
Parallel Computing
Prof. Subodh Kumar

Department of Computer Science & Engineering
Indian Institute Technology – Delhi

Module No # 05
Lecture No # 23
CUDA (Contd)

(Refer Slide Time: 00:28)

Let us continue a bid more on the memory. So we are kind of mixing how the hardware is

organized and what the programming model is. Because they really are very closely sync and

tied together. So the shade memory as I mentioned earlier also is completely tied to a block right.

So it starts when a block begins ofcourse hardware wise the shared memory is always there.

But the data the access to the data that visibly of the data begins when the block begins ends

when the block ends ok. So if a three block beginning then each is going to have some piece of

shared memory based upon to it. And the blocks will not be able to know about other block

shared memory. The global constant and texture memories are as even the name suggests it’s not

globally visible to all the blocks.

It is persist meaning that it has a context from kernel to kernel it has the life of the entire

application. So if you start a block end it. Start another block you cannot expect that the shared

memory has the same data that the previous memory ended with. Because there is no notion of

previous block however in the in this global memory where also texture and constant memories

reside you can have ten kernels and the previous kernels output can be read by the next kernel.

So that data is alive all the way until the end of the program just like system manner. When you

write something into the memory until your program quits. That data is there once if you re-

begin it. You have no of knowing what data is that the thread local memory. Yes it is in global

memory and it is slower than scratch memory meaning slower than shared memory which means

that you should not be using.

So in practice what that is what does it says do not be used to many local variables as long as

those local variables can be fit in the registered space. It is fine but if you have a big array right

you declare a local array of one thousand that you can expect it to go to the global memory

regular than the global memory. The host memory it is a is physically separate right different

from the GPU memory which means typically whatever data you have on host especially when

you are beginning the computation.

We will have to copy it to the GPU. There are also notions of mapping the memories. So some

sections of the host we can mapped to the GPU memory. And then you can write on host as if it

is a local memory to you and on the GPU you can read ok. So that is also possible but one way

another you will be explicitly allocating space for whatever you want to fill in the global MEM

in the GPU in the global memory and filling it by either physically doing MEM copy or

assigning things to the variables.

But you do assign only when you are able to map and if you take some CUDA memory on GPU

memory and map it locally as a memory address on the CPU side. Then you can assign it a

variable assign it a value and it is going to stop there on the GPU side.

There are some limitations to how much of that you can do and what it does to the rest of your

system memory. A more general approach which is going to work all the time which is does not

have some of those instructions that the mapping thing does is you allocate whatever instead of

MALLOC you would have calling CUDA MALLOC I will show you couple of examples

(Refer Slide Time: 05:24)

I think right here you will call CUDA MALLOC you will get the address and on into the address.

You will do CUDA MEM city ok MEM copy and then at the end you do CUDA free if you do

not need that space.

(Refer Slide Time: 05:42)

Let us look up a couple of examples that will make this much clearer. In this case we are so in

MALLOC what you do. You say in MALLOC some size and it turns to a pointer ok. CUDA

MALLOC is slightly different in that. The pointer that turns to you is taken as one of the

parameters so two CUDA MALLOC. You send size even to MALLOC as well as the host pointer

the address of the host pointer.

Because some value will get rid in that and later on you can and you basically think of it as a

handle. It is on a real address that means something on the CPU. It’s some handle that you will

be using it through CUDA functions. And you cannot simply now say MP is = 63. And then an

example of how you might use it is CUDA free ok. Because you cannot directly do anything with

it all the usages will be based on the on CUDA functions.

(Refer Slide Time: 07:03)

And here is the basic example of how you might do it. So what you are seeing here focus is not

much at the beginning. At some commons that you can read if you declared float pointers on

which you will do will be doing MALLOC right. So you have for example CUDA MALLOC D

and your score A the center being a float pointer. And then address to a float pointer and asking

for some size bites to the MALLOC to be allocated on CUDA.

And so it has two it allocates two arrays of the same size one with the handle D underscore A the

other with the handle in D under the score B. So wherever you see D it is a device address so it

cannot be directly accessed on the CPU. And then it has a CUDA MEM copy into DA from HA

DA is device A HA is host A and it is has how many things to be copied you know we have

allocated size that is how much you are expecting to put that and in this CUDA MEM copy style

You have to say which is the direction of copy that is to say something is up more descent

methods do not need for you to tell them that. And then there is a call right some process do with

some configuration. How many blocks for rid, how many threads for block it takes three

parameters the address of the three of the two GPU arrays that you have allocated.

And the size number of alignments you put there and then once the job is done inside the kernel

we assume that there are some processing that happens on DA. The results have been stored in

DB and we want to now see the result. So we copy the DB back into the host variant of that same

variable HB. And then CUDA free D and D so this is basically that the common setup that you

will probably be doing for many CUDA application is now so at the beginning of the kernel.

