
Parallel Computing
Prof. Subodh Kumar

Department of Mechanical Engineering
Indian Institute of Technology - Delhi

Module No # 06
Lecture No # 30

Algorithms, Merging & Sorting

Okay so let us see, we have work in this. We take all the elements and divide them into buckets.

How long does that take, is not included. Actually N value all processes take just one chunk and

keep giving them into the corresponding bucket. How many things go into the bucket? Not listed

that is not my question like which is like, when the processor put something into a bucket.

How many different sources are elements coming from into a bucket? Professor student

conversation starts will be T different places, professor student conversation ends.

(Refer Slide Time: 01:12)

You need to put them in a proper place. Where would you put? You need to figure out, how many

elements you are going to set. So before you start sending them, you have to do some

accounting. So you figure out I have so many elements in bucket one, so many bucket 2, so

many bucket 3, so many bucket 4. How many things do I generate? B numbers because I have B

buckets where I am generating sub number of elements into the number of B or B - 1.

Others who are also generating B numbers, everybody is generating B numbers and are the

number of elements in the B buckets or a given processor. Each processor is taking N by B

chunk and saying you go to bucket 1, you go to bucket two, you go to bucket 10, you go to

bucket 14 and so there are B buckets. We are using B the number of buckets is equal to the

number of processors.

So we are generating T numbers, every processor says for every bucket. How many elements in

there bucket? Now we need to figure out where these elements should go, so we need to figure

out the sum of prefix. Some of bucket 1 and one side effect of that is that we know the sum and

number of elements in buckets 1. So at the last processor, we had a prefix sum of bucket 2, prefix

sum of bucket 3 and prefix sum of bucket.

Each prefix sum will take long T time and pre prefix sums to do. So it is P Log P to do those

prefix sum at the end of this you know where to put. Where to start putting elements? Every

bucket for your processing. Professor student conversation starts, for this to be done, we do not

need to do the internal prefix sum within the buckets. You just need to know the counts, no prefix

sum. You just need to know the count of the whole.

Then prefix sum over the bucket level prefix sum across the buckets. But you still need to know,

no you still need to do prefix sum across the bucket. So where do you start writing bucket 1 for

that you have to know the sum for the bucket 0 of bucket, 0 the total number of elements that are

going to go in the bucket 0 which was the side effect of the prefix sum. So why to do this prefix

sum for bucket 1?

Within the bucket or how do we know that in terms? You have to know, so you are generating B

numbers are the numbers of elements in B different topics. Why should you write that at the end

of the day? You have to generate sorted sequence. So sorted sequence means bucket 1 followed

by bucket 2, all the bucket 1 all the bucket processes bucket one followed by all the processes

bucket 2 followed by all process bucket 3 and so on.

So to start writing things on to bucket three you have to know, where the bucket 3 begins?

Bucket 3 begins after bucket 1 and bucket 2 are exhausting. So I have to figure out when that

begins? So that is where I need the prefix sum of bucket 3. So I as processor number 3, number

10, we will know where to put my buckets three elements. So the Log square B in comparison to

sir in adding one more to get 3.

But inside the bucket 3, they are writing parallel, that some training making absolutely. So why

they need to do a prefix sum of bucket 3? There is 2, there are B prefix each buckets, N - 1

buckets inside a bucket also. So when we do this B prefix sum you are going to generate sum of

bucket one and sum of bucket 2 and sum of bucket 3. Then you do the prefix sum to figure out,

where bucket number.

So there local prefix sum which says with my offset processor number 10 for bucket number 5

goes to this position processor number eleven goes to that position. But where does bucket three

begin that is sum of all this buckets.

(Refer Slide Time: 06:28)

How does bitonic sorting works? So you take the Log N time to merge two bitonic sequence to

one. Similarly it takes Log N times to split it into top half and right half on the one side into left

half and right half to sort it. Not to simply split it into top half and bottom half. But totally sort it

Log square Professor Student conversation ends. So if you recall, in fact why do not we go

there?

(Refer Slide Time: 07:09)

This one the last stage to Log N time, stage before that took Log N minus time stage. Before that

Log N - 2 time and so the total time, total number of phases where you are doing compare study,

compare exchanges like each column is a comparing stage and braces at the bottom give you this

different stages.

