
Principles of Programming Languages
Prof: S. Arun Kumar

Department of Computer Science and Engineering
Indian Institute of Technology

Delhi
Lecture no 7

Lecture Title: Syntactic Classes

Welcome to lecture 7. Let me just briefly recapitulate what I said last time. Firstly, we
are interested in defining the semantics of programming languages in somewhat the same
way as we have rigorously defined syntax. While defining semantics of a programming
language we should keep in mind that a programming language is capable of an existence
that is independent of any machine very much like natural languages that do not have any
implementation but exist as objects of our thought or our conception.

Similarly, there is no reason why programming languages cannot be thought of as objects
of our conception or of our thought independent of any particular implementation. So,
while defining the semantics of a programming language one point which must be kept in
mind is that it is a mathematical object in itself interesting enough to study for its own
sake.

Secondly, what reinforces this view is also that if indeed programming languages have to
be implemented then we would like to implement them or specify their meanings in a
fashion that is independent of any particular machine or architecture. The fact that you
have to make it independent of any particular machine or architecture itself gives it a
standing that is abstracted away from actual implementations and it gives it an
independent existence.

As far as programming languages are concerned, in recent times we have what are known
as specification languages which are very much like programming languages except that
they are not implement-able. They are an excellent means of conveying ideas either about
programs or implementations but they really exist completely independently and do not
have any implementation. In fact some simple specification languages that have been
used in the past are languages like logic itself. They could be used as specification
languages; they have a particular syntax, they have a certain grammar but they do not
necessarily have a complete implementation except for certain subsets of them which
could be implemented.

Specification languages for example, would include some implement-able concepts and
also others which are meant to convey abstract ideas in a precise and unambiguous form
without necessarily having an implementation. We will look at the basic syntactic classes
of programming languages what from a semantic viewpoint constitute the basic syntactic
classes that we should study in programming languages.

Previously, the syntactic classes we studied were the non terminals, the formation of
terms etc. They had a purely syntactic existence which was really devoid of any meaning
that we might associate with them but now we would like to classify the various kinds of
constructs into some broad syntactic categories which are influenced by what we expect
the meaning to be. So, basic to this view point is the notion of program equivalence
which we have already seen.

[Refer Slide Time: 05:10]

Firstly, as I said, a view of equivalence, which says that all the step by step state changes
should be the same in order to deem two programs to be equivalent, is really too fine a
criterion which we do not want. Secondly, saying that two programs are equivalent if the
algorithms they represent are the same or equivalent is also too coarse a way of looking at
programs because we would like to be able to reason about programs in terms of the
underlying syntactic structure and every algorithm has an infinite number of
implementations. What we would like to know is slightly finer than just the equivalence
of algorithms or just the equivalence of functions. If we can do something finer than that
we would be able to abstract away from that and get our final results namely the
equivalence of functions or equivalence of algorithms.

[Refer Slide Time: 05:35]

[Refer Slide Time: 07:00]

In order to use the syntax of a programming language in order to derive its meaning, we
will define certain syntactic categories from the view point of semantics and from the
view point of what kinds of functions we expect them to mean. This is the basic question.
If you look at an arbitrary programming language what kinds of syntactic classes do you
find which seem to be completely different in meaning. We will look at each
programming language construct as a notation. The question is what does it denote? What
does it produce or achieve with respect to some notion of a computation state?

We would like to see what the various kinds of meanings we might associate with
programming language constructs are which are very different. The kinds of meaning are
what we are interested in. First we should get to know about the kinds of meaning and
then we can actually worry about the meanings themselves. In general for most
programming languages we could look at the computational state. I have never actually
specified the notion of a computational state. Let me first partition the computational
state into two kinds of objects.

