the fadd instruction takes 

a memory operand as the single source. So, for example, fadd, dword, eax; so in this 

case, the contents of the register eax are taken, memory is accessed and from there we 

read in a dword or a double word, which is 32 bit is. So, the assumption is that a floating 

point number is present over there, and we take it and we add it add it is contents to st0, 

and save the results in st0 as well. 

So, st0 can be thought of as the default floating point register for this instruction. The 

other form is where the instruction takes two registers, to floating point registers to be 

specific, as the operands, and this the form is exactly similar to the add instruction to the 

integer add instruction, the only caveat here is that one of the registers has to be st0. So, 

so most versions of x86 of the x86 ISA, actually required this that 1 of the registers has 

to be st0. So, in this case the add instruction is similar to the integer add instruction, 

where we set st0 is equal to st0 plus stl. I mean this instead of stl this can be s t 5 it is still 

fine. So, we can say st0 is st0 plus s t 5. So, it does not matter. Then the add instruction 

also has a mode, where we can pop the stack. So, we use the p suffix, p is for pop. 

So, here what we do. So, be before I explain this we need to consider 1 thing that, we 

cannot store the result in st0, because st0 is going to get popped. So, the typical form in 

this case, is that we have some floating point register which is not st0, typically stl, but 

can be others also, and then we store the result in stl and. So, in this case also, it is 

typically the case at st0 is 1 of the operands. So, we add. So, in this case we can think of 

this as s t i where you know it can be any s t, and any s t where i is not equal to 0 sin 

since this is stl the explanation is that the way this instruction will work, we will compute 

st0 plus stl and save the result in stl; that is important, because we cannot save it in st0 it 

is going to get popped, subsequently we pop the floating point stack. 

So, this means that whatever are the contents of stl become the contents of st0, after the 

pop this instruction also has a mode, where we can read in an integer from memory, 

converted to floating point and do an addition. For example, if I have the f i if i have this 

i the character i after f. So, the instruction will become f i add, and an example of this 

instruction would be f i word, if I add dword eax and. So, here this contains the memory 

address. So, the computation that is being done is that to st0, we add the contents of the 

memory address. So, that is assumed to an integers they convert it to a floating point, we 

add it to the contents of st0, and save the results in st0. 



So, since all our code has been specific to the nasm assembler. The nasm assembler also 

provides one more variant of the fadd instruction. So, this variant has also been discussed 

in a book and is there in several examples as well, but this is not a part of the general x86 

specification, even though a lot of assemblers do implement, it because it is very 

convenient, but users should keep in mind that the table on top, these are like generic 

formats which you will find in Intel manuals, but this is nasm specific. So, can be used, if 

nasm is being you used as the assembler, and if there are other assemblers suppose this 

particular format, this can be used is nothing wrong in it. So, this format is a a 1 address 

format instruction, where the only operand that fadd takes, is a floating point register. 

So, for example, fadd stl. So, here the default source, the default second source is st0 and 

the default destination is st0. So, we could have very well written fadd s t four. So, the 

effect that this would have had is st0 is st0 plus st4. So, these are very convenient when 

writing assembly programs, but as I said this is not a general format of the fadd 

instruction. So, it is possible that in some assemblers this might not work and. So, this 

possibility is always there that in some assemblers it might not accept this format, but 

wherever this format is being accepted it can be used. See here what needs to be 

remembered is that the second source operand is st0, and the destination is also st0. 

(Refer Slide Time: 46:01) 

 

So, similar to add we have subtracts multiplication and division instructions, which work 

in exactly the same way, and have the same variance also. So, let me write it down. 



So, exactly the variance that we have seen over here, say they can take a single memory 

operand as you know the arguments of the instruction or they can take to floating point 

registers they also have the additional p mode where we pop the floating point stack, and 

also similar to f i add you can have an f i sub, where we read in an integer from memory 

converted to floating point and use it in a subtraction. So, here I am just showing 

examples with a default memory operand. 