So all the compare exchange added up across the stage meaning all the compare exchange

column added up cross the stages will be Log N time by Log N + 1 divided by 2 Log square. The

Log square compare exchange sets that are done each set is done in parallel, because everybody

in parallel is separating the exchange in something. So now when we compare to this. Professor

student conversation starts, so that is what I was asking this is by ton X sort and cyclic also.

Yes it works on cyclic also. What is the sink? You asked something related to cycle I asked that I

had shown you an example in class of just your sequence increasing and decreasing and I asked

you that of course it will work for all bitonics sorts even if it is a cyclic shift of your increasing

and decreasing. I asked to go convince yourself, prove to yourself that the same mechanism, the

same algorithm works even if you have shifted bitonic sequence.

You can still sort it okay Professor Student conversation ends. Log square P comes from that,

many stages. But now instead of compare exchange which was done in one time, you are going

compare in split. So compare and split is compare exchange over some exchange over P things.

So there are Log square P stages. Each stage now is taking N over P time, instead of one time

which N over P Log square. Professor Student conversation starts, some like real world system

for example, in all these sorting we are done. Whatever we are telling, we are getting the data

already inside. Because we basically think P ram as our in back of our mind all the time. But that

is not always the case.

Because I mean it if you have to sort hundred gigabyte of data, you will never have machine.

Hundred elements of, never Say Never. But yes I mean, so you will have to try this at some point

of time within your like in between your sorting algorithm itself and if you have making. For

example, this kind of parallel sort each machine is receiving convertible machine and you have

not depending on only one particular side of element point of time.

If you have doing it rightly, then you may end up writing, when you are doing different at the

same time, when you are different writing on the list at the same time, it will basically kill your

system. So how will you there is a entire area which is based on this data structures. This

complete area anyways gets into P model. We are discussing not exactly, so let me what I mean

even for a single fore machine sequential algorithm.

There is an area that is (()) (11:29) just data structures help often also called often computation

and just as we see in that, we cannot simply take this all the time. Sequential algorithm is

expected to perform well parallel same things work. We cannot simply take basic sequential

algorithm and expect it to perform well in that (()) (11:54) model and so now we are having the

same problem here you simply cannot take (()) (12:03) model and expect it to always perform

well in (()) (12:06) model in the p ramp context.

That is the area that is not well studied at all (()) (12:12) model in the parallel context, it is well

studied in sequential context sir, I was like find the any system to work at all you have to think

about, if you take this up in the core or touch. Actually there used to be a course called file

system and data processing it is not I have seen in past few days that is where things like this was

discussed.

You can actually have an entire course on offline of course computation or out of core

computation. So my point was because of this an entire that is absolute necessity for like any

kind of parallel computation that you are dealing with large things should not be discuss it in this

course. That is the thing, we will not have time. There are other big swords that we have not

touched upon, I would like to go through them.

Because just setting up the model for the trio and in fact as I also earlier said in the context of

parallel algorithms P Ram models that area is not well studied at all. So there is not even enough

background material to cover, if we are thinking in context of parallel models, so that would

make lot of sense. It can then pull in concepts into parallel domain, but doing that in sequential

context itself is a good topic should be covered in some course.

So back to the same question, how do you solve when small data cannot fit in P Ram in the

model? You are not covered, you look at out of core sorting. we can perform two way merging,

there are merging technique. But you have still to think your cost model changes. Instead of

asking how many steps of computation? You are doing, which you still do you because like you

are sometimes so much computation, so much communication, and so many blocks of data.

There is notion that there is fixed block that you can read if the block is continuous, you read it

together if not continuous it becomes different. So that is the basic idea but and some time

algorithms can change significantly to account for you too have low cost on that correspondent

alright anything else that you need to odd even.

(Refer Slide Time: 15:09)

It is basically P2 N by P. This is not completely obvious looking at it, but it is correct it is P2 N

by P not exactly, of course P N = N by P. So you have to repeat the same P times and last step is

to keep N by P. So whole time P what happens and what about the first one? I think you have got

it basically right, but I did not want to give you the answer why do not you think about?

