Operating Systems
Prof. Sorav Bansal
Department of Computer Science and Engineering
Indian Institute of Technology, Delhi

Lecture —13
Translation lookaside Buffer, Large Pages, Boot Sector

So far, we had been looking at paging and let us review it once again.

(Refer Slide Time: 00:09)

We said that segmentation allows you mapping from virtual address to physical address,
but it only allows contiguous mappings because it is a simple base plus VA gives PA
mapping which is not very flexible. It does not it has problems of fragmentation and it

has problems when if a process wants to grow etcetera.

So, if you add a more general mapping and that is what paging implements, then it would
be much more flexible. And, what paging does is divide the physical address space and
the virtual address space into page lined, fixed size, page sized units right which are
called pages. So, aligned fix size units which are called pages and, now, there is a
mapping hardware in the middle which will map a page in virtual address space to a page

in physical address space.

This mapping hardware is basically requiring a table which can have at most you know 2

to the power 20 entries. So, such a large table cannot be stored on chip. So, the such a

table needs to be stored on physical memory right or you know the technology for

physical memory is also called DRAM.

So, you store the table in physical memory also we said that rather than storing the table
contiguously which will make it very large 4 megabytes; let us divide it into a two-level
hierarchy, and so, that way small processes will only have a very small page tables and
large processes will also you know will also benefit in space. Even if there are all the
pages mapped, even then you know the two-level hierarchy is not too much space too
much space hungry than hungrier than one-level page hierarchy alright.

So, on the chip there is a register called CR3 which holds a physical address, which
points to the base of the page directory. The virtual address is used the 10 bit out of the
10 bits of the virtual address are used to index into the page directory from which you get
the 20 bit physical address of the page table and 12 bits of flags. These flags are you
know three use three relevant flags for us are present, user and writeable. So, whether the
page is present, whether page table is present in this case, whether user mode execution

can access it and whether it is writable right.

So, for example, if this is non-writable then the all the pages which are reference from
here, they are all non-writable right. On the other hand, if this is writable then depending
on what the flags are for the in the page table corresponding page table entry the page

will have writable or read only permissions alright.

So, the top 10 bits are used to index the page directory, the next 10 bits are used to index

the page table, and the last 12 bits are used as an offset into the page alright.

(Refer Slide Time: 03:02)

And, we said that an operating system can implement multiple processes or multiple
address spaces by switching the page table on every context switch right. So, each time
the process wants the operating system wants to change from P1 to P2 you change the
CR3 value from P1 space directory to P2 space directly. You just load a new value into

CR3, and you have a new page table.

And, we have also said that the kernel maps itself into the address space at the same
point in every page table. So, a process does not see the entire 4 gigabytes of virtual
address space, it sees something less than that. On xv6 it only sees a bottom 2 g
gigabytes and the top 2 gigabytes of the virtual address space are reserved for the
operating system or the kernel. And, so the kernel is really mapped at the same place

pointing to the same physical addresses in every process right.

And, so we also said that every hence every user process is also a kernel thread right
because a process now has two halves. One is the user half which the user can access and
the other is the kernel half which only the kernel can access. A user cannot just switch
into the kernel half the only way a user can switch into the kernel half is through the
interrupt descriptor table through a trap right.

And, once it is switches into those kernel halves then it executes in kernel mode. It is
possible that multiple core processes simultaneously are executing in the kernel half in

which that is why we are calling them kernel threads ok. On the other hand, if the

multiple processes are executing concurrently on the user half no problem because these
are independent address spaces alright. So, how many accesses memory physical
memory accesses does the processor need to make on a memory accessed by the

program?
Student: Three.

Three. So, first you will dereference first you will add these 10 bits through CR3 and
then dereference this value. So, that is memory access number 1. Then, you will get these
bits and dereference this value — that is memory access number 2 then you will get this
and then dereference this value, that is 3 right. So, for every memory access you are
actually making three physical memory accesses. So, for every virtual memory access
you are making three physical memory accesses and that is not acceptable right that is
too costly.

In segmentation, we saw that such a problem was solved by basically ensuring that when
a segment descriptor gets loaded the segment descriptor gets cached into the chip right.
So, you do not need to access memory to get the base value each time; base value is just
cached on chip.

