
Parallel Computing
Prof. Subodh Kumar

Department of Mechanical Engineering
Indian Institute of Technology – Delhi

Module No # 06
Lecture No # 32

Algorithms, Merging & Sorting

Okay let us get back to that analysis that we were just discussing. Now if you think back to more

generic case where number is greater than T square, you can also look at the case when number

is less than T square. But maybe not as interesting as when the number is greater than T square.

How to change the algorithm? If you have to take this, see that it has the ISS strength is that it

does lots of things in a sequential way, which is if you look back to the earlier slides.

We were talking about the design. You try to keep things as sequential as possible try to remove

communication remove synchronization. Now instead of N T square elements, we have many

times T square elements. You could do simulation like before. Professor student conversation

starts - in a two scenarios initially it may start with N of B number of elements which will be

greater than P then or we can start with P number of elements.

But more than N by P number of chunks and then the merging elements will be more. But you

would ideally like if you want to keep thing local then which of those two would you choose left

one right. You want to divide into P work everybody does sequentially, that is what we are going

to do Professor Student conversation ends. You are going to say divide L one again every P PF

elements goes to a given processor.

So 0 P- 1, 2P - 1 extra we are going to processor 0, but now processor is getting much more than

P, fine it still is going to get N over P it is going to N over P from here, N over P from here it is

going to merge it sequentially and then we are going to do something about the rest the

(Refer Slide Time: 03:06)

The element gets to again and this is again P + 1 is in pair within P positions and this requires a

little bit of proving which I am not going to do. But essentially the same logic you start with that

proof and you see that this is still true. Now if we have said that after this process there are

chunks of P that we have found because every element is between P of each other within P of its

final rank position and each of these P is sorted.

You still have to do the same thing as before. You take blocks of P, merge it blocks of P, which is

excellent because you keep blocks of P that you are taking, can be done in one place where

somebody else is doing another P and merging it. Now there are many more P block store that is,

What is different, that the difference are in point. Number 2 or step number two in that, although

it is written exactly the same the text is exactly the same.

But now you are getting the size of each list, sub list to become bigger here. The two differences

are here, so once you get done with that pair 0 and one you go and do P square. P square with

elements there are P blocks or rather P pairs that you did like 0 and 1, 2 and 3. P - 2, P -2 and 2 P

- 1 and then somebody is going to do the next 2. So everybody was busy doing these P pairs then

they are going to do the next P pairs.

Still remain sequential, it is just that if that thing is happening in a loop merge pairs of P things in

a loop and again for the next, we do the same thing. How does the time change? The changes are

at those three places. Professor student conversation starts I am saying that our N power P has

increased size of supplies size of increased and then we are saying that first P pairs has sorted

and then counter shift to P square element.

So we are moving like this so ultimately we have first P processor has added up on the first P

things. So it is related to the first P something like we are looking now P see exactly some remain

the same each time exactly. So this size that was P ultimately and it was doing sequential work

your saying, I am asking for one hydration for sub list size will be the same P. Sir after hydration

are over then might whole sub list size make P.

Because I think it useful to look what is happening after first step. Suppose you have many more

processor, does not matter how you merge that right. The point is if you have blocks of P then if

you do every P, F you signed them to one process, sign them to hundred processor. You send

them to whatever number of processor after they merge this, every PF of their frame of their sub

list then elements are not to be within P of each other.

Basically the same argument as before which means, now if you form blocks of P and take

another pair with another P elements next to it and had to merge it. After if you do it with right

and the left once then the entire thing will be solved .Now if you look at, so that is what needs to

be done. Now who does what accounting needs is to be done to figure out the time. So you are

doing one pair at one processor at a time. How many pairs are there total pairs?

Because there is only P in each block, N by P pairs. So P pair are going to do the first of the P

pairs are being done by P processor first, then another P pairs and until all are covered. So how

long does this take N by P besides, because it is sequential as before. You do among the work

done is proportion to the number of elements, you handling. So N by P into number of hydration

that is exactly what I was just explaining.