So, in this case, if this is the memory operand what we will do is that we will read in the 

value and subtract it from st0 or multiply it to st0 or divide it to st0, whatever the case 

may be and the rest of the variants are the same at the cost of. So, basically to avoid 

repeating, I am not talking about all of the variants once again, but essentially to look at 

what variants are supported, let us go back to this table which shows the variance for the 

fadd instruction, and reuse the same variance for the other instructions f sub f mul and f 

div. 
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So, let us show an example, let us compute the arithmetic mean of 2 integers stored in 

eax and ebx, let us save the result. So, here there is a catch. So, we do not want to save a 

32 bit floating point, we want to save a 64 bit floating point. a 64 bit floating point 

number is a double precision numbers. So, we want to save this in the address esp plus 

four. Let us assume that the memory address two contains the constant 2. So, basically a 

loading value into floating point registers is complicated, loading constants particularly. 



So, they need to be saved in some memory location, and that memory location needs to 

be, the contents of that memory location need to be transferred to the floating point stack. 

So, let us do one thing, let us first start by loading the inputs to the floating point stack. 

So, since eax and ebx contain the two integers. We need to transfer them to memory first, 

because direct communication between integer and floating point registers is not there. 

So, let us transfer them to memory. 

So, let us assume that these two memory locations at esp and esp plus 4 are free. 

Subsequently let us load them onto the spoof floating point stack. We will use the fild 

instruction, basically meaning that a conversion will happen from integers to floating 

point. So, this is what the i means over here. So, then we will convert them, and we load 

them onto the stack. So, basically this value will be at the stack top st0, and this will be 

at the second from the stack top stl. Let us go ahead let us compute the sum of st0 and 

stl, and, so the result will get saved in st0 and let us divide the contents of st0 by, 

whatever is stored in the memory location 2. So, what is stored there, what is stored there 

is 2 point 0. So, let us divide it, and the final result is there in st0. 

So, basically let us consider an example, if eax can contain eight and ebx contain 9. So, 

arithmetic of 8 and 9 is 8.5. So, 8.5 is stored in st0. What needs to be done next? Well, 

what needs to be done next is that we need to save the result to esp plus 4 to this memory 

address esp plus 4, and we want to save a 64 bit result. So, that is the catch, to save a 64 

bit result I am using the fst instruction, and to just clean up the stack I am using fst p, but 

it is technically not required. So, fst would have been just fine. And then the important 

point to note is that the q word identifier is being used. The q word identifier basically 

means quad word or 64 bit is. So, we are saving the result of the 64 bit quantity, and this 

is being stored at the memory location esp plus 4. 

So, this is all that we need to write this program. So, the program contains seven 

assembly instructions which is not much. Given the fact that a lot is being achieved we 

are taking integers, converting them to floating point, putting them on the floating point, 

stack, computing their arithmetic mean and writing them back. So, it is a fair amount of 

work that is being done. and, but it is important to understand that what is being used the 

fild instruction being is being used to achieve the conversion, from integer to floating 

point; that is point number one, second we are doing a division, and a constant 2 is saved 



at a certain memory address called t w o. And then we are saving the result back which is 

a 64 bit quantity, using the q word identifier to esp plus 4. 
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Now, let us take a look at instructions for some special functions. So, basically you 

know; what is the advantage of having a CISC instruction set, unless these special 

functions are supported. So, there are many more special functions which listeners can 

find, readers can find in Intel’s manual, but some of the 1s that are most commonly used 

our fabs for an absolute value square root that computes a square root of st0, and saves it 

in st0. Then cos and sin; 1 second, then cos and sin. 

So, again the cost of st0 is computed and saved in st0 and same for sin. So, there are 

many functions, other functions for other transcendentals and logarithms and so on. So, 

the listener is the listener the reader the user right. All these three are interchangeable 

terms, can take a look at the Intel’s manual, to find out what are the other instructions 

that are supported. 
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So, let us do 1 thing, let us now compute the geometric mean of two integers store in eax 

and ebx, and let us save the result again in 64 bit is, at the location esp plus 4. So, the 

only change that is being done is that from arithmetic mean we have gone to geometric 

mean that is all. So, most of the code will remain in the same, and it genuinely does. So, 

this part remains exactly the same where we read in the floating point numbers from 

these two registers. 