You have got the data in the corresponding arrays which are been said as parameters. And you do

processing just like you would do on any CPU meaning that the code is going to look like any

CPU code. There are a couple things to keep track of you may or may not actually use it in your

in your programs. But there are somewhat more optimized way ways of accessing and

initializing on one D arrays right 2 D and 3 D arrays.

And there the usage of this or the need for this will become clearer or bit later when we talk

about how the memory accesses. Because ultimately all accesses are parallel liars like when you

say read something. You are 16 people saying read something and 16 different addresses which

are to be read in parallel as much as possible. And so there is some optimization that can be is

done on there and those optimizations can be well taken advantage of instead.

When you are needing two D or three D arrays instead of directly doing CUDA MALLOC you

do CUDA MALLOC pitch or CUDA MALLOC three D and there is corresponding MEM copy

variant. There is also a notion. There is also a notion of asynchronous transfer which I am going

to leave for the timing not talk about it may be. You have already seen the parameters to MEM

copy the type of transfer that you can do is not just device to host but also device to device right.

You can do from the host you can instruct that this given array may be replicated. It is not

necessary but you can do also host to host what so you are making this call on the host right. So

CUDA MEM copy is a CPU function rights its CUDA library right which inturn will probably do

something on the CUDA run time. But you making this call on the CPU and that side there are

the ways in which you can initiate asynchronous transfers.

Such that when you say CUDA MEM copy there is some time to make that copy happen in the

mean time you can do go some may write your code or do something else if other kernel begins.

And automatically when the kernel begins or when you reach the launch of kernel.

It would not act physically get called on the GPU until the MEM copy is happen right. Because

kernel input depends on the MEM copy it cannot begin until the MEM copy is done so that is

synchrony is needed and it will be automatically meant even if you are doing asynchronous

transfer.

(Refer Slide Time: 12:53)

 (Refer Slide Time: 13:02)

There is another example you can MEM copy from host to device and device to host. You can

also do simple thing like this and here is variable called COS data. Because you have refixed it

with underscore underscore constant underscore under score in the X going to be allocated in

constant memory. And you can’t assign to it and its address does not mean anything on the CPU.

It does not exist on the CPU but using CUDA functions you can set some values to it. For

example you can say CUDA MEM city to symbol and provide a local CPU float data. 56 is the

CPU array and you can say there is the size of the data make it is copy and so it is another

variant slightly sugar coated variant of CUDA MEM copy. There is also a notion of page locked

memory hind memory meaning is not page able it’s not going to go the desk.

It will stay on the system memory on the GPU side is no paging this is only on the CPU side. So

if you want your copies it is somewhat faster you copy from a page lock memory into GPU not

from any general memory. Because then there is no need for the copying urgent to worry about

whether that memory address is paste able or not it is actually allocated in the memory or not and

all that.

And you take simply the physical memory address and starts copying from there and the

functions that you used to allocate on the host side and paged are pint memory or CUDA host

ALLOC or CUDA free host. There are there is limit to how much first of all every time you lock

given area of memory into physical memory. You are saying that now virtual paging system does

not have access to that area of memory right.

So you are effectively reduced your physical memory that for another application circumstances.

So they will see some slow down might see some slow down the system also has some limit on

how much at given process can lock. So that varies from system to system. But yes if you have a

small amount of memory that you have to transfer. Then you make sense to allocate a bit of hind

memory keep reusing that for different transfers that you have to sent to GPU and every time you

know need to send another block of data to GPU used the hind memory.

Same thing reused same thing like that there is a slightly more optimized way of transferring

which is called right combining. And now it is locked as well as uncashed right and so you can

instruct the CPU to let go of l one l two usages for this memory. So that part of memory gets

deleted from the cash and not cash tax similarly. And as a result there is no snooping and all that

needed that data is being modified.

But first system results it is infact useful only when first of all you are not cashing you are

basically reading from one into the other. And it is no reading back and forth and which is

common right you read from left to right and you copy it to the GPU. So for that kind of

applications thus right combining make sense but still it really works faster only if you have a

one way transfer from the CPU to the GPU ok.

For that if you want to write something into this memory on the CPU side then it is not a good

usage meaning that it is not efficient not right now not on the current hardware. There infact have

been graphics starts in the past which extended to system memory but it is not available on

CUDA the CUDA gives another. Yes, because right now there is no way of extending although

hiring CUDA cards. You can go upto high memory sizes page not host memory it can be device

yes that is what memory mapping.