Because each case not N by P each p. So every processor, another way to think to argue is every

processor is handling one of them. One pair and every element is being handled by one processor

and you do only amount of work that is supported with the elements given to you. So of course

total work is done by proportional to the number of elements is handled by only one. Professor

student conversation ends.

So the time remains N by P it turns out that it is little hard to keep the time saying for this

algorithm if you make the number of processor bigger then square root of N. So this algorithm is

inherently less parallel which should not come as a surprise, it is trying to keep things sequential.

Then how will you use this for sorting?

(Refer Slide Time: 10:05)

And how long will it take again? Let us keep the same framework where we are talking about P

processes and demand of time taken with P processor. If the modes keep so fast for time being

again, we take the same argument that there are E square elements to sort. Actually this case we

do not need to worry about it. Professor student conversation starts N P Log N it is N / P Log N,

but how of the stage sir P stages and NP stages takes N development?

Why does this take N / P Log N, because if the first stage, if I have N / P time Y the first how

many (()) (10: 56) the two processes and 2 N / P chunks. So this actually the list size doubles and

number of processes handling that list size also doubles. So it is going to take the same amount

of time each one is going to take N of P which is demonstrated here, Professor, student

conversation ends. And the total time will be N / P log.

But of course original initial sorting was also needed. The local sorting because we can merge

only after the individual list are sorted and so that will take N / P Log N / P which is Log N. Now

we are going to come back to the mode of work time scheduling and see what it takes again. The

algorithm itself is not my main focus it is not something you would necessarily limit it is less

than simple. However the technique that it uses is an important technique it uses the pipelining in

a very efficient way and so just you learn that technique I am going to talk about.

(Refer Slide Time: 12:34)

So this is Log N time sorting and it is based on the idea of C cover merging which means that

(Refer Slide Time: 12: 45)

I am going to merge two lists given some prior information is given in the form of a color, a third

list. This third list is called as C cover. If the third list, the very idea of cover is that this list is the

cover itself has fewer elements than the original list and the list, the cover distributed evenly to

the original list. For example I can say if I take every fourth element of the list of a given list that

forms a four cover.

Professor student conversation starts four which is sorted version, cover is for a sorted list

Professor Student conversation ends. We should end that so you can define C cover. Next is C

cover of A between any two elements of X. There are most C elements similarly it is C cover of

P between any two elements of X. There is C elements so C cover is essentially giving you some

(()) (14:15) of doing of your original and it tells you something about your original.

For example if I gave you the its given elements location in the C cover then you can find it in

the original list by looking at most C cover. Because if I know there is between these two

elements in the cover list and between these two there are only four boards then this element has

to be between among those four boards. So the idea of cover is simple enough to finish off it is

clear yes it is important to the rest of the other.

Professor student conversation starts sir, what are the scenarios that such a cover would readily

be there? We will build this cover not assumed like Log N, you first exactly built the cover then

we will use the cover. This is not under resumption of somebody giving you some. If you had C

cover let us say, X because C cover for both A and B which is what we are starting to merge the

input is listed and the list B and I happen to get a cover X which is C cover for both A and B,

which means that for example every element of X, no I get the C cover, not just C cover.

I also get some further piece of information which is rank of the elements of the cover in the

original list. So I know where to find the third element of my cover in A and in B and the fourth

element and the fifth element given that looks like you given a lot of information, you can find

rank of A and B. Similarly rank of B in A in instant. How do you think a cover one, two, three

four and cover is

Professor student conversation starts one, two, three, four is a Professor student conversation

ends. If you are talking about you have to choose A C if I say two cover then it can be one three,

five, ten it does not have to be elements of A it just needs to have the property that we are doing

any two elements of the cover. It is fixed there is only two more elements if it is a true cover.

(Refer Slide Time: 17: 06)

We have the cover X, the middle vector and elements A. The vector A and B we are trying to find

the rank of A and B and the rank of B and A. What we have given is the rank of X in A and B

which means those lines that you are seeing going across are known. So for example if I say X I

and X are X I minus one and X I between them there are C more X in A as well as B and I know

the rank of X I.

