
Parallel Computing
Prof. Subodh Kumar

Department of Computer Science & Engineering
Indian Institute of Technology – Delhi

Module No # 05
Lecture No # 25

CUDA (CONTD…)
(Refer Slide Time: 00:27)

Alright so this is where we are we were talking about how the shared memory has been filed and

now the soring has to be happen in this shared memory and this is what is known as bitonic sort

which we will talk about. We have not discussed the algorithm yet but very briefly depending on

big pattern you swap you compare element who are different from you are in a given big

position.

For example in the first iterations 0 and 1 will swap if necessary 3 and 4 will swap 4 and 5 will

swap 6 and 7 will swap then you will swap with people to distance away then 4 distance away

and so on. And so without getting too much into the details of the algorithm itself you are

making all the elements of the thread all the threads of the block going through this loop and

each iteration of the loop figuring out which is the bit which at my partner thread is different

from me compute your partner threads ID.

(Refer Slide Time: 01:56)

So TIP is own ID IXJ is your partners ID which is generated taking XR loop variable J and one

of you is going to do the exchange between I and J TID whoever is lower. So if your TID is less

than your partner then you do this otherwise the other guy will be figuring out you as a partner

and his result will be greater you would be doing this and then you depending on the top level

iterate K you either swap is less than your partner or swap if you are greater than your partner

okay.

And after everybody has done one swap we have sync because people are moving things around

if you want to make sure that all the warp of the block have moved things around so that you

can now go to the next level of iteration so you can who is two bits away from me whether I

should be swapping with him a lot and was that is done you come out of the loop then you put

again your shared all of the threads together you have generated this sorted list and you are going

to figure out who puts which element from the shared memory in the local memory and then you

have done okay.

After this there is an automatic sync thread because the kernel is done at this point after the

kernel is come out all of the block have done. So there is a implicit sync thread you would have

to or you figure out some other way to communicate across blocks but there is no sync thread

version of across blocks. One is you come out of the kernel then you come out of the kernel of

all blocks are done so it is synced.

Other is you can put in some memory location whether this block has modified its data or not we

can say every block gets one chunk of memory where it says I have done my part A then I see

everybody has done their part A I go to part B. And that is where you would want to do voting

within your warp once you have done your block has done your block get you are waiting of

other blocks have done their bits.

I will in fact give you another example of something very similar if every block as done their bit

then I need to take all the block results and see if everybody has done their bit right. And so all

the threads of my block will read the data for every block and you do a voting all is one then all

is well alright.

(Refer Slide Time: 05:13)

Let us continue the discussion that we were beginning to have about synchronization with

reference to memory what is the consistency model that the memory is provided now you know

what are the hardware does what is that consistency model. So within a block this week because

you can say this is a flush and then things before the flush after the flush are ordered across the

blocks really no consistency right.

At the end of the kernel but not within so you can think of that has one kind of week where you

say that absolutely no guarantee anywhere except at the end of the kernel but it does not count as

week because you do not have a function call that says now we are at the end of the kernel

system control and of course you cannot proceed in same context beyond that because the kernel

is done at that point.

There is a bit of guarantee in that whenever people write things to memory at the memory level

there is consistency in that transactions are not mixed to each other. So memory is seeing a

stream of transactions from different multi processors within the multi processors it is going to

wither discard some of those request or fully perform those request now we have to do part

performance of a request okay.

It is not going to mix it is not going to take its address and your data and write it that position

either it is taking your address and your data or your address and your data and writing it in the

right place. And that is hardware level of consistency without that there is no hope right but you

can do something at the software level and for the memories there are these fences that are

provided.

There is something called thread fence for a block it is essentially a weaker kind of barrier it is

not quite a barrier it is not all threads come and stop here. But when you call this method thread

fence block you are guaranteed that anybody who has called this third fence block in your block

is going to see the following behavior everything that the did before the third plus block is

visible to everybody in the block after the pass block okay.

 So if you wrote something and you have gone past to third fence block that means I do not know

whether the third person come to that block or not but if they do they cannot see what I wrote

any I wrote before thread fence block is in the memory guaranteed unless somebody over wrote

it that is a different that is a synchronization issue but no all threads in the block in a block who

need it would call it this is not a barrier.