We are talking about earlier this is highly doing it you can only map if it is page locked. It is

actually the other way around meaning on the CPU you keep writing to it and you do not have to

MEM copy anything. And the same address that is the binding of address so that it is going to be

more like MPE where there is some local buffer being used to send that address.

Anything you write to that address to the GPU yeah that is very similar if you done in OS seen or

used memory map IO and you have it basically. You map an IO into the address that’s you

memory which actually happens to do an output. So if you want to say print off you simply write

something to memory and are going to show upon the screen. If you have map that IO address to

memory and it is basically resign ID yes it implicit it implicitly copies in the GPU.

So you would have to know that copy that you do CUDA MEM copy from host memory to

device memory. We do pin host memory to device memory we do right combining host right

combining pin host memory to device memory. And we can directly do using symbols right you

say copy to symbol and typically this is done if you have few variables. But generally it is more

efficient to do it in a single go to do CUDA MEM copy by arranging your data to be in one

block.

(Refer Slide Time: 20:57)

So you also talk about the fact that you can do at this mapping. And so there is some memory

here on the host side that becomes approximately for some memory on the device side right. So

you write to the host memory on the host CPU and the data appears on device memory on the

device CPU on the GPU there also.

Because you are essentially thinking of the shared memory and you have also thinking of

physically shared memory. There is an abstraction that provides you the notion of shared

memory right. Although when you write something here it is getting copied to something over

there which is then read over there as if there is a common shared memory. And you write

something some that thing is being read over there.

And so if you want the synchronization between the writes and the read so that you want to make

sure that the writes happen after the read or the writes happen before the read. Then you have to

ensure the synchronization ok. So you have to be careful about these read write hazards. We also

talked about the fact that and we will look at a couple of slides on streams also.

That when you have several things to do and you want that those things to happen concurrently

and you want x to be going on the device. But there is more to be done because device has a lot

of compute power then you can do y in parallel right. So you can say do on the device we have

talked in terms of kernels. So kernel 1 and kernel 2 and kernel 3 we talked about the fact that we

will typically have to do that in streams.

We will setup three streams one stream have the kernel 1 and the other stream will have kernel 2

the third stream will have kernel 3. And they will automatically determine whether there is an

upstairs through them all the kernels at the same time ok. Atleast in the case of memory transfers

you can overlap memory transfers of multiple streams without synchronization. It can also

overlap kernel execution with memory transfers as long as they are through this host mapped

memories ok.

(Refer Slide Time: 23:32)

This is in some stance are precursor in something. We can talk in bit more detail at the end just

the high level destruction of CUDA which is where a lot of program designed effort is devoted

for CUDA programming. And this is generally should be devoted for any parallel programming

which is to recognize that when you read something. And you say read this variable X = Y so

you read y and you return into X you recognize that this is happening in parallel at many places

right.

Especially when you have a single instruction multiple data been used for that instruction being

run on that instruction. You know that all that data pieces are being read that instruction to

happen. So it is not just a read of y or a write of X but in read of N array of Y is not necessarily

physically continuous array. But set of values and the memory band with is going to be fixed

right you can read one bite from the memory at certain speed.

And if you want to read them together so in our example there is a 32 is the size of the work we

need 32 sets reading at the same time. I also said that actually half work plans at a time so 16

threats reading at the same time. So I need 16 addresses to read it. So parallel IO is happening

now the memory band width may become an issue if there are more reads and typically hardware

designers will separate memory into multiple backs. I will say either generates a memory that has

16 ports.

So you can read from 16 different addresses in one clock that is highly expensive to do or you

have many banks I am say as long as you read from this bank. You read from this bank you read

from this bank you read from that bank there are 16 ports and everybody it is like 16 independent

CPU is reading from 16 independent memories in it.

So that happens if it can really do. So we will talk a little bit in more detail about this business of

(()) (26:04) meaning that you are doing parallel reads and writes. And what happens to that set of

addresses that you have regenerated or what should the pattern or the set of addresses that you

are generate in b. So that accesses are faster ok. Typically in CPU programming we do not worry

about much of this primarily.

It is a single threaded work for the time so you are reading one thing and that’s the only thing

you need to worry about. And also the big cashes ahead you would typically be worried about the

cash size when you are making the CPU program right. But you were aware of it you can make it

more efficient for example if you know what the line size is then we discuss the business of false

and true sharing. Infact we saw an example we organize if you are stuck in a one way you keep

reading one bite.

And the entire cash line keeps coming in you organize your stuck in your different way. Several

reads get collapsed into one cash line and so you read less from the memory. So if you know

those things your efficiency will be increased and will look at some of those issues especially in

the context of CUDA ok.