So X I lies between A R I and it element to its height the greatest element less than equal to X I

is A R I similarly on the B it is B T I. Professor student conversation starts one and R two, there

was gap on the element between the element two. So here it this is a C cover does not necessarily

mean that every two pair will have exactly four. So it is some at most four Professor student

conversation ends. So these are just some indexes variables R one can be it has to be less than C.

So now if I give you an element in X in a small, I have space here. I can make this diagram

bigger than this and we want to find it is rank B. How can you find it order one, Professor

students conversation starts how does this step how X I - 1 can give you where its lesser count

which but A. So X I - 1, we know its position it was in A and B and it is shown by that two

arrows which means anything to the left of the arrowheads are less than X I - 1.

X I - 1is the location the arrow is where it is found. So this one is all the elements less ten will

need constant where C is constant Professor Student conversation ends. So is definitely all the

elements somebody give me formal argument. So why all the elements before that arrowhead

coming from A are less than a Professor Student conversation start a is greater than x I minus one

and all those things are less than X I Professor Student conversation ends.

Similarly it cannot be outside of this block why similar reason exactly, so it has to be somewhere

in this block and you know that there are only C elements in the block. So in C most steps we

can find the rank of it. So officially the rank of A and B is rank of X I minus one in B plus rank

of A and B I and if we had N processor for every element of A.

Then in order N work you would have find all ranks one at one time because they are all

independent of each other at one time or N work. We can find the entire rank alright. Now so that

just preliminaries. Now we understand that if somebody give us an cover with the ranks are done

not much more, but where are these covers coming from.

(Refer Slide Time: 21:15)

Let us look at a few things just out of the loop it may seem and in the back of the mind there is

this mystery right, when you do merge sort what you do you have one elements at the leaf. You

merge pairs needed sizes of two and your merge pairs again get sizes of four keep merging until

you get size of N. If you say N then at the end to it whatever we will keep the tree in mind.

Because this is going to speed up the same tree, it is going to run in stages.

The stage is not necessarily the level of the tree in fact it is not the level of the tree. But it is

related to the level of the tree every element of this note, no every node of this tree maintains a

list. It merges children it generates the merge list and the root merges it two children’s sub list

gets the final list. So then the same principal still is going to apply except you will merge it many

times it is not just that you merge.

When you are chance comes when all of your children have or both of your children have

established there list and there list then you merge them because that is where the time was being

spent Log N levels were needed each merge. We say that we can do in Log N time, this level had

to wait for that and if we cannot do merges in order one, then this entire process can never be

done in order Log N.

So we want to do this entire process in Log N without the need for having mergers be done in

order one and below bound is on mergers is Log N. So you could not only do it in order. So

continuing with definitions, we will say that there are this stages and the list for node I has a

subscript which says its value and given at a given stage. So when I say L zero of I is at the

beginning at stage 0 can be thought as a steps, just steps is more generic.

We will talk about specific stages so using a kind of A non-regular term. So that whenever I say

stage it is very clear about what I mean so L 0 of I for every node, that is a leaf node is one of the

elements just like in the regular merge stage and for everybody else 0 is nothing null list. But still

going to go through the levels which mean there will be Log N involved. But we are not going to

wait for entire merge of the children to happen to generate the merge list on a given node.

That is how after what time you can start process of the next Stage even without having full

result the previous stage as the sign node. This procedure works for not just a complete binary

any proper tree works it is in other context where you have proper binary tree, your algorithm

same process you can still get.

(Refer Slide Time: 25: 32)

Okay some more definitions; these are less of definitions now but some properties. So the levels

of the tree are activated by stage. So at zero stage the leaf node becomes active first stage then

next level. So next stage, next level so after Log N stages the root becomes active just like it

happens in the merge stage except they remain active, they continue to work and a node at height

of used variable heights on is saying that if the nodes height from the leaf level which leaf height

be 0 is N.

As I said if height is then at after H height stages that node is going to become active. It is going

to remain active up to three height stage. So it is not that all the nodes remain active all the time

after becoming active which means the root is going to become inactive after three Log N stages

which means that if we are able to manage each stage root of the merge tree.