(Refer Slide Time: 05:50)

Similarly, in paging, also there is caching involved and there is a special cache called the
translation lookaside buffer translation lookaside buffer or TLB for short ok. This cashes

VPN virtual page number to PPN mappings. So, each time you basically access a page, a
virtual address you walk the page tables the 2 two-level page table and you get a physical
address right. But there was a mapping from the virtual page number to the physical page
number that this page table structure was providing.

So, if you could cache this end-to-end mapping from VPN to PPN in your TLB then and
you could first check your TLB and so, TLB is on chip right. This is on chip, on CPU.
So, if the virtual address the VPN corresponding to the virtual address being accessed is
already in the TLB, you do not need to walk the page table, you can just get the VP PPN

from there add the offset and directly access the memory.

So, that way you just have to have if you get a TLB hit implies 1 access per VA access
right 1 physical memory access per VA access. A miss implies 3 right. So, after the TLB
miss you have to walk the page table just like before; if the TLB hit you do not need to

go to the physical memory right.

So, it is important in real world that most of your memory accesses are TLB hits. You do
not know most of your virtual address accesses are TLB hits for to have any acceptable
performance right. Otherwise you know the whole idea of paging falls flat if the TLB hit
ratio was not high enough right because segmentation was giving me a very fast
translation. If paging is giving me a 2x overhead on every memory access that is not; that

IS not acceptable right.

So, fortunately most programs have a very high locality of access. Especially, because
we are dividing the address space into page level granularity one entry one VPN to PPN
entry is capturing locality of access within an entire page right. And, so it is possible to
have a small TLB and yet have hit rates of 99.9 percent or above right and that is the
kind of hit rate you will want in such a system to have any acceptable interrupt
acceptability of this paging idea right.

So, you know typical TLB sizes on modern processors will be let us say 4 kilobytes also
right roughly. So, you know a 4 kilobyte TLB can cache let us say; let us say each TLB
entry requires 8 bytes, then a 4 kilobyte entry will 4 kilobyte TLB can cache 512 such
pages page entries and assuming that your memory footprint. So, 5 so, you can basically
cache 512 VPN to PPN mappings in your TLB and assuming that the programs memory

footprint is less than 512 pages, then pretty much you should be able to access you know

this translation should be pretty much free. You are only accessing the on-chip TLB

alright.

Also, let us understand whenever we talk about caching so, assume you have seen
caching and you know what is hit ratio and all that right. So, | have been talking about
hit ratio and let us say this is you know greater than 99.9. Let us say, now, just a ballpark
figure 99 to 100 percent somewhere in the middle and that is the kind of hit ratios you

are looking at ok.

So, when you talk about caching we should also say you know what is its cache
replacement policy; what is its associativity; what is the whether it is a write through or
write back cache right. So, you have seen all these terms in computer architecture class
right. So, firstly, what is its associativity which means you know you know about cache
associativity.

So, typically the TLB is a fully associative cache right you want your TLB to have such
a high hit rate, so, you better make it fully associative. If on the other hand you had a
direct mapped cache you will just have conflict misses in your cache right ok. The other
thing is what the caches replacement policy. Well, the hardware can is free to implement

any cache replacement policies it likes. Given that most of the things are going to be hits.

You know cache replacement policy does not cache replacement policy usually matters
if the size of your caches are small. If your cache size of the caches are bigger than the
working set size, then cache replacement policy is actually not that crucial. It does not

really matter what your cache replacement policy is.

So, you know you can use something like LRU which will require some bookkeeping or
simpler policy maybe FIFO and the hardware designer can make it make a choice you
know. FIFO is simpler to implement, but it may have a slightly lower hit ratio than LRU.
LRU is more complex to implement. It may or may not have better hit ratios than LRU

you know that.

Now, let us look at whether it is a right back or a right through cache, let us see what
happens. Each time a page table is walked by the hardware the entry gets cached into the

TLB. So, this is a read operation, right? All these lookups are just reads of the page table.

The only right to the page table is then the kernel actually overwrites some entry by
looking at that particular address right.

Recall that the page table itself is mapped in the kernel address space right. So, the
kernel can change the page table by just writing to a memory location there. If the kernel
changes a page table entry TLB does not even come to know about it right. So, a kernel
needs to space the kernel needs to tell the hardware explicitly to invalidate a page
directory entry or TLB entry right.