It is in fact on the slide, if you just do the analysis properly P process constant operation that you

have to find out. So at every level, you are doing the same amount of work as the previous slide

divided by two which is going to add it is like the binded tree. You have got N nodes I did not

have the batchers odd, even merge.

(Refer Slide Time: 16:19)

Why did you do the quick sort of each block over? Why did you do parallel data selection? So

the idea is that from each block you pick out sufficiently distributed set of numbers. So you

would like some numbers at the lower end of blocks, some numbers at the middle end of the

blocks, some numbers at the higher end of the blocks and there are probabilistic methods that do

that, but one way to do that simply sort that block quick sort.

Otherwise does not matter it is local sort, that is why it is quick sort it is supposed to work well

that pick every items. What you are picking from every one of the blocks and now you have got

B square items? These are sorted and you need to sort them. So there are N things you want to

merge n things into one. Because of N things already to be things that you are getting is already

sorted.

You do it better in B Log B time, but for the time being think. Professor student conversation

ends. B squared things, so you can do it better than B square B Log time. But because that does

not add up in the final analysis just leave it at root cause and then once you have figured out this

splitters which in the high probability is going to distribute the elements into B relatively

uniform buckets you simply figure out where your element goes which is prefix sum.

After prefix sum that is what Log B comes from. Professor student conversation starts, here we

have determines to guarantee that no bucket will contain that is why we did that is why this

initial sort is necessary, even if we did not there are probabilistic methods, where you say you do

not initially sort.

But you say that no element is more than some B by too away from its original position. Then

you can come up with another bound on how far and that any two buckets maybe from, Professor

Student conversation ends. And this is what we were looking at

(Refer Slide Time: 18:54)

This is clear how this works, so you did not look at it. This is for single bit only, I have got 1 bit

at 0 and ones and I want to know for my position or my number which is 0 or 1 where should I

put it in the output it can be in fact be done in place once everybody knows is the number where

it needs to go to the parallel invite there. So the first thing negate the bit to do a prefix sum and

basically is doing prefix sum in zero.

Because if you negate the bit then zeros become 1 or 0 becomes once. Then you work doing a

prefix sum undergoes is Escan for exclusive scan, something which we saw in open headed

context meaning that you are prefix summing everything until you note counting right before. So

P sum is how many zeros are before you and total number of 0 is P sum of the last guy.

But it was number of zeros before that and if the last guy is also zero, we need to add one to

it. You had last guys bit, last guy is not bit negative of the bit or negation of the bit. We also

need to know, how many 1 there are? At the end of the day you need to know, how many 0

elements there are? If you are a 0 element, then you need to know how many zero element are

before you.

If you are a one element, then you need to know how many one elements are before you and the

total number of 0 elements. So if you want to figure out how many ones are before you, take

your index and subtract how many zeros or before? There are so many elements, before you if

your index is 5, your 5 element. Before you of which you know, three are zero are supposed to be

one.

So index - P sum is a number of ones and to this you are adding number of zeros, total number of

zeros. So now you are getting your prefix sum for ones I did with number of zeros and so last

step that remains is if your bit was positive. Then you should take the second value which is

number of zeros plus the one prefix sum. Otherwise you should take the first value which is just

prefix zeros, prefix sum of 0.

Professor Student conversation starts, so how can I found the indexes in the auto case available?

How do I write it was once everybody nose what its position is in the output everybody has

computed it ? You do a barrier and figure out everybody has done it. Now you know where your

bit goes, you simply write to that position. Everybody bit goes to a different place. What is the

record for this place?

Why to the same place to into the same array in a different slot? What if you are assuming that,

we do not want generally considerate it everything is paired with, when you are actually trying to

do this? You could do this sum in this way you do assuming it is within a block. You do think

after you have finished all of your operations. Then write , read the element, no you have already

read your element.

So that is what I am saying if you have not read, there is a big record. The rest of the records, so

you read the record, then you sync, then you write it everybody has read it loudly. But then you

are assuming in processes, no I am just assuming every locations and local memory locations.

But everybody is doing that so only meeting temporary error. Yes for example if you say

temporary date that work not be alright.