It is a blocking flesh when you come out of this flush you know that it has reached memory it not

just in the process of reaching the memory and there is thread fence which is across blocks right.

I when I call thread fence I am ensuring that anybody else running in the same program in the

same kernel is going to see this data after that i have preceded beyond that thread facts. And then

there is thread fence system which makes it visible to the host also right. So if I have proceeded

beyond the thread fence system host will see this data now there is any other questions and

thread is only on CUDA threads.

There are other two are available in the earlier version also with in a warp is essentially like

thread fence rather sync threads I think stronger it is definitely processor consistent but I am

thinking that even stronger than that because you know precisely the instant where all this calls

were made right so you order them you can make them sequentially consistent yeah actually you

are write what happens is if you are doing it depends on the axis it if your warp is writing in this

when it is sequentially consistent.

Because in fact even for warp half warp definitely but even for warp it is sequentially consistent

because a half warp entire read is going to happen in one shot or right whatever it is going to go

to the memory in single transaction and two half was because you know exact what happens after

which also get fully ordered. So each half warp entire memory transactions goes in one order if it

is something bigger than in it you are reading 8 bytes per element then even that can be done in

one transaction.

But something much bigger that cannot be handled in one transaction then it is going to get

partition into multiple memory transactions. But even that actually is deterministic that algorithm

is consistent hardware every time makes the same decision and it is public. So as a programmer

you also know what is among the different read and write calls to the memory and because they

are going to go through the same cache also there is going to be absolutely reordering anywhere.

So that is not true so it is definitely sequentially consistent now that I think about it on one dot X

2 dot X made it in order to make it more general has caused some consistency up do not need

sync threads all the time even in 1 dot X. It depends on whether you are syncing across warps or

not I do not know what is exactly what you are referring to but sync is essentially ensuring that

all the blocks all the warps of the block have come to this position and you for me nothing this

about it.

All the blocks are executing in their own order and it is possible that these block this warp of the

block has reached instruction number 10 where that warp of the same block is at instruction

number. So unless you sync are going to get to the same spot it there are multiple warps of the

blocks reading data just like in our example we saw we needed to sync thread that is not going to

remove for 2 dot X.

Because every warp in the block has to have finished its read before you can proceed further so if

you as a warp has to depend on some other warp who have finished something before you can

proceed further then you have to wait for him you have to sync with him and 1 dot X or 2 dot X

both of them will have to do the same thing okay so that two we were discussing and 1 dot X

because of no reordering in the cache there was sequential consistency in 2 dot X because they

are letting cache lines evicted in their own order it is V consistency.

You can still make sure that you get flushed but you just by writing you are not going to get

there. You can use volatile if you only use volatile then you get back to having a sequential

consistency okay.

(Refer Slide Time: 17:11)

So let us look at that piece of code which uses very small font size and also third fence. So let us

begin with where we are talking about memory fences right so there was synchronization where

you said explicit synchronization between different threads of the block and that is really all the

synchronization that is provided among CUDA threads between kernels there is some

synchronization right.

So one kernel clearly comes before another kernel and unless you want them to run concurrently

they will run in sequence and so everything that has happened in the previous kernel will finish

before the next kernel begins most of the time which means that unless you want otherwise.

There are then so that is the synchronization side of the story the other side is indirect

synchronization which is making sure that is written in memory are actually visible fences for

that and this is something that you would see even in multi core CPU thread fences are there you

may not directly use them or you may not typically have functions that in turn call the memories

thread fence function of the primitives that the hardware provides.

But the function cause like lock mulloc etc will typically use those things under the hood all right

so the thread friends we talked about is on the block which says that I have written something

and everybody in the block now knows about it I have written something and everybody on the

thread on the device knows about it and I have written something and even the system knows

about system knows about it was long as what I am writing to is also visible using mapped

memory on those sides all right.

So this is where we are talking about that code which I have now split into two slides but it

seems a little small but I think it is readable now right. So it is reduce you have a block which

takes the element that are within the purview of the block the responsibility of the block acts it

together and then multiple blocks are adding the elements within their and then somehow they

need one of them or multiple of them need to them take these partial sums that each block is

producing and fine the grand sum find the total sum.