(Refer Slide Time: 12:59)

So, there is an instruction called let us say invalidate page and it takes a virtual address
right; basically means invalidate any entry in the TLB corresponding to this virtual
address right — so, explicit invalidation of the TLB entry, the cached entry. If the kernel

forgets to do that, it is a bug right. Very bad things can happen ok.

You can imagine what can happen. What can happen is that the kernel thinks that it has
mapped a certain page somewhere else and removed the entry here where the TLB still
caches that entry and, now you know a user can probably access somebody else’s page
right. So, those kinds of bad things can happen.

So, it is important of the kernel executes each time it changes a page table entry it

invalidates the virtual the page all TLB entries corresponding to a particular virtual

address or the single TLB entry corresponding to virtual address. Also, each time you do
a context switch you change CR3 right. So, what should happen to the TLB?

Student: (Refer Time: 14:04).

All that you know the entire address space has changed right. So, you should completely
flush the TLB right. So, reload of CR3 implies TLB flush right. So, in every context
switch you flush the TLB completely because you know the entire address space is
changed all the VPN to PPN mapping have only cache VPN to PPN mapping need to be
invalidate alright.

So, it is important to for an operating system to ensure that the number. So, the number
of entries in the TLB typically remains small you know and one way that one method
that the hardware provides to do that is supporting what are called large pages on x86
right. So, let us see.

(Refer Slide Time: 15:09)

There is something called large pages ok. So, we said you know normal pages are 4
kilobytes, but large pages are 4 megabytes. So, you could have large pages and how
would you how do the x86 architecture implement a large pages? In the flags of the page
directory entry there is yet another bit. So, for PDE flags there is another bit which says
page size alright. If the page size bit is O it means it is a normal page; if the page size bit
is 1 — it means it is a large page.

And, if it is a large page it treats the 20-bit pointer not as a page table, but as a pointer to
that 4 MB page ok. So, if it is a large page then this pointer is pointing to a 4 MB page
directly right because you can imagine that you know a large page if your machine is
talking about a 4 MB page you have divided your physical address space into pages of
size 4 MB right.

And, so pages of size 4 MB means 2 to the power 22 bits | will basically use for an offset
right and the top 10 bits; 22 bits are used for the offset and the top 10 bits are used to
identify the page number right. And, so the top 10 bits of the virtual address are used to
index the page directory entry to get the large page number right. Even large pages need

to be aligned at page granularity right.

So, large page cannot, a large page just always starts at 4 MB boundaries right. So, there
will be a large page at address 0 and then the next large page will be at address 4 MB and
8mb and so on; just like small pages were aligned at 4kb large pages are aligned at 4 MB
right. And, so, 10 bits are enough to name a large page and so, the top 10 bits of the
virtual address are enough to name a large page. And, so, the page directory entry
directly points to a 4 MB region right.

If you are using small pages, then you allow this 4 m in any case the page one entry in
the page directory is quite capable of mapping 4MB of virtual address space. If you are
using small pages, this 4MB can be fragmented in 4kb chunks across the physical
memory if you are using large pages then this 4MB chunk has to be contiguous in
physical memory right that is the only difference. So, what is the advantage of doing

this?
Student: Time.

First advantage is the time it takes to actually walk the page table has reduced. You only
need to dereference one, but you know make two accesses for one even if there isa TLB
miss. More importantly the number of entries that need to be cached in the TLB has
reduced alright. As supposed to 2 to the power 10 entries for a 4-megabyte space you

need only one entry, if you can ensure that the entire space is contiguous.

But it also means that the program should you know the operating system should take

care of things like fragmentation right. For example, small pages small processes should

not be given large pages. Large processes can be given large pages, but in make sure that
they are actually using those large pages because an entire address space, if they are not
then | am basically worrying about fragmentation and all that kind of issues. One big
place where large pages are really useful is to map the kernel itself alright.

(Refer Slide Time: 18:57)

So, we said that every process let us say this is P1 maps the kernel starting at you know
starting a 2GB, let us say right and we said this mapping of the kernel is basically a one
to one mapping to the physical address space. This is the physical address space, and this
is going from 0 to M, then this is going to from 2 GB to 2 GB plus M right.