Professor student conversation starts it will be active only once, no that is exactly what this slide

is saying that you remain active for stage if you become active at stage equal to your height there

is a global counter for that stage and you become active at stage equal to your height and you

remain active until your stage is equal to three times your height. But number of stages total

number of stages is Log N more than N in fact it is three Log N.

Because after root becomes inactive there is nothing much to do Professor Students conversation

ends. And the basic idea is that at every stage instead of taking your left and the right child and

merging their list you simply take some of your left Childs list, some of your right child list and

merge only that. So you sample your left and the right child just too many elements to handle.

Professor student conversation starts height is depth height, depth from the leaf height of the

node. So height is always on the down, Professor Student conversation ends.

(Refer Slide Time: 28: 37)

And the definition of sample is also out of the loop. If yours active three times your height, until

that time you are sample is every fourth element. After that the next step your sample will be

second element, now your sample means your parent is taking your sample if you have become

inactive at that point your pay. But your parents will remain for how many more steps, three

more steps it is N + 1 H +1.

So 3H+ 3 so for those three steps it has to figure out samples and so after you have become

inactive your sample becomes every other element and this next time your sample becomes

every element. Now you have become full list that you expect from your children then you and

the entire list is being taken by the parents. Parent is going to generate a full list at three N + first

stage 3 N + 3 height, three your height plus three that is why the parent will have generated all of

the list with that belongs to that subject.

We have to stop here but you can probably see now the under applying logic of this merge

sorting. Professor student conversation starts, it is unsorted data original data on the leaf is

unsorted Professor student conversation ends. So what is happening here you Professor student

conversation starts you said that some of the limit and the sum of the elements is going to

become the cover that will be critical one that would be critical.

We have a lot to talk about right now we are going to Professor student conversation ends. But

basically the intuition should now start to develop in that in one step you should be able to take

the sample and merge the sample using the sample. You took the last sample, you took the last

time was some indication of what your samples are, now the sample. You just last time, you are

going to cover for the next set of samples.

So using that cover you are going able to generate the new merge list which is not the full merge

list, just the merge list of the sample in constant time. But you will be active between certain

number of stages, each time more samples come from your children. You keep merging it

building your merge list to bigger and bigger. Basically from the previous cover and you after

when become inactive at the last step.

Before that you have generated the sorted list of all the elements in your sub list and this become

every stage out of one and there are three Log N stages will be done in algorithm. Professor

student conversation starts background is not also comes from Log N side very different is this

you will see. Let us discuss just needed for example every logarithm, now if you for example but

that is what you are doing here.

You are kind of merging you will be ultimate role is to merge left and the right one. So when you

already have full list here, you did not have the full list you are building the full list as your

children are doing related to the number of times, number of samples. What I am saying, height

is active part by then all the element from not just for three stages after children become inactive

like it is height to three times height.

So there is the root is active from Log N to three Log N root is active for very long. Professor

student conversation ends. So we are at the same page within turn of quizzes. We have got six

quizzes. So far in addition to quiz that was the minor. So the minor that was the quiz.

Okay so let me just quickly go through some reminder of some. Professor student conversation

starts, Sir which was more powerful? They are equally powerful they are equally powerful in

terms of computable whatever you can compute in one, you can compute in another. Because

basically we were talking about generating a Log N time question. Yes first stage is you sort the

odd in the states, the next then you start even first, second position well the lowest two elements

are the two positions.

How do you end up because both of them are sorted are between an odd and even. No I will L

one and L two are sorted you are only merging things. We are not sorting even or odd anything

left is sorted, right is sorted. We merge the odds, we merge the evens. But we know that in the

leftmost will be in the first here and the first here, if we merge the two odds then where is the

minimum come to?

But you can take already, no it is merging. It is a step of merge sort for example, it is not a

arbitrary. If we take a arbitrary sequence and simply compare the odd ones and sort them in

proper place, guaranteed nothing at the end of it is a merge, which means merge of something if

you take two arbitrary sequences you can merge it in order one time.