[Refer Slide Time: 08:25]

An environment is loosely speaking a record of identifier bindings and ‘identifier
bindings’ means that an environment clearly specifies what names are being used for
what kinds of objects in a localized fashion and a binding is some localized association.
You might have named-value bindings or you might have named-location bindings or
may be memory-location bindings. We will just look upon an environment as essentially
specifying the different names that are being used in this program and the bindings
associated with these names. The various kinds of identifiers in a programming language
could be several; they could be constant identifiers, they could be variable identifiers,
they could be typed identifiers, they could be procedure identifiers, function identifiers
and the same identifiers could be used in different scopes with different bindings.
That is what makes the binding a localized association.

You could use the same identifier let us say, ‘I’ as a global variable of a program and as a
name of a function in some deep inner scope. So, there is only one name, ‘I’ but it has
different bindings at different stages of the program. It has different localized
associations while you are within some deep inner scope. Let us say that the procedure
called ‘I’, which is available in that scope while you are in the outermost level of the
program, would denote the variable that was declared globally. The notion of what ‘I’
denotes is important and that is a binding. So, names themselves are associated with
bindings and till you know what names are being used for what purposes, you really

cannot talk about the meaning of a program and this is actually an age old practice even
in Mathematics. Take any problem; given that 10 apples cost Rs.20 you have to find out
how much 15 apples cost. So, first you let ‘x’ be the cost of 15 apples and there you are
specifying a name ‘x’ with a binding that it is the price of 15 apples. You might use
another name. Let ‘a’ be the cost of one apple and there again you are specifying a name-
value binding. So, an environment is just a collection of names along with their bindings
in the environment.

The next component of a computational state is the store. Loosely speaking, in most
imperative languages at least the store is just a map of the memory. It is just the record of
various state changes that have taken place. It may not be a complete history of the state
changes but might be the result of all the latest updates. This store really gives you
various kinds of location-value bindings. We will look at that in greater detail later but
essentially we can look upon a computational state as consisting of two parts, an
environment and a store and this is the basic notion of a computational state. Certain
programming languages may not have the notion of the store at all and that is what
distinguishes functional programming languages from imperative programming
languages. There is no concept of a store in functional programming languages.
However, we would like to talk about all these in a uniform fashion.

[Refer Slide Time: 14:30]

So, it is necessary for us to take the full generality of the computational state into account
whenever we talk about the subject of programming languages. If you look at any
programming language, let us say imperative programming languages; since they are the
hardest to specify and they are also the most complex we might classify the various
syntactical constructs in the programming languages into three broad classes. One is the
class of expressions that the language allows that is a class of commands and a class of
declarations. These three syntactic classes do not overlap but you can use one syntactic
class to define another. If you look at what expressions denote, what commands denote

and what declarations denote, you will see that there is really nothing else to
programming languages. Expressions, commands and declarations are the three aspects
that are important when defining semantics.

Let us look at expressions. As far as we are concerned the meaning of an expression is
just some value. There are constraints such as; the expression should have a value of the
type mentioned as the type of the expression, the type of a complicated expression should
be derivable from the types of the individual components of that expression etc but
essentially any expression denotes a value. The whole idea of an expression is that it has
to be evaluated to eventually obtain a value. The notion of this value is different from the
notion of a memory location. For pragmatic reasons you might actually use a memory
location in order to store the value but that memory location is not part of the language
specification of the language. That is a pragmatic aspect which has to do with the
architecture or the machine or a particular implementation of the language.

[Refer Slide Time: 16:05]

There is absolutely no reason why we should confuse values from values stored in
memory locations. The two are logically distinct as we will see. In any particular
environment and store you might have two expressions which denote the same value in
that particular environment and store, but they may not be equivalent. We are eventually
also interested in what constitutes program equivalence and since expressions form an
integral part of any program we are supposed to abstract out program equivalence from
the equivalence of the individual components of the program. When we talk of
expressions, the first question that arises is what constitutes expression- equivalence.
When can you say that two expressions are equivalent?

In a particular computational state two distinct expressions which have distinct abstract or
concrete syntax trees might actually give you the same value but that does not mean that

the two expressions mean the same. The two expressions have a meaning which goes far
beyond any particular computational state so if they yield the same value in a given
computational state that means, in a given environment with a given store, then at that
particular point in the program one of the expressions could be replaced by the other but
that does not necessarily mean that the two expressions mean the same. You would say
two expressions mean the same when under all states of computation the two expressions
yield identical values. Regardless of what might be the computation state, if the two
expressions yield identical values then we could say that the two expressions are
semantically equivalent.