So, it is a completely contiguous mapping in the kernel right. That is what we saw that
the kernel just maps the entire physical memory into a charger space; at least in xv 6 and
we said other operating systems can recycle virtual address space for if you know the
amount of physical memory is greater than what can be supported in the address space.

So, for this kind of a mapping which is completely contiguous it does not make sense to
use small pages you can just use large pages right. So, you can just have you know 4 MB
pages to store this mapping from for the kernel; that way, the kernel the size of the there
few advantages of this number 1 — the size of the page table has reduced right because

you only need few entries to map the kernel you have made the generality bigger.

So, the overhead that we had so, we said that every process needs to map the kernel. So,
every process has to has this extra overhead of having these extra entries for the kernel
address space. If you are using large pages, then this overhead has significantly
decreased number 1. Number 2 — that most more important the TLB pressure has

decreased.

The number of entries that are needed to be in the TLB to cache this mapping has in
decrease and so, you can have better hit ratios in your TLB right. So, large pages can be
used other places, but one place where they have a direct use, immediate use in the
operating system designs that we are talking about you know you just use these large

pages to map the kernel itself.

Student: Sir, while is saying while caching a page we (Refer Time: 21:04) to a 4MB in
the cache it is very large value.

While catching a page, no, you mean in the TLB?

Student: Yes.

So, in the TLB you only store one mapping right.

Student: Yeah.

VPN to PPN. If you are using 4 kilobyte pages.

Student: We (Refer Time: 21:18) can get 2 to the power 10.

You could potentially have 2 to the power 10 entries for to map an entire 4 MB space
right; on the other hand, if you having large pages then you will have only one entry for
that entire space. But, large pages has have problems of fragmentation and wastage of
space potentially if you are not careful and so, that there is a trade off, but here is one

here is one case where it is a no brainer to always use large pages. Yes, question?

Student: Sir, since that space going to be constant so, why not use directly map bit? Why

use any sort of paging mechanism?

So, question is why use any sort of paging mechanism to map this space. You know it

will be great if the hardware could provide me a mechanism saying map the entire space

here, but the hardware does not do that right. | mean once you have enabled paging you
have to go through the page table alright, and you know the one way the hardware
designer code had said was you know have a other bit saying that this is not going to go
through paging. This particular address is not going to go through paging you know it

complex it makes the hardware even more complex.

So, you know one way to do that is just use the existing page table hardware and large
pages it can be used both for the kernel and for other things also ok. So, the hardware
designer does not necessarily want to complicate his hardware just to support the kernel
space mapping when it he can achieve the same effect by using a more general

mechanism of using large pages alright.

(Refer Slide Time: 22:58)

(i

So, with that let us continue our discussion of from yesterday. We will be looking at how
does the OS boots. Let us look at the OS bootup and we said let us say here is a disk and
here are it is blocks block 0, 1, 2 and so on and we said this particular block or sector is

special right.

So, each of these sectors is 512 bytes and sector number O are special, it is called the
boot sector and the contract with the hardware is that it will load this boot sector at a
particular memory location. It will copy this boot sector in the particular memory

location.

So, let us say this is the physical address going from 0 to some value let us say M. So, it
is going to copy these 512 bytes at some location the boot sector BS and the address at
loads it is as it as 6 7c00 alright. I mean these addresses are just historical in nature you
know. This must have been the address at which it had loaded you know back in the
1980s and it still continuous because for backward compatibility we want that the
operating system that was written in 1981 should still run right. So, for that reason it has

to do the same thing ok.

So, and we said that what and so, what the. So, the operating system developer needs to
write a boot sector code that should know where the kernel lives in the disk number 1,

and it should load the kernel into memory and then jump to the kernel.

So, all that operation needs to be coded up in the boot sector and all this the code to do
all this should fit inside 512 bytes | means that is the constraint and that is relatively easy
to meet it is not a big deal and we are going to look at the boot sector code of xv6 alright

ok. So, please take out your and this thing code listings.

(Refer Slide Time: 25:22)

So, firstly, we are looking at code of xv 6 right this code will get compiled using let us
say a compiler like GCC and we have discussed this before and then the code will get
linked right. And, then you will get a an executable; that executable is what we call the
kernel you know the xv6 links into what is called in an executable file which is called the

kernel right and that kernel will also and there will be another sort of file which will be

the boot sector code right.