Assuming that suppose you create a arbitrary sequence if you are supposed to got it then you

cannot do anything better than log n time because sorting takes Log N time Professor student

conversation ends. So back to this specific time from pipeline merging, where you still looking at

the same merge tree where at the leaves are on the element and you take pairs merge them pairs

of pair, merge them until you reach the root and it is time you merge all of them.

You do this in set of stages like, so these are S stages or no Log of the number of nodes of stages.

But a node activates in the same way that you are original algorithm activated. The original

algorithm, the first stage leaf is active. The next stage, the next level is active and after Log N

stage the root is active and then nobody is active here. They do activate themselves in the same

order but the deactivation is happening immediately after a stage where it happens three times at

height. Professor student conversation starts

Sir in the same processes leads to the less higher stage and the same process do the I plus one

stage, show the process where it will reach arbitrary. So why do we, but we needed to failed that

is why we are not talking about sync process. Because this is P the model, we are considering so

it is already in sync. So what is the problem in the regular how long did it take. But the processor

time, they were not taking any did not work.

So why see that that the thing is that they were not quite busy, not busy enough that the without

our various flavors’ of merging bottom line is that at the bottom level you have N processes

doing order N things. But then you have to do smaller number of merging like these sizes have

become the node size has become bigger, but smaller number of mergers. That is a

multiple process are involved in the smaller number of and at the top level every processor is

involved in the single merge.

How you do that efficiently was not quite totally clear all though people look at couple of

examples all of them end up taking optimal work. But the time span was too long here have to

perform sort thing such that it can done in Log N it is more of a negative exercise. But it is more

as I exile to understand how this algorithm proceeds. So you can apply it another not particularly

learn how to do Log N sorting.

Professor student conversation ends. Now so that was one important aspect of this that you

remain active keep doing some more work for little wide longer and the second was that you do

not get as in the original algorithm it take your entire results produced by the children and merge

this entire list to produce your output. Then you are done here, you do that in phases instead of

saying, let me take all my children let us take just the sampling of my children and merge them

and merge the remaining sample.

But not all the remaining sample A keep adding to the sample you have merged little bit at a time

such that the previous merge helps you doing the next merge very quickly and we defined the

sampling business where sample of given node in the merge tree at stage S is given by either

every fourth element or every second element or every element it is every fourth element most of

the time until you are at the full height write the full activity node remain node N remains active

from height of N to height of N times three.

So until that period activity of N times three every force element of the node is going to get

promoted up for merging one step later every second element gets promoted up two Steps later

every elements get promoted at that point. If all of your elements, all of your sub tree, all the

children, all the leaves in your sub tree have reached you then you are promoted on. So one step

later all the leaves have reached your parent and if you are siblings on the siblings leaves have

also reached the parent then the parents leaves have reached the parent.

(Refer Slide Time: 42:13)

So here is an example we have got a node with two children with so far have generated some

elements. We take the sample of the left and the right and we merge it the left and the right

elements. We are not all the elements necessarily in the sub tree just like you. Now do not have

all the elements in your sub tree. You have only one fourth of the element that left gave you and

the one fourth that your right.

Or the one fourth the left had and the one fourth the right had the left itself may have had many

fear, for example the left may have sample itself from its child which is much more dense. So as

you reach up the tree as many levels are as active as they are given time, the bottom most level

that is still active which is going to turn in active in the next step has everything still have to

prove this things and will intensively thought by wide angles.

So at the bottom most level and every element has been received the next element and second

has been received. Then the next and the before has been received and then onwards before

fourth pipe. So it is a really spark sense at all, so on activation a node is going to merge sample

of its children and the activation time is children sample every fourth by the role. We talked

about earlier and which children deactivates at that time it is seem all of its it would have

received all of its children and the next step every alternate will come in and the following step.