So, these two registers contain integers they are converted to floating point numbers, and 

stored on the floating point stack. Subsequently instead of an fadd we multiply them, 

stay st0 contains the product of st0 and stl. We compute the square root. So, basically st0 

contains the square root of st0 right. and then the last line is exactly the same, where we 

again store it, we use the q word identifier to ensure that the result is 64 bit is, and we 

store it at the memory address esp plus 4. 
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So, now let us take a look at comparing floating point numbers that is important, because 

that is you know a lot of word that has branches and. So, on depends on the results of 

comparison. So, compare also has 2 variants, 2 simple variants. So, first variant is fcomi. 

So, here we compare 2 registers, let us say st0 and stl. So, we compare st0 and stl, and 

we set the flags register appropriately. So, here the caveat in most variants of the x86 

instruction set is, but the first register has to be st0. So, that is typically the caveat that is 

placed; another variant of the fcomi the compare instruction. So this compare instruction 

is very similar to the c m p instruction for integers. So, essentially we compare registers 

and we set the flags that are a simple basic idea. 

So, we can additionally have the p suffix, where we compare two registers, and we set 

the flags register, and additionally at the end, we pop the floating point stack. So, let us 

say we do not need a value, we do not need st0 for example, we can do the comparison 

and then at the end of the instruction, we can also pop the floating point stack. So, here is 

a very important point, a lot of students make mistakes in this point, and this is a very 

common source of bugs, while writing assembly programs with floating point operands. 

So, the source of the bugs is as follows. 

So, let me draw a circle over here, the important point is that the flags are set for 

unsigned comparison not for signed comparison. So, recall that we had different kinds of 

flags. So, basically the condition codes that we need to use are essentially below, and 



above. So, these are the condition codes for unsigned comparison, not greater than less 

than you know anything else right. So, definitely not in a greater than and less than and 

greater than equals and so on, not these ones. We need to use the condition codes 

basically b for below a for above n b for not below and so on. So, these are the condition 

codes that need to be used, and these are the condition codes for unsigned comparison 

and this is definitely what it is, that needs to be used. 

So, this is a very, you know very common source of mistakes, because typically students 

would use, the condition codes for signed comparison, and they get the wrong answer. 

So, this needs to be kept in mind that the condition codes that need to be used, are the 

ones for unsigned comparisons, essentially we need branch instructions of the form j b or 

j a. 
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So, now let us take a look at difficult examples, it is not that difficult, but it pretty much 

uses all the concepts that we have learnt up till now. So, let us compare sin 2 theta, and 2 

sin theta cos theta. So, those who remember, still remember trigonometry will quickly 

guess that both of these expressions are the same. So, sin 2 theta and 2 sin theta cos theta 

are the same expressions. Let us verify that they have the same value for any given value 

of theta, and assume that theta is stored in the data section data section of the assembly 

file, at the label theta right at the memory address theta, and the threshold. So, here is the 

important thing. Let me stop here right. 



So, how do you compare two floating point variables, let us say f 1 and f 2. So, the 

nature of real numbers or floating point numbers is in exact right. So, this we have 

discussed in chapter 2, that comparing floating point numbers makes little sense, 

basically because the representation is not exact. So, essentially you know we have a 

basic question here that, let us say a number of the form 3.0, and 3.0 plus, are they equal 

or not equal. So, this is a broad philosophical issue, so theoretically speaking they are not 

equal, but practically they might be equal and the reason being that we might not have 

enough bit is to specify 3 plus 10 to the power minus 30 right. So, we might not have that 

precision, that is required to specify f 2, and as a result the hardware might compute f 1 

to be equal to f 2 right, this is theoretically not correct, but real number arithmetic is 

always in exact. 

So, the best way and the standard method, the standard approach of comparing floating 

point numbers is like this, that we take 2 numbers f 1 and f 2, we subtract them, take 

their absolute value, and see if this is less than a predefined threshold like epsilon the. 

Threshold can be arbitrarily small; it depends upon what are tolerances. So, maybe like 

ten to the power minus 5 or 10 to the power minus 10, it all depends on what f 1 and f 2 

are, but the main idea is, that the way we find out equality is basically by using the fact 

that the difference, the absolute value of the difference has to be less than a given 

threshold. 