So my notion of implace was in place in global memory that is why I was referring you read it in

the register. So assuming that there is a limit size record you read it in temporary space and you

write it you are using alternative extra space. That is tough one, I would say, in sequential

context it will certainly would not be called in place in parallel context every time. You ready

things in parallel, write things in parallel.

You have to have space to read in parallel reading and things and so you are not really making

copy of anything simply in a P Ram state, what would you say? Read an element, do local

computation, write it. So when you read an element, write an element in the same place is it in

place or not when you are using N registers. Because you have N processes is it in place or not

technically it is not.

But in the parallel context you would probably call it in place because you are not really making

in the shade mainly and it additional second count which needs to be accessed by multiple.

Professor Student conversation ends. So there was a quick example which I am going to rush to

original number of bits.

Then there negations, then prefix some under Escan and the zeros and the second one is your

index and the last column last row is effectively Escan on the number of ones. Let me stop

questions on the basic one bit sorting. How does this work? Now when you have many such one

bit, you can simply repeat it K times, if you K bits you may also

(Refer Slide Time: 26:04)

Block it instead of saying just 1 bit at a time. I can read K bits at a time or K one bits at a time.

How will this phase change if I have K bits instead of 1 bits. Now I have got K bucket 2 to the K

buckets. So you do prefix sum for each individual either you can do it in one row if you can copy

multiple numbers or you just do it K times technically doing it in one go would be much faster.

Professor student conversation starts how will you do that? You still have the same binary tree

that you construct for prefix sum. But each day time instead of saying take the sum of this, you

are taking a sum of K things pair wise sum to two arrays rather than two elements. If I have

taken T as number of digits zero to ninth. We can just compare the digits then we can divide

would be the same as we compare the bits.

You would compare for example, this algorithm by Darlen and company which actually got

published in two thousand nine to this they had an earlier version of two thousand eight also,

which divide it into 4 bit, once at a time and then it really is taking the entire input in, I am

asking out this four bits checking those four bits and then doing something like that. So is it

better to for example, I am giving with the number I am doing radix sort of number.

So it is better to take just compare the time leg its meaning that your entire key, the entire legit as

a key. How many buckets do you have 1 digit at a time? First four bits and then form, what do

you think? Basically is that your question is it mod 16 or mod ten base, that is your question. So

what I am saying that for example in the radix. So we started LSB and one thing is that was the

digits.

So you can form 10 bucket and you say anything with 0 will go to for 1 to the second bucket.

What I am saying is it better compare 0 and 1 if you come there, first four bits and then you

merge 4 bits will tell you whether it is 0 or 9, is that what you are saying not much fully

understand your question. But would you like to be base 16 is easier. We can get the 4 bits out

next time you have to do some work get that digit out.

Nobody is store till it gets done except we, professor student conversation ends. So it does it

block a time it brings in a block into a shared memory and in the shared memory it's simply

compares your number if 0 goes to 0 bucket, one and locally. You can do kind of local at least

you in the context of local memory. You can do it one bit and at a time you can simply look at all

the 4 bits together and make nine buckets.

Which would you rather do, if you do it in a multiple of sixteen is fine but one phase of this is 4

bits worth of comparison. One way to do the fourth bits of comparison is to do four stages of 1

bit sort like you did earlier or one stage of 4 bit sort where you say I will generate 16 different

prefix sum anyway and that lots of parameter that going to, so I do not expect you to able to

come up with that answer quickly.

But at least from the shared memory that doing it together is faster. So iteration is two thousand

eight paper, where they first presented the iteration and then updated anyway. So now they

generate this histograms which can be prefix sum and you figure out where digit numbers are

involved and then you go back to global memory. Put it in the right place, you do it one block at

a time.

But about the cross blocks, professor student conversation starts through this individual each

block, we did this individual. If we wanted to do it for the entire block, what would have to

change in this algorithm? You will have to know where this bucket begins? So there are sixteen

buckets, for you to handle.

But there are other blocks also handling 16 buckets, the same 16 buckets you have to do a prefix

sum across all of that which means they have to come up with their histograms before you can

do that prefix sum or alternatively. You can simply generate your results at locally and you can

say now I have got these 10 buckets. My 10 buckets are stored at this place, you are 10 buckets

are stored at some other place, then later on you simply move this buckets around professor

student conversation ends.