And so sum of the details are abstracted over here you begin by the block so this is the kernel

right so for a block there are sharing this is the data somehow where computing the partial sum

using whatever technique that they may have used which takes the input which is the list of

elements and generate the sum for this block partial sum is for the given block would you declare

it has partial sum for a given block is that declaration.

I meant is it shared device any qualifier necessary not the type right now who owns it each thread

as its own partial sum okay. Now if I am thread index 0 hopefully everybody is reaching the

same partial sum in the shared memory everybody is doing the log reduction right. So everybody

has their own partial sum and one data needs to be produced for this entire block. So I will say

one of the thread 0 takes the responsibility and it writes its partial sum which we are going to

assume is the same on every thread which is the sum of the block okay.

So if thread index is 0 then you take your partial put it in your block ID there is a result which

stores partial results for each block result array and there is one slot result for every block you

figure out your block ID you could that is your slot you put your sum there and nothing fence

happening so far. Then why do you need a thread fence? So this is you are writing once for a

block one member of the block is representing for the block writing for the block right.

And ah that item may be cache they may be sharing which means also cache over there for some

other block which may or may not be running on the same multi-processor. So they may be

sharing but that fall sharing more to do with efficiency So let us proceed what is going to happen

let us in fact for talk about what should happen everybody figure out their partial sum and

somebody is going to add the partial sum.

You need to make sure you when that somebody is going add the partial sum or a group of

threads is going add the partial sum is that everybody has figured out partial sum and written it

right. The blocks are independent of each other they are not synchronized so your block is done

and you have written your partial sum it does not say anything about where the other blocks are

they may not even begun yet.

You ensure here that whatever you have written is going to go into the memory beyond this point

so anybody else who reads it who is going to it who is going to combine the elements within the

result array. And whoever reads it may not be you if you read it you are going to get it without

even thread sense if somebody else reads it you need have thread fence here. So that they can get

updated or the correct value that you are actually wrote here and it is not setting in cache

something okay.

And then there is how do you that everybody is written so you can go to the next phase and add

the partial sums. In this case there is a counter and everybody has written atomically

incrementing there is a single count that says how many blocks have done you know how many

blocks are working on this grant problem right. And you say I am also done somebody else say I

am also done so you are implementing by one a global counter okay.

And those of who did something of this sort should know what this atomic is doing raise their

grid dim dot X there it is incrementing by one this variable concurrent which is in the global

memory none of you used atomic serializes at a very short interval but sometime you have no

choice here you have a choice if you were not doing atomic what would you do? What is one of

the thing or a few of the thing you might be.

So return the kernel is one but that had it is overhead right now another kernel will have to start

and do something but what was the other suggestion you enable your bit my bit is done. But how

do you know that all bits are done when and who will do that some one of the blocks job is to

figure out whether all the grids are one that can be done but it is little expensive so here there are

all this computing options and depending on how slow the atomic is it may or may not be faster

than say keeping a block doing nothing but checking it all bits are one right.

So the second parameter here says that the maximum that you can implemented to okay it will

map to a single TDX instructions which is supported in the hardware it effectively mean you

read something you add something to it and you put the value back this instruction always

implements one and there is max it says do not go about it in fact it resets it to 0 when you reach

there.

So you can have a recycle instruction okay so you have implemented your value and somebody

needs to check come value has become the full size of the grid how many blocks you have

started with so everybody does that so once you have done with your partial some you can go

check if that things is the accounted has reached max. So everybody is parallel is figuring out is

everybody else done once they have done okay.

Because it will never reach that value it has to go to 0 right you start with o and keep

incrementing and you will grid dim dot X is number blocks the value returned is the old value

when you do atomic you get the old value back right not the value you do are incrementing 2 so

everybody is figuring out again it is a local this variable is local to this block it is in shared and

so you have figured out this variable has reached and all this blocks are figuring out whether this

is done right.