[Refer Slide Time: 19:19]

What we mean by semantical equivalence really constitutes equality in a broad
mathematical area in which that expression resides. A simple example is that of these two
Boolean expressions;

() () ()‘not a and b ’ ‘ not a or not b ’ .
There is the standard De Morgan’s law in Boolean algebra which tells you that these two
expressions () () ()‘not a and b ’ ‘ not a or not b ’ have the same value. So, they are
logically equivalent which means it does not matter in what context these two
expressions appear but in the larger framework of Boolean algebra these two expressions
are the same. They are syntactically distinct entities but they are semantically equivalent
from the laws of Boolean algebra. When we are talking about programs or expressions
occurring within programs we are really talking about syntactic entities and defining the
meanings of syntactic entities in terms of other semantic objects.

Your semantic objects could reside in any area of mathematics. A form of semantic
equivalence really constitutes equality in mathematics. In most of mathematics we had
not really worried about syntax. We are worried about their semantical properties or what
might be called model-theoretic properties. A mathematical discipline focuses on a

certain class of objects and we are looking at truths with regard to that class of objects.
Two statements in that area of mathematics are equivalent if they denote really the same
object in that class of objects that the mathematical discipline is concerned with.

In the case of Boolean expressions we have two distinct syntactical entities which denote
this same object in all possible contexts and therefore they are semantically equivalent.
So, that is what we would consider expression equivalence. We should ensure that a
programming language follows at least these basic principles. You should be able to
derive equivalence, not necessarily through a theorem proved but at least by hand and
they should not in anyway distort our conventional notions of equality in mathematics.
However, you will see that they actually will distort our conventional notions. A lot of
programming languages because of their particular implementations do distort
conventional mathematics. Many expressions especially in imperative languages produce
what are known as side effects.

[Refer Slide Time: 26:12]

The expression denotes a value but, along the way, it alters the store. A simple example
of this is a function in Pascal. A function in Pascal might be called from some outer scope
and if it is a function call, it should reside within an expression. You could have some
complicated expression involving let us say ‘sin x’. If this function is declared by the user
it is quite likely that the user inside that function body has changed some global variable.

Even though at the place of the call of the function it looks like an expression which just
yields a value and nothing else. It makes no other changes because there is some
assignment to some global variable inside the function body. The store that is the
location-value bindings of the whole program are changed irreversibly and that is a side
effect produced by a function call. So, two distinct expressions may yield the same value
under all conditions but they may produce different side effects on the global store.

What it means is that we will have to change our ideas about what constitutes the
equivalence of two expressions. I will talk about an irreversible change and then it is
possible to understand why this particular change is irreversible. Side effects can be
produced by expressions especially in most imperative languages; a large part of ‘C’
relies entirely on side effects. Then we have to refine the meaning of what constitutes the
equivalence of two expressions. We can say that two expressions are equivalent if they
yield equal values and also produce identical side effects in all computation states.

[Refer Slide Time: 26:47]

The side effect produced by an expression is not a problem in mathematics but in
computer science. It is also one of the reasons why debugging programs is itself a hard
task in most programming languages because the side effects are very carefully hidden
under different names and different environment bindings. They are aliased and all these
factors complicate matters for analyzing or debugging the program. That is what
constitutes a large class of expressions in most programming languages.

 [Refer Slide Time: 30:21]

The next syntactic categories are what are known as commands. We would look upon a
command as a request for a change of store and it is irreversible again. It is irreversible in
the sense that it is not guaranteed that the command can be undone. Two subsequent
commands may neutralize the effects of each other but it is not guaranteed that you can
always do that. We would still look upon those two commands which neutralize the
effects of each other. Start with a certain store sigma ‘Σ’, one command produces a new
store Sigma, ‘Σ’ 1 and the other command produces back Sigma, ‘Σ’. We will just
regard this as a sequence of two irreversible changes and that it is a mere accident that the
last state Σ 2 is the same as the first state Σ.