So, in this case let us assume that this threshold is saved at the label threshold, and 

finally, after the comparison let us save the result in eax 1 if there is equality, and 0 if 

there is lack of equality. So, we expect 1 as an answer all the time. So, let us now 

gradually. Let us break this example; because the example is kind of long and 

complicated as you see, it is a two page example. So, nevertheless try to understand it 

slowly gradually. So, let us do one thing, let us first compute sin 2 theta, and let us save 

it in memory. 

So, the first thing that we do is that, we load the constant theta from memory. So, what 

we do is, that we assume that the constant theta. In any value of the angle theta is stored 

in the memory label theta. So, we load the contents or onto the stack top, which is st0 

and then we add st0 with st0, essentially compute 2 theta, then we compute the sin of 

this. So, this basically at this point st0 is equal to sin of 2 theta. Subsequently we save sin 

2 theta; into the memory location pointed to by esp, where we assume that that particular 



memory location is available and can be used. So, since all our quantities are 32 bit is, 

we use the dword identifier, and in addition we actually use the fst p instruction. So, 

basically we do not need the value anymore. So, we pop the stack also right in addition 

since. So, this is in general a good idea, that when we do not need the value. We can 

additionally pop the stack as I said; the floating point stack remains fairly clean. 

So, now let us compute 2 sin theta times cos theta. So, let us do the same thing, let us 

load theta into st0, and let us create one more copy of theta in stl by the fst instructions. 

So, fst stl, basically sets stl equal to st0 which is equal to theta right. So, both at this point 

at this sorry, at this particular point st0 and stl both of them contain theta. Now let us 

issue the f sign instruction. So, the f sign instruction has computes st0 is equal to sin 

theta, let us exchange. So, f x f exchange exchanges swaps st0 and stl. 

So, at this particular point after this instruction stl will contain the previous contents of 

st0, which is sin theta, and st0 will contain the old contents of stl which is just theta. 

Then let us issue f cos. So, f cos will compute st0 as cos theta, then let us multiply st0 

and stl. So, st0 will then contain sin theta times cos theta right, and then let us add st0 

with st0. So, then st0 will be 2 times st0, which is 2 sin theta cos theta. 
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So, where are we at the end of this page, we are saved sin 2 theta at the memory location 

esp right, point whose address is in esp, and we have we have 2 sin theta cos theta and 

st0 . Now that we have this let us do one thing, let us again load the value that was stored 



in esp, which a sin of 2 theta. So, let us load this value into the stack top. So, the previous 

stack top goes into stl. So, at this particular point st0 contains sin of 2 theta, and stl which 

used to be st0 before we actually did a push operation on the stack. So, recall, that any 

fld instruction any f load instruction pushes the value on the stack. So, the st0 becomes 

stl, st4 becomes st5, st6 becomes st7 and so on. So stl will be the previous contents of st0 

which is 2 sin theta cos theta right. 

So, at this point let us subtract them. So, let us subtract this value in this value, and the 

difference between this these two values will be saved in st0. And let us also then 

compute using the fabs instruction, it is absolute value. So, what is st0 at this particular 

may be. Let me draw a line here what does st0 contain. St0 contains the absolute value of 

the difference between sin of 2 theta, and 2 sin theta cos theta. So, now, let us do 1 thing, 

let us read in the value of the threshold, which is the value epsilon. The maximum 

possible deviations between two quantities are again to be equal. 

So, let us reads value. So, so when we load it is value it will get loaded to st0 right. So, 

st0 will contain epsilon, and the new stl will actually contain the previous contents of st0, 

because we just pushed the stack which is this difference over here. So, let us compare 

st0 which is epsilon, and stl which is the difference right, let us just compare. So, ideally 

what is it that we want? We want epsilon to be greater than the difference right; the 

threshold to be greater than the difference. So, which means that the threshold is above 

the difference, because it is an unsigned comparison, that is an important point to note, 

that will only use above and below. So, we use the branch operation j a; the conditional 

branch j a. So, j is for jump and a is for above. So, if j a is true, we jump to dot equal, and 

at this particular point; since we have found out equality that the difference is less than 

the threshold, we set 1 to eax and we exit. 