Once you have checked that you come out so blocks who reached their early are not going to go

back and check in this case they are not busy waiting there is not loop here the way thread index

is 0 which means I am representing my block to write my result I am going to check I am going

to implement this count when check if the account was already at N – 1 other people have

written it before me and going to set my variable to is the last block done.

So how many people will see this variable to be true on thread of one block the block that

happens to get the last access to the atomic operation.

(Refer Slide Time: 31:53)

Then we do a sync threads why is that necessary they are but what does it mean all threads of the

block has found that it was the last block are going to in parallel some partial sums so their they

are going to become active now and start participating and summing it right but the threads if

you look back here did not go through if condition right. So they immediately went through the

end should they wait for this guy to check and update whether this is the block to do the partial

sum or that the final sum of course they should right.

They are waiting their until this thread come along and says yes we are the last our variable

which is shared across all of us is set to true meaning that this is the last block to come and let us

now find the final sum okay. So now everybody checks is last block done and if this is the block

that is the last block and then all threads of this block will set will see this to be true and now

they are going to go figure out the sum in this partial result array and then if I am thread 0 of this

block.

I am going to write the resulting value just like the previous when I was doing within a block I

am going to write the result in value total sum into the result okay. So this demonstrates that

where you I think at least hope they are some threads of was obvious you had to wait there to

figure out whether or not you were responsible for doing the remaining work and the thread

fence.

Whenever you want other blocks to read what you have written in this case other blocks are

somewhere on the device but when you have written is in the global memory and accessible to

other blocks then you make sure the thread fence is done. So that it does not sit stale in the cache

somewhere okay questions on memory synchronization alright.

(Refer Slide Time: 34:41)

So finally let us also talk about how to increase the concurrency by using stream when we want

to have multiple kernels running in parallel or having memory transfers is going on for one

kernel when some other kernel is actually executing and so on and so forth. So the idea stream is

straight forward you break down your computation into different sequences each still is

sequential from the host point of view.

But these different sequences of stream so to speak are concurrent in not independent of each

other because they are some restrictions on when a given stream operations can run versus other

stream in fact rules will go through an example to see those kinds of restrictions and I will also

show you the examples of how a stream is run by code. So you do not worry about a exact

sequence that is being demonstrated in the slide one thing to note is that there always streams.

When you are not explicitly using a stream you are saying everything is going to stream 0 right

form host point of view there is sequential stream called stream 0 and when you do not specify a

stream or your operations are not explicitly target towards the stream then if they are targeted

towards streams and everything on stream 0 is sequential when stream 0 is running no there

stream is running other stream must wait for stream 0 to finish and so if you actually want

concurrency in places where you want concurrency you will not be sending things to stream 0.

You can also query of few things about the stream you also have this notion of events so you can

say whether this stream has reached a certain point and so on and hence so forth.

(Refer Slide Time: 36:53)

But let us look at the example you would declare some variable of type CUDA stream and get

allocate a few streams so it could a stream create as many stream as you like again there is some

maximum limit. In this case a page lock memory host stage is allocated using CUDA malloc host

of certain size then you do inner loop what you would normally do in a stream in stream what

we do you do you say memory copy some memory from host to device run this kernel get the

result back.

That thing that ripple has been quoting a loop so now you are saying for hint equal to 0 to 2

which is 0 and 1 you do this thing but at the so in the CUDA memory copy sync the last

parameter says which is the stream for which this CUDA operation holds from the target and so

the first memcopy kernel memcopy back is going to stream 0 not the sequential stream not the

stream ID is 0 whatever is in your stream variable here stream array 0 which will move certainly

not be 0.

And then do the same sequence for stream 1 and later if you wish you can destroy the streams

can something go wrong. In this case probably nothing goes wrong because if you look at what

the memory areas they are copying it is totally based joint first guy says my left half do the

kernel on that part then my get the left half back second one in the mean time doing the same on

the right half and hopefully there is no dependency on left and right now cannot know that

depends on the kernel.

So what is going to happen is that two mem copy has long as the older devices everything is

synchronized so memcopy is and kernel launches are all going to happen independently which is

1.0 I think 1.1 onwards memcopy and kernels can overlap but under more gradually less

restrictive set of condition. So for mostly any CUDA device find today the first two copies can

happen in parallel.