So, and the linker will set up the addresses and set up things in such a way that the boot
sector code will live in the first sector of the disk number 1 and number 2 the boot sector
code know as that will start at a certain address called 7c00 right that is the hardware

specification.

(Refer Slide Time: 26:35)

So, let us assume that the boot sector. So, the boot sector code actually starts at this point
right 8412. So, this is the assembly code of the boot sector alright and the line 8409 is
saying code 16. It basically means treat this code as a 16-bit code right. So, this is a 16-
bit code.

The next line says global start which basically means consider this symbol start as a
global symbol what it means we can talk about it later. So, this is the first instruction that
gets executed on when the computer gets boot up booted up in xv6 the first instruction;
in this case is cli; cli is basically just disabling interrupts right. So, what does the cli
instruction do? Recall that the x86 architecture has this register called EFLAGS.

And, one of those one of the bits in the EFLAGS is whether interrupts are enabled or
disabled. If interrupts are enabled, then an external device is allowed to assert the
interrupt pin and my execution will switch to the handler immediately. If interrupts are

disabled even if the external devices assert interrupts pin, I will not switch to a handler
right ok.

(Refer Slide Time: 28:00)

So, first recall that the x86 has a registered called EFLAGS. One of the bits in the
EFLAGS is what is called the interrupt flag or interrupt enable flag or IF ok. The
semantics are if IF is equal to O, implies will not receive any external interrupts. In other
words, just ignore the external interrupt and if it is 1, then it is the usual thing you know

take a trap on an external interrupt ok.

So, if IF is equal to 0, you just ignore the external interrupt; if | is equal to 1, then you
will take a trap on the external interrupt and recall that the trap goes through the interrupt

descriptor table to call the handler. Why the first instruction is clearing the interrupt?
Student: Because there is no handler.

Because | have not set up any handlers yet right. The BIOS may have had set up its own
handlers some sort there is some you know BIOS that has run before the first instruction
has run it may have set up its own handlers and, now | want to completely forget what
the BIOS has done to the system. | want to now you know reinitialize the system
according to myself and while I am doing that I just I do not want any disturbance from

outside world right.

So, if an outside there is if there is a network packet coming or anything of that sort or
you know disk wants me to want some attention just ignore all that. I am not in the state
to actually be serve all these people. So, let us clear the interrupts alright. So, that is
what. So, cli basically sets IF to 0 ok. Then the next thing you do is you say xor ax ax the
effect of xoring register with itself is there you just O out the resistor ok. And, then you

move ax to all the segment registers DS, ES, SS. Why am | doing this?
Student: (Refer Time: 30:31).

To have a flat address space right. I do not to have do not have a segmented address
space. Let us set up my segment register recall that in 16-bit mode the segment registers
the segmentation works by simply multiplying the segment register value by 16 and
adding it to the.

Student: VA.

VA virtual address to get a physical address. So, | do not want any segmentation so, |
just set it to 0. So, my virtual address is equal to physical address from now on. So, from

now on if my virtual address is equal to physical address.

Student: Sir.

Yes?

Student: Like instead of xoring could we have directly moved dollar 0 into x?

Yes, could you have directly moved dollar O into x? Yes, you could have. Why is he
doing it in this way? It turns out it is more efficient to do it and this is you know this is a
standard thing that assembly programmers use that you know instead of moving 0 to ax
just xor it with itself that turns out to be more efficient counter intuitively right.

Anyways, | mean you could have done the other thing also.
Student: Sir, other than we could have xored all three of them with themselves?

So, you know, but see DS, ES, SS are special registers. They cannot only you know a
certain instruction move can be used on them. You cannot use arithmetic instructions on
segment registers. You can only use arithmetic instructions on general purpose registers

which are a es a, b, ¢, d, esp, ebp, esi, edi alright. So, you can only use arithmetic and

you cannot even move an immediate value to the segment register directly, you can only
move it through a general-purpose register. So, these are just constraints of the

architecture alright. So, that is why he is doing it like this alright.

Then there is some code to allow addresses above 20 bits. So, original 8086 machines
did not allow addresses which are greater than 20 bits right at that time the machine was
16-bit, but now we want a 32-bit architecture. So, there is some code to allow addresses
above 20 bits in any case we can ignore this alright. So, let us ignore this. It is needed for
a program to run, but it is not needed for us to understand what is going on alright. So,

let us just ignore this.