All the step, all the children will come in for merging at the parent and so at the end of it you

would have merged everything that you would have merged in a regular merged way. You would

have merged it in a several way it was merged just substance of it in a bit more, ultimately

having received all of it. Just look at the analysis

(Refer Slide Time: 45:07)

And most of these statements have already made along the way. Every node becomes full

meaning the part of its subject all the leaves it is something has reached there at the stage that it

is thrice its height which is the last time it is going to be at. So just before the deactivation it

makes sure that it is complete it has done what original merge tree would have done. How would

you prove that suppose leaf level is complete.

Can you start receive leaf level has everything that every worker has. What about a general

level? Assume that your child is complete three steps, later you are going to deactivate the

member in three steps. Are you going to merge all your children? Yes because once at this till

your child became inactive next step you will taking every alternate, the second step, you will be

taking every one of them and you are active for three more stage.

So when you take every one of them the final stage where you do the merging. Third stage you

will have merged all the elements that your children had at three steps earlier. So three steps later

you are going to have all your children, because you are you are getting every element from the

left and every element from the right and many of these things can be done on reduction the

other is the number of elements have a node keeps doubling approximately.

This is like condition like so L is the list of elements at node N at stage S plus on sub S plus one

like that and it is less than equal to twice of what its value towards its previous stage same node

plus four. Again you can prove it; actually we just have to look on the three stages your

sampling, every four, second or every one of them. Now in cases you will be doubling. Professor

student conversation start, you sample doubling every fourth of production quite some time.

During that time child, your child is also sampling every fourth for quite a while. So your child

would have been yes Professor Student conversation ends. The third statement, these are all

basically level that you would be proving and not formally proving them. The number of

elements in active nodes the O of N meaning that if you take up all the active nodes add up

weather there is only that many elements to be worked on all the active nodes working together

are going to be doing O of N work.

Although that many nodes active at the same time if you add up all the elements that they have it

is all done. And this needs a little bit of more construction to prove it basically you would say

that levels S by three to S . What is the number of nodes and then you say at S by three, you are

going to become full because that is when your height stage by three is what your height is at

stage equal to thrice your height.

You can inactive, so if you are height is at S by three you became inactive so you see that what

happens at level S by three and then levels above. What happens again? This is just have a proof

I do not intend to go to the detail of the proof. I will point you to paper that this comes to get

more detail on the proof. I will post it online, but you can also go work it out its not a hard proof

once you understand or you simply focus on the main thing.

Just keep adding the number of elements at each of these active stages or active level. Now here

are the more important ones which is sample of A given node meaning sample of its list at stage

S is a four cover or its sample at the next stage it is not too hard to see where you going to get at

most four more things at a dense. In any of this stages and the other thing is that for every stage

after your height meaning you become active your list is a four cover.

Your list parents list is four cover of the sample of left side and the sample of the right side again

little bit of maths will get you to there it is just counting algorithm which means that I have a list

and I am going to generate the sample of my left generate the sample of my right and merge it

that is my next step. I already have an old list and I am creating a new list by taking sample of

my left sample of my right and merging it is my old list itself is a cover for the two things.

I want to merge and I can merge in one time right that was the thing we talked about last class. If

you have C cover available for two list and we know the rank which I have not told you yet

about, if you know the rank of C cover of both A and B then we can find the rank of A and B and

B and A which means, we have merge it in order one time here C is four them in four steps. So

what will be the algorithm become at any stage I have the previous list which in the beginning is

null.

I am going to get a sampling of my left sampling of my right and the previous list is going to

help me merge two in order one. Because previous list is the cover for both of them. Because

previous list actually came from the previous samples of the same thing. The new samples will

just be among them more sample among the older one that we talk. So how Professor student

conversation starts sir samples more we get if I take, let us say I have choosing my take the

sample to current stage and I merge to get the early thing and previous thing.

Now to the next stage I take new samples, so these new samples would not be, they will be no

they have, if you go back to this picture and we look at this samples like suppose, the next time

more things come in like meaning the those gaps that you see in the blue list get filled with let us

see one more thing coming in or two more things coming in depending on the stage every fourth

becomes different element not necessarily.