Enough about radix sort which by the way is conventional wisdom that for integer type sorting,

which is where lot of sorting dollars are devoted radix sort works the best specially in the parallel

domain there has been lot of work which all points to the same. Let us get back to sorting

optimal, remember merge sort.

We have already discussed it when we were talking about merges, when we started talking about

sorting and we are going to extend it to do a fully optimal sorting which is dealing fast meaning

it is Log N and be done in Log N time, the basic merge was

(Refer Slide Time: 34:05)

Not the basic merge the fast optimal merge was fast and Professor Student conversation starts

Log N fast and N work Professor Student conversation ends. So if you just apply this algorithm

you get optimal sorting N Log N work, because in Log N stages of merging and how much time

Log N square time which is much better than Log squared N which is being and if common in

several of the sorting.

The question is can you do better, the second question and this is where you will also see some

examples or some cases where we instead of thinking just in terms of here is time. and here is the

work complexity. We will actually try to come up with an algorithm where if we know that there

is P processor. So we will do that scheduling rather, than having the basic P ram scheduling. I

talked about earlier, so let us think about that in the merge case.

We have P element, P processor only and elements to merge and with the knowledge of optimal

algorithm and all that, what would be a good way to proceed that? We might say we will take 1 P

th of total number of elements. We will do local sorting, hopefully local sorting is significant and

faster which is we know how to do it than shared sorting. So we will do local sorting N over P

elements.

Then we will merge them, one pair at a time how will this work? You have N over P elements

after lead you merge to and you merge to p by two processes needed for that just that the leaf

level. So maybe you can say I have with 2 N by P elements, 2 N elements. So we will generate 2

N over P leaves and so will P elements no 2 P leaves regenerate 2 P leaves. So that with P

processes, we can merge then in parallel order N over P each merging 2 at a time optimal Log N

over P and order N over P work.

But that only gives me the previous stage, one line what about the next line? Now the merge side

is the element number of elements in each group has become twice the number of groups has

gone down by so I would at least now like that two processes share the merging of one. So two

processes merge the first two pair processes, merge second pair, two processes merge last pair

the P by two pair.

Next time four processes merge and at the end P processor for the entire merge and so you added

up together. How much time will it take you can on the leaf level you can say that is sequential

merge. But beyond that is parallel merge. Professor student conversation start, but be limited

parallel merge. So we are merging certain size blocks with certain number of processes will

always two at a time.

(Refer Slide Time: 38:44)

How long will it take these steps time, total time number of steps? We started with one processor

every month. Finally all processor every month on the entire thing. But how long does it take for

all the processes working on the entire thing and then similarly, half the process is working on. I

will let you work this out it is variant of this is already in one of the earlier slides.

So it should not be too much trouble to refer to it and this is also very related to the one that I

said workout earlier, today the bottom line is that is not going to be order N Log N. But you

think all the merges in order one. So you will multiply to figure out it is just not multiplication it

is adding up summing up number of steps per log. Professor student conversation ends. The now

from this two way merge, let us move on to N way merge.

(Refer Slide Time: 40:06)

Let us just simply take those end things at the bottom and merge them using P processor. This T

thing at the bottom merges them using P processes and the idea is I hope I did not have all the

slides, further ordinal merge sort. But I hope you have looked at the slides, I did have it when I

presented it in class. So it was posted, Professor Student conversation starts it is in the slides

does not matter, if you have not seen it you will not suffer.

Because this uses a construction, that is very similar to batchers merge. But it can even, if you

have not seen it think it later as just a fresh algorithm. But if you have seen the connection then

you should be able, if you seen that algorithm then you should be able to make that connection.

We are going to begin with an assumption, we will say L is equal to P square. So if we study

batchers, we had a optimal batcher was or Log N.

All these study called Log, because batchers extension is going to get better then optimal which

is what this one is and then after this we will also go back to work time complexity mechanism

and in fact even that mechanism. You can come up with an N Log N work and Log N time

algorithm. This one is relatively simple, next one is a bit involved and sometimes non intricate.

Professor student conversation ends.