(Refer Slide Time: 32:38)

And let us instead come to this instruction lgdt gdtdesc. What am | doing? | want to load

up load a.
Student: Global descriptor.

Global descriptor table and notice that this Igdt instruction is actually a 32-bit instruction
alright, it is not; it is not a 16 bit instruction because in 16 bit there was no gdt. In 16-bit
segmentation was just multiplied a segment selector by something and that is it the gdt is
only in this protected mode.

And, so what | am going to do in the next four lines is basically switch to 32 bit mode
right, but before | switch to 32 bit mode | need to set up my gdt and all these things, so

that when | switch to it knows exactly where to where am | standing and all that right ok.
So, what are the semantics of Igdt gdtdesc? Gdtdesc itself the descriptor is defined here
at line 8487.

(Refer Slide Time: 33:33)

Student: (Refer Time: 33:34).

And, it contains the location of the gdt, and it contains the size of the gdt right. Recall
that we said that gdt can specified by a size and a base also right. So, this is the base of
the gdt; so, 0, 1, 2, 3 and there is a maximum size of the gdt. So, that is what you specify
the gdtdesc and let us look at where gdt is that is at this line 8482 right which contains

your segment descriptors right.

So, segment descriptors are nothing, but numbers right they are just numbers which
basically specify this flag should be set up, this is the base, this is the limit and all that
kind of stuff right. So, in this case here is a number called SEG NULLASM which

basically says Oth descriptor is null — no never use it, nobody should ever use it alright.

The second one says it is using a macro. So, these are all macros. SEG NULLASM is the
macro which will get macro expanded. So, you can actually browse the xv6 code to see
exactly what number this SEG NULLASM represents, but you know whatever the
number is it basically sets up the gdt Oth entry to say that this should never be accessed
basically dereference. The second says SEG underscore ASM which is again a macro.

STA X which says give execute privileges. X is for execute STA R is saying give read
privileges. So, these are basically specifying what flags | want in the gdt descriptor. 0
says what is the base of the gdt descriptor and this ffff says what is the limit of this gdt
descriptor, alright. So, you use a macro to say construct the gdt descriptor with flags,

execute and readable and base 0 and limit 2 to the power 32 minus 1 ok.

So, the intent is that the descriptor number 1 is going to be dereference for all your code
right. So, you are going to load the value 1 into cs the descriptor number 1 into cs and so,
code will always go through this and so, that is why it will become executable alright and
all the other ones will have writable which means writable means it is both readable and

writable and base is 0 and limit is again 2 to the power 32 minus 1 right.

So, you have a gdt of size 3, the Oth is a null entry, the first entry is an execute is
pointing to an executable segment which is the entire address space, then the second
entry is pointing to a writable segment which is again the entire address space. The
developer has separated its code and data in this way. So, we will load code in cs and

data in all the other segments right.

You may say could | have had a one a single segment which is readable, writable and
executable and load that the same thing in everything that is also perhaps possible
depending on you know whether x86 allows that kind of thing that the segment is both

writable and executable alright.

But, in any case they are you know they are sharing the entire address space. It is not like
cs is living somewhere else and all the other segments are living somewhere else. They
actually living in the same space the different segment descriptors are only being used to

check the type of access execute versus right clear alright ok.

So, see you will load the gdt and then you do some things to make sure that you are
moving into 32-bit mode. So, CRO PE basically says move into protected mode. So, the
32-bit modes that you have discussed is also called the protected mode because it offers
protection right and so, when you and then you move this value into CRO. So, there is a
control register 0 which indicates which mode I am running in and | am running in 16 bit
mode, 32 bit mode or protected mode etcetera and so, that is how you move to 32 bit

mode.

Student: Sir, why we have taken the limit for both data segment and code segment from
0 to 2 raised to the power 32 minus 1.

Why have we taken?

Student: The limit from 0 to 2 raised to power 32 minus (Refer Time: 37:50) because
code and data are two different part work flow limits should be like 0 to for example m
and from m to 2 raised to power 32 minus 1.

So, question is why both of them are referring to 0 you know are pointing to the same
region 0 to 2 to the 32 minus 1? Why not code referring from 0 to some m and data from
m to 2 to the power 32 minus 1? Well, I mean he could have done that, but the prefer |
mean that complicates the programming model. You know sometimes you want to

access code just like data.