We will see what exactly is reversible to understand what irreversible means here. We
will look upon a command that is essentially going to change the state of a computation
in some ‘permanent’ fashion and permanent is within quotes because it is permanent till
the next command changes it further. On the other hand if you take expressions without
side effects, they really do not produce any change at all in the store of any computation.
They only yield a value but they do not change a store. Most of the commands you are
familiar with such as assignment commands, various kinds of control structures in most
of the imperative programming languages clearly involve state changes. You could have
a null command which does nothing but that is just a degenerate case of a command that
can change a state.

[Refer Slide Time: 30:56]

The next question is; when are two commands equivalent? We will say that two
commands are semantically equivalent if for all input states they produce the same output
state. A command is essentially a state to state transformation. It takes an input state as an
argument and yields an output state at the end of its execution.

For example; take the command;
if b then
 begin C while b do c.
while b do C
end

It consists of an ‘if then’ construct with a ‘while’ loop inside it which is semantically
equivalent to this construct, while b do c which is just the ‘while’ loop itself. The
construct on if b then…end could have been obtained by an unfolding of this ‘while’ loop
in some standard form. Notice that ‘b’ in the example is a Boolean expression and this
Boolean expression could actually produce side effects. If there is a function call inside
this Boolean expression it could produce side effects but this is equivalent in the sense
that even if b does produce side effects, the effect of one is exactly the same as the effect
of the other importantly under all computational states. Being able to locally produce the
same kind of state changes is not the same as being able to assert that under all
computational states they produce the same effects.

[Refer Slide Time: 34:00]

The last categories are what are known as environments and environments are created
and changed by declarations. Declarations constitute the last syntactic category and they
change environments. They produce environment to environment transformations.
Sometimes they also produce changes in the store, so in that sense environments could be
changed also in an irreversible fashion. But when we normally talk of environments that
is the changing of environments by new declarations, the changes are very often
reversible in the sense that you create a change in the environment or you create a new
environment when you enter a new scope and when you exit that scope you often revert
back to the old environment.

The change in the environment is reversible in that sense. However, the change in the
environment itself could have been produced by some commands or some expressions
with side effects which could have altered the store. But the change in the store that a
declaration produces is irreversible.

So the environment is reversible that is, the creation of a new environment is a reversible
process and usually depends upon the normal scope rules of a programming language.
There are different kinds of scope rules you could have but essentially the notion of a
scope means that you could create a new environment temporarily and you could destroy
that environment and revert to the old environment after some time. In that sense the
change in environment produced by definitions or declarations is reversible.

However, as I said, you could have expressions involving commands, commands
involving expressions, expressions involving declarations, declarations involving
expressions and commands etc. So, declarations could also produce irreversible changes
because they have underlying commands in them or they have underlying expressions in
them which produce side effects. They could produce irreversible changes but if you look
at declarations in a sort of a pure form as merely environment-creating objects, if you

look at declarations merely as a syntactic representation for a temporary change in
environment, then what declarations would produce are reversible changes and not
irreversible changes. In their pure form we would look upon expressions without side
effects as just syntactic representations which do not change the environment or the store
but which just yield a value.

Commands in their pure or impure form always change the store. In their pure form they
do not create new environments. Declarations in their pure form just create new
environments and do not change the store. But since all programming languages are
recursively defined using these three kinds of classes, each of them could produce effects
which are really impure in the sense that expressions could produce irreversible changes,
declarations could produce irreversible changes and store and commands could produce
new temporary changes in the environment. That typically happens when you have a
procedure call. A procedure call is itself a command but a procedure call often means the
creation of a new environment with new localized bindings, associations of new names or
new bindings for names already used and temporarily created for the purpose of that
procedure call.