(Refer Slide Time: 27:37)

The functions we have talked about are global which are run on the device call from the host

functions can be devices which are run on the device call from the device. And function can also

be host ok what is it mean to say is the host function normal C function right. It is essentially

ignored by the combined sources but you can do though this is device and host it use multiple

qualifiers for the same function that’s really an overloading right.

That is short hand for saying I want this to become piled on the CPU as well as for the GPU. So

there will be you are basically write in two functions in the same body. And as a matter fact you

can even use conditional compilation. So there is some variable called CUDA arch which is set.

This will identify that you are running this on CPU if you want few lines of CPU specific code or

GPU specific code. In the then you can test for this variable say it is identifying then I must be

running on the GPU. So if it is defined the I must be running on CPU.

And your fact is it when it is defined something about the version of the hardware or the

architecture not the hardware. But there are I may mention this earlier that there are two classes

now 1 point something 1. 0 onwards I think it went upto 1.4 or 3 or 1.3 and then 2.0 onwards and

there is a big jump in capabilities of the hardware from 1 point 3 to 2 .0.

Sometimes you may want whether it is older or newer style hardware whether it is subversion

within 1 point something or 2 point something. You may not want to do in significant about that.

And as I had said that the once the hardware are accessible in the lab are all 1. X for you and so

you would be capable about using the new features no it is different it is slightly different.

Device host means that this function is being compiled by the CPU ok and another part of this

function is being made by a VCC right. And compilers the one that generates PTX ok no such

things happen for global. It is still being generated for the CPU for the GPU at with DTX

assembly being generated from it.

But there is a handle for it being generated. For the CPU to make the call so that call can be

generated somewhere on the host function you will be making a call to this global function. So

that call is going to get translated on the CPU or translated for the CPU and it only needs to

figure out what address to send to the GPU to make that call on the GPU. Eventually that call is

made on the GPU right but there is some packaging that needs to happen. So that the GPU can

tell that CPU to start execute that no not exactly right.

When you are making the function that is the device host you are making two functions ok. One

is the entire function with host your reboot one is again the copy of the entire function with the

device keyboard reboot ok. It is not the same thing one thing I want to do on CPU and one thing

on GPU that is something that you make you had the choice of doing but you do not have to

write.

For example sometimes when you test something global absolutely does not give you this choice

because global will only execute on the GPU. So that definitely it does not make chance you

cannot make a function call to the device function from the CPU or a device host function. Yeah,

because you had a version for the function of the GPU right and the GPU that the GPU name are

not even visible and even for the global function.

It that name may not be visible right handle for it which had that name inbuilt. Somewhere host

bite cell does not mean very much they are very different. Let me repeat the host device right so

the host device is like writing two functions one host one device global is not writing two

functions global is still a device function. There is no you cannot execute the global function on

the host not strictly right. Because CPU generate some command so that it may be entered on the

GPU.

But you are not directly calling that function on the CPU right you are not taking the address of

that function when putting on in program counter and jumping to it that can be done. I do not

think so but it could have been possible it is no real reason you it must be disappointed you

would so that for any global call you have to specify a configuration.

That is how many threads to ram and when you do not specify that configuration it could assume

itself it is a host call right. So it could be done I do not think it is and it might happen to do with

this configuration right. Thread X variable thread ID yeah thread ID is a variable which is

predefined only on the GPU side does not exist on the CPU side right. So if it were a global host

a device function and you wanted to do something based on thread ID it would have to be

protected inside the say would have inside host there would no thread ID.

Yes, the global functions can call other device function they would not call other device function

ok.

(Refer Slide Time: 37:00)

I should probably explain that only in 2 point X in 1 point X recursion is not allowed ok. And

that you see not in this slide some hint about that here which is the device functions are generally

inlined ok. Aggressively inlined especially in 1 point X in 2 point X it is somewhat similar to

GCC. Might to and you do have where are these underscore underscore no inline underscore

underscore directs.

You can use you say this function should be in inline or their force inline that say if you really

want inline just like you do in CPU plus plus. There is a force inline function the keyword id

different even if you force inline. It sounds like you are instructing the compiler to do certain

thing but it is really a suggested. So there are situations in which your force inline will be

ignored and they are more likely to be ignored.

Wait no inline is more likely to be ignored in 1 dot X because it really wants to do aggressively

inline. You just not very good in this the stag size on 2 dot X is still limited. Even that the total

amount of memory is limited but enough that think I put on that slide. I could not find what the

stag sizes in the two versions are. As you would expect you cannot take and a percent of the

device function on the host if it is 1 dot X you cannot take a device function at all.

The address of the function at all if it is 2 dots X you can take this address but only on the device

right. I would not make to take this address on the host if it is a device it does not exist on the

host ok. Here it is recursion is not supported in (()) (39:25) but I thought it is more about that yes

older version means 1 dot X global function is separate thing. It is not a regular function so you

cannot nobody said neither the old nor the new support recursion in global functions device

function.