Suppose one more thing comes in then now these will remain. But this one element coming in

between the old sample also old sample still remain the sample are still in the samples. They

have to be there to order one exactly and the new samples are simply in between the old samples

You had a question, Sir the new samples becomes the lower ones or the lower ones are having

the C cover. Both of them, but the main thing you will want this.

Because your goal is to take the sample here and merge it which means and do it fast and do it

fast means in order one which means if you give me C cover for the samples I am done and my

previous list is a four cover of the samples. But C cover of the samples again be some samples

from the previous ones. No the covers it is a sample from the previous stage. But it is my list I

generated them previous stage.

So it is with me I simply know that is going to be a C cover for the new set of samples. Because

all I have to do the next stage is take the sample merge them using my previous list and replace

the previous list and next step will do the same Professor student conversation ends.

(Refer Slide Time: 55:49)

Okay so here to merge what we need? We need a cover, but we also need the covers rank in both.

How do you get the covers rank? So we want to find the rank of the new sample in my left child

in the other child samples, the rank of new samples in right child in the left child sample. Those

are the two things I am going to need rank of sample S left and and the sample S right, left

meaning left child, right meaning right child. Sample means sample under S.

How do I find the rank of each of these samples? Or the other way round rank of my previous list

in each of these sample knowing that previous list was a merger of the previous samples and the

new samples are just more things among the samples seems durable and this is where you are

going to use the fact that the lists that we generate is a cover for the samples. That is something

that one of the elements in the previous slide and because it is four cover for the samples.

We know that the new samples, the whole lists can only have four new samples in between every

consecutive value. So that can be done. Now how do you find the rank of the list of the new

sample? So the previous statement says to find those ranks you are going to use. The rank LS of

sample left and rank LS of sample right. But to compute LS of sample by going to the previous

stage, we know it was a sample, it was a sample four cover of the previous stage.

So to find the rank of LS in the new sample about to find the rank of LS in the old sample and

the rank of old sample in the New sample. Professor students conversation stats old sample starts

when I merge that two that okay on a merge C if I have a blue sample in my, that is why it is only

true, not necessarily. But just there may be two consecutive groups. They are just the merger of

the two blue and red and in fact we are not very interested in what is how many reds are between

blues samples.

We are interested in bringing out where this blue line is, just in the red in the merge list which we

found out. Because when the previous stage, what we are trying to figure out, where do all of

these blues go there and where about the reds go there? So we found that out in the previous

when we merged, we figured out where the blue ones went, where the red ones went. But in the

blue list, we figure out where are blue lies between which two reds and that is what we have to

find out.

But you do it in kind of indirect way. We do it in two steps, we will say, we will know where the

new Blues are among the old Blues and we know where the old blues among the merge list. So

that is how we will figure out where the new blues are going to be in the merge list or vice versa

same thing.

(Refer Slide Time: 1:00:42)

Excuse me Sir can you say how we merge the first time co-ordinate? What is going to happen in

the first one element will come there is nothing to do. So first three steps nothing happens in the

beginning zeroth level. You say and not well there may be relative merging in the first two types,

so let us see what happens in the beginning. The leaves have one element each what does the

parents say give me every fourth and he gets nothing because we know every fourth then it is

again next time itself give me every fourth.

Next time it is giving me every second, still does not get anything. Next time give everyone of

them it gets one write it is going to generate one. But in the meantime when it gets two of them

its parents give me every fourth and it does not happen. Ultimately it is going to give me one that

is what it gets four elements as soon as your child gets. So it will be one to the parent it is

merging one on one is constant time and then you start to build on top of it.

But the entire most thing, we are considering either starts with first two local, no this is full

complete merge tree. This is using whatever number of processes you need, regular main

algorithm. We are not talking about doing P separately, where we had slightly different type of

analysis. This is back to the old time work framework.

So that is picture is showing we have to generate the ranks of the red samples and the blue

samples. We are going, where the previous list has come from and you know the previous list

came from the old samples. So you can already know where to locate them, look at this question

as you merged it how long out of time also. But let me finish this, how long does this take

probably it will take time. Let please stop.

	Algorithms, Merging & Sorting