(Refer Slide Time: 38:31)

Student: But we will not be differentiating over rather we want to execute it or we want

to write over it.

Right. So, basically this kind of organization allows you to see a flat address space right.
It does not matter which segment you are going through you will always VA will be
always equal to PA right. On the other hand, if you do the other thing then I will have to
worry about you know whether | am going to through this segment or that segment and if
you have a flag address space it allows you to change code using directly it is address

and then execute it and because all of them are pointing to the same region you do not

have to worry about you know CS is pointing here and DS is pointing here.

So, all these segments CS, DS etcetera they basically see identical things right. So, the
program needs to only worry about the offset. It does not need to worry about the
segment at all in this organization. So, it is a flag segmentation model right we have

discussed this before.

(Refer Slide Time: 39:38)

So, | have moved into segmentation mode into 32-bit mode, but there is one more thing
that the x86 architecture requires you to do which is to say that you know switch. So,
right now what happened was | changed the control register 0 to say that | want to
execute in 32 bit mode and then | executed this instruction called I jump right long jump

we have seen this before, segment id and offset right.

Recall what the | | jump does it just loads CS with this value the value of SEG KCODE
is 1 alright. So, this is equal to 1. So, it just loads the first descriptor into CS; segment
descriptor number 1 into CS and what is start 32? And, start 32 is just here alright a start
32 is the value or the address of this particular instruction whatever comes after start 32
alright.

So, it basically saying jump so, it is by using | jump it is basically causing CS to get
overwritten; right now, CS was 0. Now, you are overwriting CS with 1; 1 shifted by 3

bits right. So, that way you basically are looking at the first segment descriptor and now
you are actually executing through the gdt ok. And, start32 is the address of this. Once
again because you know everything was 0, so, | did not have to worry about you know
start 32 is an offset etcetera start 32 is just an address and offset is equal to address so no

problem right.

So, now, at this point | have loaded the code segment and | have loaded the eip and |
have moved into 32-bit mode. So, the moment | loaded the new code segment | basically
have declared that | am executing in 32 bit mode and that is why this particular directive
your code 32 is telling the hardware that telling the assembler that interpret all the next

instructions the 32 bit instructions ok.

And, now the first few things that you do is that you load all the segment registers with k
data k data is you know 2 let us say so, 2. So, you load segment number descriptor

number 2 into ds, es, ss all the other segments right.
Student: Sir, why are the bits should be in the 3.

Recall that the segment selector. So, the segment register had the last 3 bits reserve for
something else the top you know the segment selector itself was living only in the last in
the top sort of 13 bits. So, that is why we are shifting it by 3 right. Also, recall that the
last 2 bits of the CS register were meant to indicate the privilege level. In this case when

| am shifting it by 3 the last 2 bits are.
Student: 0.

0 and so, | am still executing in privilege level alright. So, I load up all the segment
registers just like before, but this time is a different value SEG KDATA which is shifted
left by 3 alright and then what | do is | move the dollar start to esp. What am | doing
here? Let us see. What is dollar start? Dollar start was the address of this place which

Wwas.
Student: 0.

0x7c00 right? We said that you know that is where the code is going to start and so, the
linker has organized it in such a way that the address of this place is 0x7c00 that is why

we started at that place alright.

(Refer Slide Time: 43:35)

So, the value of dollar start is basically 0x7c00 and then putting it in esp. What | am
really doing is I am initializing my stack alright. So, what happened was let us say this is
my PA space and | said this is 0x7c00 all this code that we are looking at is actually
living in this area right. So, this is start and let us say this is somewhere here to start 32
right and up to 512 bytes ok. So, all this is living in this area.

And, what | did right now was | set my esp register to point to this location and recall
that the esp grows downwards. So, all these areas here can be used as stack now right.
So, when | am going to make a function call the stack frame is going to get pushed
somewhere here in the lower area ok. So, that is what | am doing here. When | say move,
dollar start dollar percentage esp | am putting the value 7c00 into esp and then the next

thing 1 do is I call a make a function call alright.

So, make a function call to boot main and so, the return address gets stored at 0x7c00
alright; actually, 0x7c00 minus 4 that is why | written address will get stored and esp will
get decremented by 4 right ok. Where is boot main living? Where did this boot main
come from? Boot main is so, we have at you know we have an we were executed the first
few instruction is assembly. Programming in assembly is difficult. So, let us write the
rest of our code in C alright.