Yeah global function calls something that is that can execute recursion right. Again typically you

learn out of this sooner than you expect to run out of stats space on the CPU that stat space is

somewhat smaller even on the newer versions. For all functions that executed on the device like

device function or a global function you cannot have static variables inside. Although the

specific types of variable behave as their static although you cannot declare anything to be static.

You can declare something to be resident in shared memory. For example it automatically

becomes static and the shared is there if you reenter it still there. It is kind of like a global if you

think in terms of C scopes variable number of arguments are not supported on either new or the

older versions. I will get to how you call the kernels but I think we need to stop we have run

longer than half an hour. So let me stop here and change the slide number.

Ok let us continue we are just talking about the different types of functions are there any

questions on their restrictions. Start on the newer no not on the shared memory I believe it

keeps the stat in either the constant memory or the global memory but not the shared memory ok

infact constant memory was practically unused in the 1 dot X. Even the parameters that you

send to functions where through shared memory and it did not have stats to store anything in

memory but the newer ones use constant memory bit more.

So either the stat is in constant memory or in the global memory from your program actually that

is right. It a hardware limitation not the software limitation so it will must be in the global sorry

so there is two issues right. You cannot change because the software module does not allow you

to change it or you cannot change because the hardware does not allow you to change right. So I

think there is some limitation I think hardware does allow you to change it.

But it is extremely inefficient to do so and so that made them because it is efficient inefficient on

the hardware. I would not be a good place to put this exactly yeah so global memory is the mean

memory of the GPU. You do not refer to the stock almost always right. So you will bring it back

into register and so at the beginning and at the end of the function call.

No it tries to fit in as many local variables as possible on the register itself it depends there are 16

kilobytes of registers for each assembly. But they are allocated to multiple blocks and so you will

get if you get 32 registers for your program then you are doing quite well. Probably more like 16

is what you would expect again it depends totally on your kernel right. Your kernel doesn’t or

here there is a trade of the kernel and the block size.

If your kernel requires many registers and you can even control you can instruct the compiler to

use more registers as you want everything to be in register. But then you must make sure that

your kernels had fewer threads that are all concurrent. No shared keyboard is not used for

function yes on the shared memory yes so it is possible to get the run time error in recursion

when you run out of shred memory it is not work 1 dot X.

Yeah 1 dot X you would not have run compiled time ok. So kernels which are the global

functions get call using a configuration ok.

(Refer Slide Time: 46:05)

So if its regular host functions you will say the kernel the parameters list right. Whatever is in the

parenthesis and also I have written dot dot dot I am not meaning a variable number argument but

this is a call. So it clear it is whatever the arguments are it takes three parameters to fully specify

a configuration. And you have to have atleast one of them the other two are optional may be two

of them I think.

You have to provide both dimension of the grid which is how many blocks you are trying to run

and the dimensions of the block which is how many threads per block ok. Each one of them can

be 1D, 2D no dim grade is 1D, 2D SIM block is 1D, 2D or 3D. And because it uses in

constructors internally either you can had something of type dim three for the block size or even

type two in which case the third dimension does not exist or even in it. Usually the second and

third dimension does not exist ok.

And the third there is a third argument which is the size of the shared memory that this kernel is

going to use ok. Including any recursion this is not the shared declaration that you have you do

not want to count up how many all the times you have used the shared memory. This is on top of

it and this is I am going to declare some variables which I want to reside in the shared memory. I

want you to give me a block of 64 bites for me to use as scrod space ok.

So it is an best essentially it is an array of whatever size you are saying it is it must be

determined it can be determined at run time. And when this representative of this kernel

invocation will get called on the CPU it is going to figure out how many hosts how many

shared memory bites are required by the kernel. And that a requisite amount of control

commands will get sent to the GPU to allocate that many shared memory elements ok.

I will tell you shortly how you would the shared memory this is separate edition to all the

variables. You will declare you have to declare a variable so you can access this also but that is

done using extend rather than the once you put inside the function. The call when you when

make this configuration call it is going to be return as soon as it is able to figure out what is the

configuration what is the command that is to be sent.

All of the data is sent to the GPU and then it returns right. So it is not going to wait here for the

device to say that I have completed the execution of this function. However there are other things

you may do later like calling another kernel or making a non overlap able memory transfer to

device. Its going too stuck there so that cannot be proceed until this thing is completed ok. Yes,

that is on the GPU side there is expenses but there exists and the parameters I think already

mentioned are past using shared memory on 1 dot X.