So we will start with assumption, that we have the number of elements which is square of the

number of processes. We have and the algorithm is listed one at a time, it divide we are merging

2 sorted list. This is merging algorithm, so far we have L 1 and L 2 and we are going to merge L

1 L 2 using P processor. L 1 is sorted L 2 is sorted. So what it does is it takes every P F element

in L 1 and every P F element in L 1 and generate a list.

How many such list will it generate zeroth P - oneth and so on will be one list from L1. Similarly

list matching list can be generated for L two in the next list, will be 1 P, 2 P and the matching list

from L 2 the third list will be 2 P + 1, 2, P + 3 P + 1 and so on. So we are generating how many

different list ith lists processor P simply takes one of these pairs ith pair and mergers it

sequentially local.

You will see that is the focus here trying to do more and more things local and it puts it back into

the place. So it is not thinking it is again in place. So every P by ith processor 0, so my elements

are at 0 P - 1, 2, P - 1 and so on. I think of that as an array just my Strike has become bigger. So I

pick up two apparently two array and I teach us individually sorted and my output is going to be

the left half of the combined sorted list, merge sorted list, going in the left array and the right half

going right array.

So in place put back the sorted list the surprising thing is that elements are not too far away from

where they should be, actually it is positions from its actual the rank value. So how do you bring

it back to its final position. The rest of it is not that out of the book once you belief and will look

at the reasoning for this part once you believe that things are within P of each other then bringing

it into its place should not be too hard.

Professor student conversation starts, you sort what locally that I do not want to sort end over T,

well you would at the end of the day. You have to do that because L one will be the sorted left

half, L two the sorted right half. What I do not want to do is take this entire list and sort, because

sorting that is sorting of half the size. I begin with that will kill my efficiency. So it is actually

not that hard.

You divide still think of it as blocks of T. Then you do the odd even merge of batchers. Professor

student conversation ends. You take Log 0 and 1 merge it and processor does it another processor

is in the meantime merging 2 and 3 the third 1 is merging 4 and 5 and so on. We are not done yet

the next step you do you let alone 0 and you take 1 and 2 merge it 3 and 4 merge it 5 and 6 and

merge it and at the end you are going to get sorted.

Why is that after first alteration? Why is the left most block which is not participating in the

second one in step number 5? Why is this sorted every element that is started in that block was at

most P away from this position. So where all might it have gone at most into the second block.

So one of them have sorted those, two merge those two list and put it in the right place within

that much.

But we know that it only needs to be within that much it is does not need go beyond that and

same way element that is within P of its position this Way or that either you sort with the left

block or right block it is going to get in that position if you do both then you guarantee then it

back to its position. alright why are things only?

(Refer Slide Time: 48:25)

Professor Student conversation starts, blocks would be unsorted. Block 1, block 2 will not be

sorted? Good question actually, they are sorted. We have not proved that yet, but at the beginning

we have two sorted list. We did have two sorted list, no it is not immediately we are going to get

sorted result. Although you will have taken every Pth. So P different things have are involved in

sorting this block.

The first block P different process, first processor I was only looking at this element, second I

was looking this element, third I was only looking this element. This was sorted when we begin,

but then somebody bringing in other things here, will it still remain sorted processor number six,

for was taking every Pth element starting at6 and it is going to bring something which might

bring something from here, something else maybe smaller.

Instead of four then things like that you cannot say that based on four elements. But that may

help you figure out, why they are sorted? When you take an example, you understand the

structure of it is a little. You can draw connection by element that we bring in it is smaller than it

can be it will be smaller than it would have to be smaller than that. It was already there that we

may not be necessary it may be too small.

That is why you are saying that P list having elements at most P away from it is also done, that it

is not it can be. Let us look at the proofs it is not final position, because it is not necessarily as

big as it needs not be greater than every number before it right. So in fact I have to define what I

mean by these things, are sorted.

These things are sorted ordered in a certain way, there is a diagram values which you cannot read

or write. Let us see if we can get this thing set up well take a break and in fact this picture is

coming out to be too short and it is not quite readable. A new block which we are getting overall

going to be larger than, yes we are stopping now.

	Algorithms, Merging & Sorting