So, we are going to. So, the boot sector itself the rest of the boot sector is living is has
been written in C. So, boot main is also living in the boot sector somewhere. So,

somewhere here in this space itself there is boot main, alright and then linker
appropriately arranged for it we are in that address and the code for boot main is in the
next sheet 85 and now, we see some C code and that is you know more familiar and
easier to sort of understand.

So, what this function is going to do is it is going to load the kernel from the disk into
memory. So, you know 512 bytes is too small. So, | want to load the other bytes of the
kernel into memory and jump to the first instruction of the kernel, that is what this
function is going to do right and the compiled code of this function is living in the boot
sector alright. And, so let us understand first how the kernel is organized.

(Refer Slide Time: 46:53)

So, what happened was you had some dot C files and dot S files in your xv6 alright. You
converted them to start dot O files and then you let us say g through gcc and then you
linked all these dot O files and got some image which is called the kernel right. This
kernel is an executable file in a format called ELF even your programs a dot O files

etcetera they are also you know in this format called ELF.

And, this there is a there is standard format which is specification that you know this is
the format of an executable file.

(Refer Slide Time: 47:49)

And, what the executable file will have is basically it will have things like if I look inside
kernel it will say, by the way you know hey this is my file and you know this is byte
number 0, byte number 1 and so on. And, you will say byte number 0 has to have certain
header which will indicate where my code is. So, there will be some pointer here which
is here is all your code right here is where it starts and here is where it ends so, all the

size and all that.

And, then it will say you know let us say here is all your data in the file and so on right.
It will also say that this code should be loaded at what address. So, it may say load code
at address you know 12345 right and load data at address you know whatever 45678
right. So, it has all this information. It says, here is your code, here is the data, load code
at this address, load data at this address alright. These are virtual addresses right | mean

this is this basically whatever address space | am currently executing in.

So, if 1 am executing a program, | will look at the clIf file and the process has some
address space and so, ELF file will tell me in this address. So, let us the process has an
address. So, from 0 to 2 GB the ELF file will say load the code at address 5 MB and load
the data at address 7 MB alright and that is it and here are the first instructions.

So, the other thing it has is start, where to start? So, you have loaded the code and you
have loaded the data in the into the address space placed them there and now you want to
know where | should start. So, what is the first instruction | should execute? In other

words, what should | initialize eib 2 right and so, that is also stored in this file basically
says after you have loaded it set eib to this and you are good to go after that you just
execute whatever you like and you will probably execute some instructions, you will

make some system calls whatever you do right.

Similarly, in this case in the kernel case it is not really an it is not the kernel is not going
to be loaded inside the process, but it is going to be loaded by the boot loader into
physical address space initially right ok. Also, then you say that the code should be
loaded at a certain address the code internally could have pointer to itself right.

So, example inside it | could say you know jump to some address 12456 right. So, 12456
should be meaningful right because | know that | am going to be loaded at 12345. So, 45
I know that what instruction is going to live at 456 and so, internally | could say you
know jump to in 456 so, | know what instruction is going to get executed in that time.
For example, you know functions are named by addresses, variables are named by

addresses right.

So, a variable will live in the data section, a global variable will live in the data section
right. A function will live in the code section and these things will have internally
pointers to each other right. Code some instructions will have pointers to some functions
right or some instructions will have point some data, but these are all at fixed addresses
because the ELF has dictated that this particular data should be loaded at this address and
you have already pre-computed the address of the variable inside the data section you

require right.

So, similarly what is going to happen is that this kernel will say that this is my code and
this is my data and we will say load this code at this address and load this data at this
address and so on. And, what my boot loader is going to do is respect whatever the ELF
file is telling in and put it at the right address. And, now and also the ELF file will

contain the start address and based on that it is going to jump to the kernel right.

And, so the kernel has so, the boot sector job is over, now it is the kernel which takes
over after that. So, the boot record loads the kernel and jump to its first instruction and

how it does all this is basically dictated by the ELF file alright.

Let us stop here and we are going to discuss more code next time. So, highly recommend
that you familiarize yourselves with xv6 and all that and we are going to do more of this

example next class.