And constant memory on two dot x as I said there exist provision for expressive syncing. So you

can say that do not return to me until you have finished execution of this kernel and you would

do that when you debugging. You would not necessarily want to do that in code that you are

publishing right. In code that you want to be running you want to major the performance of and

as a matter of attitude do CUDA GB or one of the other profilers they will also decide it for

you ok.

(Refer Slide Time: 51:44)

As I said the shared memory will talk about short time there are exist asynchronous versions or

some function calls which make when the synchronous calls asynchronous ok. So you can say

CUDA MEM copy sync if you want to return right. It does not mean that to finish as soon as you

call it but it will return before it finishes ok. There are these five function calls odd events which

are returning as soon as you as soon as it figures out what it has to do without actually

completing the task can do launches.

We just talked about that when you on the host launch a kernel it will return as soon as it is

figured out what to do you can do device to device memory copies ok. You can do host to device

memory copies of limited size. And because there is enough buffer to make that happen it will

return right away right if you to bigger chunk of data to get transferred then you have to wait for

it to complete.

And if it is a sync as I said there are many of these functions have an underscore a sync version.

So if you are calling a sync version then they will be done. And there is MEM set that you can do

on the CUDA device which will also return without having already set memory ok. And I have

assigned you can disable all of these asynchronous calls by setting an element variable called

CUDA launch blocking and again you should not do that unless you just test debugging.

(Refer Slide Time: 53:42)

So these are the variable qualifiers as supposed to the function qualifier. We just looking at so

variables you can say are device constant or shared ok there also text variable. We will stay away

from that because they have a very graphic centric understanding of the memory should be

accessed right. You can access memory address 2.5 instead of getting the data upto 2 and 3 get

the average of the data 2 and data 3. So that the all of that is required in graphics and sop it is

focused on graphics.

I do not expect if you are doing a non graphics application. I do not expect you to need that kind

of access somewhat going to discuss the texture memory infact their organization is there a

different you declare arise in a certain fashion with certain 2D, 3D patterns. And all that so

device memory is one that is going to be on the device in the global memory.

And it can be accessed from the host and because you said CUDA get symbol and you can get an

address to that device function and you can send something to that symbol. So there are

provisions for you to be able to say something on the GPU. Set of variable exist on the device

from the host by taking its address in an indirect way. There is constant memory which has its

own path complete path to get from did I say constant is readable but highly inefficient.

I think I was talking about texture constant may not be readable at all even in the hardware sorry

writable at all. Yeah ofcourse it is readable otherwise going to be much used even if you are able

to write it then there are shared memory which will be allocated in the shared space. It is visible

only within a block right. So if you got multiple blocks in a grid they all have their own versions

of the shared variable but there is only one instance of that shared variable for the entire block.

So every thread is not going to get an instance for this variable ok. They can read it same time

they can read it at different time if you want some shared access to be controlled by syncing. And

all that is possible remember that not the entire block runs in lock step right. So different walks

of block will be at different parts of their code so you have if you want to measure.

They all reach certain point before writing to that shared memory or before accessing that shared

memory. We have to ensure that using sync threads and this is concurrent right but random that is

everything is trying to write to that. One of them will succeed in 1 dot X in 2 dot X through

constant memory not that matters it just means you have less of the shared memory available for

the rest half.

Shared memory is specific to a block right so for every block whenever the system says here is

one more block you going to get one instance of the shared memory allocated created for that

block. That will have be arguments so it is not exactly the same way right. The arguments are it

is like the system taking away the part of the shared memory for its usage. So it is not like you

have the access to ensure that the arguments are in shared memory.

It will not run right it will if it can figure it out that compiled time it would not it will give you a

compiler array. There are situations especially in 2 dot X which has generalizing little bit more

that you would not be able to know at compiled time. But we will get a run time so the shared

variable will have the lifetime of a block. They are again as I said static right so u call one device

function again and again that the device function can assume that what I wrote in the shared

memory is still there.

When it comes to the device function next time it is a local shared variable but as you declared it

to be static. They yes it is no it is also for global functions right. So it as long as so when you

when you call this global function certain n umber of blocks need to executive and that shared

memory is reserved for that block. Until whenever the block is created that shared memory is

going to get tied to it. Nobody else can use that to each block right. Certain portion of the shared

memory get tied to a given block and until that kernel is done.

That blocks owns that shared memory and nobody else will write to it on the local device

functions will the local global variables meaning inside the device variables are not static. So

they will go away but if its global scope device variable then they will stay across kernel calls

ok. Because global function global variables or global memory does not get rehearsed right it is

that variable is visible is all the functions within a file.