 Otherwise just if this is not the case, we will set to say 0 to eax, and then we will exit, 

but the important point is this should not happen, because the trigonometric equality; that 

is a trigonometric identity, they should hold all the time. Unless you know there is some 

bug in the code. So, thankfully there is no bug and you can copy paste the code as is 

written, on to an awesome window and test. So, it should work just fine. And, so this is 

where and all the time the output should be equal to 1, which means that equality 

between sin 2 theta and 2 sin theta cos theta exists. 



So, one thing that we get to understand over here: you are writing a program with regular 

x86 floating point instructions, is certainly not difficult at all. We just need to understand 

the nature of the floating point stack. So, let me just write down what are the concepts 

that we need to understand. We need to understand the nature of the floating point stack; 

that is the first thing that we need to do. So, we need to understand that when a new 

value is pushed into the stack, the rest of the values go down by one position that is point 

number one. 

We need to understand the nature of the floating point instructions right. So, basically the 

fact that they treat st0 in a special way and how they work, then we need to understand 

the nature of floating point conditionals, that always the above and the below flags are to 

be used right, below condition codes are to be used, and the rest is straightforward, the 

rest is pretty easy. So, that is not difficult at all, and we can write fairly efficient floating 

point code with this. So, let me now add an afterword, now that we have seen this 

actually. 
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Let me add the afterward after the next slide, because that is when I will introduce two 

more instructions. So, these instructions are typically uses cleanup operations. So, for the 

stack cleanup; so the f free instruction which takes a floating point register as an 

argument, like f free st4. Essentially frees is the content of st4 and marks it as clean. 



So, typically it is good programming practices that at the end of a program or at the end 

of certain points in the program, clean up the floating point stack. The floating point 

stack is a part of the program state. So, let us say that another program wants to execute, 

and the current program needs to be suspended. It is necessary to save the complete state 

of the floating point stack and then restore it. So, that is the reason that it is advisable that 

if floating point code is not used and we can keep the stack out of floating point clean. 

So, the instruction that helps us clean the floating point stack is f in it. 

So, what does f in it do, it resets the status of the floating point unit including the stack 

and registers, which basically means that it cleans up all the registers, if there is it 

essentially says that the floating point stack is empty right, and it resets the flags and 

condition codes of all the floating point. I am sorry I should not use the word flags and 

condition codes, but it resets the status of all the floating point hardware, which includes 

adders and multipliers and all of that, and also similar kinds of hardware. It marks the 

floating point registers and the stack is empty, it pretty much clean setup. 

Now, let me ad add my afterward. So, my after word is that this is the basic floating 

point support, that x86 processors have. So, x86 processors are primarily you know 

sixteen bit types, which are the 8086 type. So, these are not used very frequently these 

days, maybe in some embedded applications, but otherwise not very frequently, 32 bit is 

still around also in the embedded domain, it is gradually going away, but 32 bit is 

definitely around and. So, this is what is referred as x86 or x86 32 bit or sometimes i 3 

86. Then we have 64bit, 64 bit is definitely around and will be around for a long time. 

So, this is called x86 64. 

So, these are all the variants and versions of the x86 instruction set. The 8 bit instruction 

set is also there, but that is too old. So, the floating point stack has been there since pretty 

much 1987, to the best of my knowledge at least with a 3 8 7 coprocessor, whose job was 

to do floating point operations. So, it is been there for a long time. So, this is a basic and 

you know the architecture is somewhat slightly old and primitive. So, maybe as an 

addendum to this book at a later point of time I will add the more recent architecture. 

So, subsequently Intel has introduced many more floating point registered sets actually; 1 

of them is MMX, the other are the SSE the registers, then recently the AVX registers. 

So, it is possible to use particularly say MMX defines the x m m registers right, that are x 



m m registers y m m registers and so on, but with the x m m registers a lot of this code 

can actually get far more simplified. So, we are not covering them in at least this version 

of the book, but my advice to readers would be that if they want to know more, they can 

definitely read more about these extensions of the x86 architecture set ISA. 