[Refer Slide Time: 41:13]

When I said that expressions, commands and declarations do not overlap, I meant that
conceptually they do not overlap. Take the syntactic definition of a programming
language say Pascal.
Const m=10;

The effect of this is to create a new environment in which there is a binding for the name
m and that binding is the value, 10.

There might be an old m somewhere else but the effect of this declaration Const m=10; is
to create a new environment. I could also have something like, ‘n=2*m’. Here is a
declaration of two names m and n with fresh value bindings and the only way I can
produce the value binding is by using an expression.

If you were to look at some function declaration in Pascal, what you might have is
something of this form, ‘function fun (….): integer’.
This function declaration also has a function body;
‘begin
 C
 end;’

The function body is a command. The only way I can define new functions in Pascal is
by using the language of expressions and commands to their fullest extent. Here is a case
of a function which will use both the expression language and the command language in
order to produce essentially what constitutes a value. Supposing this command in our
example is a pure function in the sense that it produces no side effects on the global store
then you would have these value (….) parameters. If you had reference parameters they
are likely to produce side effects so let us just say that they are value parameters. You
would have some local variables and the entire command ‘C’ would just involve
parameters and local variables and finally there would be some assignment to the name
‘fun’ which is the value. But I cannot define new functions unless I use the command
language and the expression language.

You can have declarations which use expressions and commands, you can have
expressions like an expression involving ‘fun’ which uses commands and uses a
declaration and you could have commands which just use declarations. For example;
many languages, from the days of Algol 60, allow you to define a local command, an
unnamed function locally or an unnamed procedure locally with just local declarations
This is not allowed in Pascal though. For example; Algol 60 typically allows us to have a
‘begin’, a set of declarations D; C end and some command locally as part of some larger
program. There is no name but there are some local declarations and this ‘begin D; C
end’ is a command which requires a new environment to be created by these declarations
and this command inside it would in turn involve expressions. Commands might involve
expressions and declarations, declarations might involve expressions and commands and
expressions might involve declarations and commands.

One of the principles in programming language-design is that you can actually add
syntactic sugar to one syntactic class to produce another syntactic class. You can add
purely cosmetic reserved words or keywords which transform a declaration into a
command, a command into an expression, an expression into a declaration, an expression
into a command etc.

They are all mutually interchangeable but the meaning that is intended should be clear. If
you are adding something to an expression to make it a declaration then it is clear that
your idea is to create a temporary change in the environment.

[Refer Slide Time: 43:20]

What constitutes an expression in this declaration ‘const m = 10; n = 2 * m’ is not the
same as what constitutes an expression inside ‘begin C end;’ in the sense that the
intension of this declaration, ‘const m=10; n=2*m’ is to produce a new environment. The
intension of a command is to change state. For convenience, if your command becomes
too complicated, to simplify it you might require the introduction of more new names
which are just local to that command as in the case of unnamed blocks in Algol 60. But
the intension of ‘begin D; C end’ is very clearly to modify the store and to produce an
irreversible change in the store.

[Refer Slide Time: 45:40]

[Refer Slide Time: 45:55]

Declarations really denote new environments. They may also change the store. We would
say that two declarations are equivalent provided they produce identical environments in
all computational states and they produce equivalent stores. A declaration could produce
irreversible changes as in the case of a function declaration or a procedure declaration.

[Refer Slide Time: 46:20]

When we look at commands we have not earlier specified, we would say equivalent
commands yield identical changes in store in all computational states. However, two
different commands could be equivalent even though the temporary changes in
environment they produce are different. Inside the command you could have some
declarations and the declarations in the two commands might produce different new
environments but declarations are essentially a creation of essential changes in the
environment. At the end of the two commands you should have the same environment
and store in both cases.

You start with a computational state and the resulting output state of the computation
should be identical in the two regardless of how different the intermediate changes
produced in the computational state are. So, what distinguishes what are known as
functional or applicative languages and what are known as imperative languages are that
imperative languages contain all three syntactic classes whereas functional languages
contain only the language of only two syntactic categories, expressions and declarations.
The concept of a store and the concept of side effects is absent in functional languages.