So whichever calls it cease the same address extends are not allowed for any of these device

variables except for that block for shared memory that you had reserved right. When you said in

this kernel in location I need 64 bites of shared memory or whatever that is declared explicitly as

extend ok. I will I will show you an example shortly this volatile keyword just like in open MP

cash can play have a when you have a shared memory. It can go to the cash but cannot reach the

shared memory.

Same thing can happen this is not an issue on one dot x because it does not have a cash but on 2

dot X because it has a real cash. If you want to make sure that has got to shared memory every

time you have written it either you have to sync or you have to declare it to be volatile. Then it

will every time it will write to the memory ok. So the some restrictions listed here with five

scopes only there is no external out struck a union not allowed in formal parameters or on local

variables.

Again this is probably going to just a software restriction going to happen someday. Shared

cannot be used on local variables on the host right host function that you have taken declared to

be host function. Obviously as I mentioned constant and shared anything that has a constant and

shared identifier or qualifier is going to behave as a it is static ok so ok.

(Refer Slide Time: 1:03:58)

This is where the shared memory the block that you have said I want to use how you use it right.

So you declare one variable of type extend which is outside the function ok. So if you think in

terms of C so what you think in the bottom they do part let us focus on that first. You are

basically saying extend shared cared array some size you are not telling the size at this point.

And you are not actually declaring it anywhere in your program right typically that extend will

be declared somewhere else some other file have declared it.

So that somewhere else is automatic right this going to happen by magic through MCC. You

simply declare one extend shred care or whatever type you want to make it an undetermined size.

The size is going too filled in at the configuration time right. So when you make that kernel

launch it is as if this shared care array has been called with that size ok. You make another launch

the size going to change and are determined at one time. And that is why you are not allowed to

have multiple of these right.

You want you are instead of the compiler taking ion the responsibility of adding up call together

making fit certain size at known at the configuration launch time. You simply declare one

variable of type shared which is extended and inside any device function. You can if you want to

allocate separate variable separate blocks inside that you can make point as referring to different

offsets in this global block of shared memory global using loosely ok.

Block that is single block for the block of threads there will be one such declaration then it is a

regular C. It is on the CPU you can declare a device function but I mean device variable. But it

will not go in the shared memory it will go in the global memory global memory yeah. You can

declare many device things and they all be allocated in global memory it is only for shared

memory that this thing has been done.

Because its declaration is happening automatically right. You are not actually declaring it is of

certain size or somewhere else.

(Refer Slide Time: 1:07:24)

The local variables are tempted to be in register all the time if they don’t fit in the register

allocation. Then they are going to go in global memory ok which is called thread private or

thread local memory pointers must be resolved at compiled time. But there is only one point x ok

what that says is that it must know at compiled time.

Whether even reference is going to point to a memory in the device section the global memory

section or in the shred memory section ok there is no size restriction on 2 dot X. Of course you

would not take a pointer that is on the device and follow it be refers on the host right. So that

again that would not many make sense does not exist on the host. But on 1 dot X you have to

know whether this is a device reference or a global memory reference sorry the device meaning

global memory reference or a shared memory reference.

So that is somewhat high level description of the pieces right. How you declare variables, how

you declare functions, how do you call functions, what do you think about this design device

variable for host you can set a value to it. Yeah meaning that you are asking that should be

initializing to certain thing. You no it is not like you are setting that some variable to some

function.

You are going to get symbol address and you are going to set a value using the function called

CUDA something. Yeah it is not going to turn into a regular c assignment and it has all this types.

Unless few more it has vectors types of vectors defined predefined it also has half 16 floats. That

to share some memory it defines however does this does not have the half.

(Refer Slide Time: 1:10:38)

What would you change you now know the architecture right. You seen that basically there is

some number of things that have to run in lock step their multiple of these and then lock step

things have to share some memory. And then there is a global memory that is they across right it

is a kind of hierarchy it will design.

So what programming model would you had for it other than saying that I am going to write

single threaded single processor CPU code and I want you to figure out how to run it on CUDA

right. That would be a good thing so it is extremely challenging and does not exist here so how

you would make a programming model that HH is aware of the architecture. And is something

that allows the programmer to explicitly express the parallelism so no parallelism is being

inferred which has been the theme right.

The open MP or MPR before is nothing all been inferred you could have done it using

combination of open MP and MPR right. You would say here is the bunch of shared memory that

refers to the shared memory. And then MPI like all that refers to the other that is also shared

memory of global memory is also shared. But it is not it has a global scope of sharing where

there is a local scope of sharing right or may be at two level open MP. Ultimately it’s a shared

memory so is it basically open MP right. Here CPU is another core is not it.