So your left half going into the CUDA and right half going into CUDA device can happen in

parallel will it happen in parallel here. Can it happen in parallel here whatever you structured it

as you said copy for copy the left half then launch the kernel for the left half then bring the

results back now copy the right half okay it may be the sync half right which means that you

have returned fine.

But can you as a system implemented allow the second to host copy to device to proceed that is

the thing that is why I said they are not independent you cannot assume they are independent you

could right then entire responsibility goes to the program to make sure that whatever the

interaction are happening within stream are fully protected by mutual exclusion or some

synchronization method.

It is their concurrent which means it is more of a feature that use a program can use to speed your

computation you can have multiple kernels running so the enough thread available for every SM

to have some warp to run at every block that is the ultimately what would you like there is

schedules it can be that one kernel is running on first three SM’s. And the second kernel at the

same time running on the forth SM it does not help you to tell right where if it is possible to run

it.

The system will run it possible meaning there are this dependencies there are few dependencies

that need to be respected if you respect those and there is device available on which new blocks

can be scheduled will be scheduled global memory is the same. So if your kernels the two

kernels you have launched interfere with each other then you can get in trouble yes precisely it

can happen when that means you are sharing across two different concurrent kernel cost to

different think of it on the CPU side two different thread sharing a shared memory.

GPU is yes always be occupied more kernels right you want to do something independent at the

same time or even if independent as long as you make sure that the sharing is properly controlled

you can run it right so what CUDA will not allow you to do is run a new kernel where the old

kernel results are not back from the memory okay. And so in this old kernels result which has

been ordered earlier by a program order.

There is a host program order the host program order will be respected by certain aspect of the

stream okay. One of them is that if the data has not come back then ant kernel launch or in fact

any CUDA copy that is host ordered later cannot appear first okay. So that defeats this entire

concurrency in different threads you can do it in different host X then this dependence is lost but

if you wanted this dependency you keep it there if you do not want this dependency you can put

it two different hosts.

Which by the way did not work very well implementation issues for older versions of CUDA I

believe until do you have any. I though in CUDA until 2.0 or even something you did not try

before that there was some issues with multiple host threads running in parallel which is not

there anymore so that is one way the other would be you put the three statement in their own

loops right.

What will that do? That will say that two main copies are after each other the two kernel

launches are after each other and then the two results are after each other so now the two main

copies can happen in parallel kernel launch is can be launched in parallel and the results can be

copied back in parallel. There is a bit of a restriction still that the copying cannot being until the

last block of the kernels have been lost are actually being sent okay.

So that slightly reduces the amount of concurrency that you would otherwise get earlier blocks

launching can begin launching is not an atomic operation right you can here is some more work

and GPU will at some point say I can only take on that much work right now and so if you have

big kernel launch which has lots of blocks then until the last block is launched you cannot start

reading the results coming out okay.

So that is the restriction that is the reason for a different stream you cannot start copying back

stream once result back until 0 is whatever last block has been launched okay.

(Refer Slide Time: 48:59)

Of course within your own stream you have to do that all right there also as we just discussed

synchronization allowed or procedure for synchronization there is CUDA thread synchronize

which is it is more like fence it has the notion the semantics very similar to fence where you say I

say CUDA thread synchronize then all the receding streams or commands that are issued to

preceding stream this is again from the point of view of a single post thread okay.

When you multiple thread then they are concurrent independent to each other within a thread all

the stream cause you have made has to be finished. Stream synchronize is a version of thread

synchronized except it takes a parameter which is all the calls of that particular stream have to be

finished okay. And then there is a CUDA stream wait event which takes a stream and a given

event and it says all the calls for that stream up to that event have to be finished and then there is

a query about the problem of stream right you have fold of many stream from your thread.

And we want to know how far they will be reached so then you can query for the streams

assuming the stream are marking either counter which exist or events which tell you how to

monitor the stream or how to read the progress that you are making okay so that is as much as we

are going to talk about the features of CUDA I still want to spend a little bit of time talking about

the performance issues like how many threads and how to read memory in all that any questions

and I am going to stop here.

	CUDA (CONTD…)