So and infact you have talking about CPU having one core it really has multiple cores typically

so few cores on CPU and few cores on GPU. So now you have three levels right there are these

two bulks of things that doing MPI between them. Because they would not physically share the

memory then within this bulk there are two levels threads. That share that memory global

memory and their sub threads that share the shared memory there is there is nothing new there

right.

It is somebody is doing that translation for you at the day all these memories have a separate

address right. In CUDA one dot x there address was directly put in to the instructions. So and

instruction for loading from shared memory was different from an instruction the up code was

different from an instruction loading from global memory right. And that got regularized or

generalized to saying I do not want to put in the up code I just want to say read from memory

you do right. You just use certain section of the bids to say that this if your addresses.

First rebids or 0000 in that CPU and 001 in that CPU if 010 and it is the third CPU if it is 111

then it is the first GPU. You can do that and that is what was done at the GPU level in 2 dot X

right where it said instead of putting things in your court we all say if the first bid of the address

or first some bids of the address say something.

Then you are in global memory otherwise you are in shred memory the instruction is same its

read from memory and then the hardware simply looks at the address to figure out whether this is

referring to the global memory address or to a local memory address. And then strip of the

correct bids to get to the offset within the within the local memory or within the global memory

or within the shared memory. The same thing that has generalized on multiple GPU side ok so at

some level this is this is open mp only in real difference is that in open mp loop was the

mechanism by which you said do this in parallel right.

You said for I = 0 to parallel for I = something you do this and there is for generalized sections in

all those things but PV the core of the matter was that you express parallelism using a loop here.

You express parallelism by writing a function and putting the loop in the configuration ok and

now that there are multiple levels of memory of sharing. That somehow has to play a role

somewhere you can you can do that there also in the open MP also that is what the core

constructs that is on the default construct.

But you can create one which focuses of another right. So this guy continue and this guy is on

now several parallel things that they done together so there are many ways in which you can do

that. It here it is just that the structure instead of having a loop has turned into a configuration

and the nesting where you automatically wrote more and more nested loops. And here the nesting

is kind of static it is a grid.

And the grid has certain number of blocks; block has certain number of threads you have to use

this static configuration right. You cannot now continue to say that thread is certain number of

sub threads at an interactive or run time basis ok. We will look at some code example.

(Refer Slide Time: 1:18:55)

And one that is commonly provided in all CUDA manuals and all loops and which you should

probably took look at. I want to do matrix multiplication so I got some matrix A and some matrix

b and I am going to take one row here one column here. Apply the products and then sum it

together you want to do this today it will not actually help you much with the assignment.

(Refer Slide Time: 1:19:47)

Because I am not going to do any reduction stuff here but let me jump to something that may be

helpful atleast in the organization. So this is what you see here is typical matrix multiplication c

code right for I = 0 to and this square matrix this is just to make things center 0 to it J = 0. It then

you move K here and here and so you have to figure out whether you at what level you want to

parallelize right. You can say I am going to a simple way is every result element is independent

of other results.

So let us compute the result in parallel so I am got in biometrics and square thread each start

producing one result right. You can go for that you can say let us make a cube threads each

taking one element here one element from here multiplying it and then doing reduction later on

right. This is the simpler one and to set this up.

(Refer Slide Time: 1:20:52)

You would this is still a host function although it is called matrix on device it will allocate some

amount of memory on CUDA copy the inputs to the device.

(Refer Slide Time: 1:21:16)

And then do what is written in number two in web the kernel show you that also and then what

the kernel is dine copy of the result back and free the memories that you have allocated.

(Refer Slide Time: 1:21:35)

The kernel itself would I think I should restructure this it is become little hard to read I think

breaking it into different slides. So here is the bulk of it so we have a kernel and we need to take

a set if elements from here set of elements from here and figure out where to get things from

depend on your thread id right.

I am not going to go through the derivation of your position of which element you are taking the

product of and a then you keep taking products and keep adding to the partial system because

here you are producing one result per thread one output might trick results per thread. And so

this is all that there is in the kernel and the invocation will simply say run the kernel with I do not

want any shared memory in this case everything is happened directly on the global memory.

And you would want to use shared memory because you are taking these products and adding it

to the sum in this case that some probably is on the register. So it does not matter but if you

wanted to reuse something over and over you may have wanted to you shared memory and so in

the invocation. You say here is the number of grids I want to run which is one by one right.

Everything is in a single block the block I want to run is n cross n right I J will give me so that

my block my index within the block are I and J index will tell me which result row column I

have to produce. And then send these matrices ok the matrices that you are sending or the

parameters that you are sending are.

(Refer Slide Time: 1:23:57)

What CUDA pointers right the handles that when you did CUDA MALLOC you got up a pointer

to that or s handle to that ok? So you send the three pointers and an additional argument which is

what is the size it will ok. So let me stop there.

